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Abstract: Conventional switch-mode LED drivers have problems such as poor performance in
harmonic distortion, flickering, power factor correction, stresses on the switches, high switching
losses, large size, and high cost. To resolve these problems, we propose a long-life LED driver with
the ability of power factor correction. The proposed system is based on the integration of a half-bridge
LLC resonant converter and two boundary-conducted boost converters. Both boost converters share
a common inductor designed in such a way that both boost converters work in boundary conduction
mode to attain the natural power factor correction. Half-bridge LLC resonant converter has soft
switching characteristics, which assure the zero-voltage switching (ZVS) of primary-side switches and
zero-current switching (ZCS) of diodes on the secondary side. This significantly reduces switching
losses and improves the overall efficiency of the system. Voltage divider capacitors are used on the
input side, which minimizes the bus voltages. The proposed system has two identical secondary
windings with a coupled inductor to eliminate the mismatch between them, which powers two
independent LED strings. The simulation of a 100-watt 240 V AC converter yields the approximate
sinusoidal shape of the input current. It shows that the switches on the primary side are operated
in ZVS and the diodes in ZCS. At 240-volt AC input, the efficiency is 87.4%, the total harmonics
distortion (THD) is 10.98%, and the power factor (PF) is 0.98.

Keywords: design of LED converter; integration of half-bridge LLC resonant converter; switching
frequency control; reliability of electronic circuits; harmonic distortion reduction; power factor
correction; switching losses reduction

1. Introduction

With the passage of time, LED lights have become a more advanced lighting source as
compared to incandescent and CFL lamps due to more efficient and good color rendering.
Even LEDs are the most efficient source of light to date [1]. Since Thomas Edison produced
the first incandescent lamp in 1879, electrical lighting has been a significant technology. As
the next generation of light sources, LEDs have been the focus of research as environmental
and energy conservation concerns grow. Compared to fluorescent tubes and incandescent
light bulbs, LEDs are significantly more energy efficient with steady growth in luminous
efficiencies [2,3]. Replacing traditional lamps with LEDs would result in significant CO2
reductions and eliminate mercury waste from disposal [4,5].

High-bright white LEDs have recently attracted the attention of the consumer in
industrial applications, particularly in street lighting. Street lighting improves security and
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safety in individual residences, utility companies, and cities. LEDs are not fully resistive
loads like incandescent bulbs and thus must cope with power factor correction and total
harmonic distortion [6]. LEDs do not have tubes or filaments, making them incredibly
durable and capable of operating with the driver for longer periods. An AC-DC converter
must be utilized to power LED street lighting systems from the input voltage of alternating
current. As a result, designing LED drivers is critical to designing a system with high
energy efficiency and superior PF and THD performance. Switch-mode LED drivers
are very common due to their ability to convert power at high frequencies due to their
switching-type architecture [7].

2. Literature Review

Single-stage [8,9], two-stage [10,11], and integrated LED driver systems [12,13] are
the three different types of LED driver systems. The single-stage LED driver, an AC/DC
converter, delivers a constant output current for the LED and unity power factor. A DC/DC
converter and an AC/DC power factor correction converter make up the two stages of
the two-stage system. Certainly, integrated topologies have lately been introduced to
reduce the price and size. As an example, single-stage and integrated systems have some
advantages due to the single energy conversion, such as high efficiency and minimal
design costs. However, the power factor correction of these topologies leads to a significant
output voltage ripple because of the absence of electrolytic capacitors. The ripple in the
low-frequency current causes LEDs to flicker. These integrated solutions and single-stage
are employed for LED replacement bulbs rather than LED street lighting systems when
small-size converters are necessary. Existing PFC-based two-stage converters have a power
factor of unity, but they are not economically viable. As a result, single-stage techniques for
increasing system dependability have been created by combining the DC-DC converter and
PFC circuit. Single-stage converters can save prices, but they haven’t been very successful
because of a number of problems. The converters proposed in [14,15] have a low power
conversion efficiency while having a bulk capacitor of lower voltage and high PF. The
converter in [16] had a complicated control circuit to maintain a 400-V bus voltage and
only improved efficiency in low-power conditions. The THD was significant when the
input voltage was increased in [17], and the voltage exceeded 600 volts across the switches.
Hard switching is frequently the outcome, which reduces system efficiency and increases
power losses.

LLC resonant circuits with soft-switching characteristics [18,19] and half-bridge-based
DCM single-stage PFC converters were used to increase system efficiency [20]. The convert-
ers, on the contrary, operated with low input voltage and a bus voltage more than twice as
high as the maximum input voltage. For the applications of high-input voltage, converters
must use an inexpensive and large storage capacitor with a high-rated voltage. In [21], a
single-stage PFC converter with an LLC resonant circuit based on half-bridge and DCM
interleaving boost circuits had a lower bus voltage that was somewhat greater than the
maximum input voltage. As a result, the converter can handle large input voltages. ZCS
at secondary-side diodes and ZVS at primary-side switches were used to reduce system
switching loss. The topology was further enhanced using a single boost inductor instead of
two boost inductors [22]. In BCM mode, interleaving boost circuits shared a boost inductor
to achieve the power factor correction function. An electrolytic capacitor is used in the
converter because the estimated life span of the converter is shorter than that of the LEDs.

In [23], a single-stage LED street light driver was proposed that integrates a half-
bridge-type series-resonant converter, a bridge rectifier, and an interleaved boost PFC
converter. The level of DC-bus voltage is increased, and two DC-linked capacitors are
required due to the high voltage stresses of power switches that took place in this version
due to the boost-type power conversion. Another single-stage street light driver based on
interleaved boost converter is presented in [24]. It can operate at utility-line voltages of
100–120 V in American and Asian countries, but due to boost-type power conversion, it can
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also operate at higher utility-line voltages of 220–240 V in European countries. In addition,
in this version, the power switches will experience higher voltage stresses.

To meet these challenges, this article offers a design for a single-stage power factor
corrected AC-DC converter which is appropriate for working at high utility-line voltages
along with decreased voltage levels on the DC-linked capacitor and reduced voltage
stresses on the power switches due to buck-boost-type power conversion. The authors
in [22] originally introduced the improvised architecture as shown in Figure 1. This work is
improved by running high-voltage LEDs in two strings with equal currents using a double
half-wave rectifier on the secondary side. The converter removes one filter capacitor on
the side of the DC input. The smooth switching characteristics of the LLC resonant circuit
minimize the power losses of the switches. A metalized polypropylene capacitor was used,
which significantly lowered the bus voltage capacitance. On the output side, small filter
capacitors are utilized. Because of the decreased capacitance, the electrolytic capacitor
is more likely to be removed, increasing the potential driver lifetime. The commercial
resonant controller IC L6598 controls the half-bridge power switches for the driver, greatly
reducing costs.
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Figure 1. Single-stage LED driver for street lighting proposed in [20].

3. Structure of the Circuit

Figure 2 shows the desired LED driver’s design. The prosed LED driver contains
a full-bridge rectifier that converts the AC input supply into a DC supply, C1, and C2
are two voltage dividing capacitors, D1 and D2 are two ultrafast boost diodes, LB is an
inductor that is shared by both boost converters, two power MOSFETs S1 and S2, the
Cs1 and Cs2, and Ds1 and Ds2 are the parasitic capacitors and diodes of switches and
power switches respectively. DC bus capacitors Cbus, LLC resonant tank, Cr, Lr and LM are
resonant capacitors, resonant inductor and magnetizing inductor, a transformer which has
one primary and two independent and identical secondary windings, two output rectifier
diodes of first secondary winding D11 and D12, and output capacitors of first secondary
winding C11 and C12. Two output rectifier diodes of 2nd secondary winding D21 and D22
and output capacitors of 2nd secondary winding C21 and C22. We can obtain two boost
converters by combining the half-bridge LLC converter switches S1 and S2. The first boost
circuit is formed by switch S1, diode D1, boost inductor LB, bus capacitor Cbus, and diode
Ds2. The 2nd boost converter is formed by switch S2, diode D2, boost inductor LB, bus
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capacitor Cbus, and diode Ds1. Both converters share the boost inductor and bus capacitor,
which reduces their size. Both boost converters operate in BCM (boundary conduction
mode) with an almost 50% duty cycle. And both switches are turned on with ZVS, and
diodes of the secondary side are turned on and off with ZCV, which reduces switching
losses and increases its efficiency.
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Figure 2. Topology of proposed LED driver.

The proposed topology consists of five major parts: bridge rectifier, two BCM boost
converters, switching network, LLC resonant tank, and voltage doubler rectifier. The 1st
part consists of a bridge rectifier that converts the AC power into DC because LEDs require
DC current for their operation. If we want to drive LED lights from AC means, then the
AC-DC conversion stage is necessary. The 2nd part consists of BCM boost converters that
share the inductor LB and buss capacitor Cbus operation in BCM (boundary conduction
mode), providing natural power factor correction. The 3rd part is the switching network;
the output of this network is a square wave supplied to the tank circuit. The fourth part is
the half LLC resonant converter which takes a square wave at the input and produces pure
sinusoidal resonance frequency oscillations; a square wave is provided by the third part
of the proposed circuit, which is the half-bridge inverter. Then the power is transferred to
the transformer’s secondary windings, which are connected with voltage doubler rectifiers
that convert the AC power into DC and are supplied to the LEDs. Light is emitted from
LEDs in the form of photons, as shown by the arrows along the LEDs.

Proposed Converter with Coupled Inductor

To encounter the magnetic coupling issue, a coupled inductor is added on the sec-
ondary side proposed converter with coupled inductor on the secondary side as shown in
Figure 3.

The proposed design, as shown in Figure 3, is a two-channel LED driver that is
built on the integration of two BCM boost converters and a half-bridge LLC converter
with the design of the boost inductor Lb in such a way that both converters operate in
boundary conduction mode; in one switching cycle, the current in the boost inductor hits
a positive maximum, a negative maximum, and then returns to zero. Both switches are
operated with approximately 50% duty cycle. The purpose of the first stage is PCF, and
2nd stage (integrated with the first stage) is the power control stage which provides the
appropriate voltages and current to the LEDs with high efficiency. Then LLC resonant
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converter regulates the power flow. The LLC tank circuit takes square waves as input,
performs wave shaping (converts into sinusoidal oscillations), and provides the ZVS of
MOSFETs on the primary side. Power is transferred to the converter’s secondary windings,
where it is rectified (converted into DC) with the help of a voltage double rectifier; the
proposed system has two independent secondary windings means two independent LEDs
strings are attached on the secondaries of the transformer with the equal load. If one
LED string is shorted, the other will work properly; also, using two strings reduces the
voltage stresses on secondary side diodes. The driver has low bus voltage compared to the
conventional topologies of LED drivers; this reduces the voltage stresses on the switches.
Film capacitors are used instead of the proposed electrolytic capacitor system. If the switch
operated under normal operating conditions, the component’s life is even more than that
of the datasheet’s lifetime.
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The steady-state working waveforms of the converter are presented in Figure 4. From
the waveforms, it can be seen that the boost inductor Lb functions in BCM and that the
current iLb peaks twice during a switching period. Here, the boost inductor Lb is alternately
charged and discharged by each of the two boost circuits.

The switches are turned on with ZVS after the drain-source voltages reduce to zero
and their parasitic capacitors are discharged. As a result, the turn-on-switching losses are
greatly reduced. The drain-source voltages increase as the switches’ parasitic capacitors
charge in the meanwhile. Here, the capacitive loss is removed, allowing for the erasure of
the turn-off switching losses as well. The switches repeatedly go through this intermittent
on-off cycle.



Sustainability 2023, 15, 3991 6 of 15
Sustainability 2023, 15, 3991 6 of 17 
 

 

Figure 4. The steady-state operating waveforms of the proposed single-stage LED driver. The volt-

age and current of D1 and D2 are shown by red and blue color lines, respectively, while the reso-

nant and magnetising currents are represented by black solid lines and dotted lines, respectively. 

The switches are turned on with ZVS after the drain-source voltages reduce to zero 

and their parasitic capacitors are discharged. As a result, the turn-on-switching losses are 

greatly reduced. The drain-source voltages increase as the switches’ parasitic capacitors 

charge in the meanwhile. Here, the capacitive loss is removed, allowing for the erasure of 

the turn-off switching losses as well. The switches repeatedly go through this intermittent 

on-off cycle. 

  

Figure 4. The steady-state operating waveforms of the proposed single-stage LED driver. The voltage
and current of D1 and D2 are shown by red and blue color lines, respectively, while the resonant and
magnetising currents are represented by black solid lines and dotted lines, respectively.
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4. Gain Analysis of the Proposed Converter

A half-bridge LLC resonant DC-DC converter’s gain characteristics are examined
using the first harmonic approximation approach (FHA). Let VF

m be the fundamental
component of the input voltage of the tank circuit, andωs is the switching frequency.

Vab(ωt) = Vnm sin(ωst) (1)

Vnm = 2Vbus
nπ

Vab(ωt) = 2Vbus
π sin(ωst)

(2)

For the fundamental component value of n = 1.

Vab
F(ωt) = 2Vbus

π sin(ωst)
VF

ab(rms) =
2Vbus√

2π

VF
ab(rms) =

√
2Vbus
π

(3)

The secondary current of the transformer or input current of the voltage doubler
rectifier, which has a peak, can be calculated as:

Is( rms) =
Ioπ√

2
(4)

By applying Fundamental Harmonic Approximation, the VF
S(rms) RMS secondary

voltages of the transformer can be calculated as:

VF
S(t) =

4V
π

sin(ωst) (5)

As mentioned above, due to the voltage doubler rectifier, the secondary voltages of
the transformer are half of the output voltages.

VF
S(t) =

2Vo

π
(6)

To calculate the RMS value of the secondary voltages, Equation (6) is divided by
√

2.

VF
S(rms) =

√
2Vo

π
(7)

Ac resistance (Rac) of voltage doubler rectifier be found as:

Rac =
Vs rms
Is rms

Rac =
2Ro
π2

(8)

To simplify the analysis, secondary side resistance (Rac) can be referred to as the
primary side.

Rp = Rsn2

Rp = R′ac =
2Ron2

π2

(9)

The voltage across the R′ac is equal to the primary side voltage of the transformer,
which can be calculated as

Vpri = nVF
S(rms)

Vpri = VLm = n
√

2Vo
π

(10)



Sustainability 2023, 15, 3991 8 of 15

Generalized expiration of voltage gain ‘M’ and its DC gain Gdc of half-bridge LLC
resonant converter with voltage doubler rectifier can be calculated from Equation (11).

VLm =
∣∣∣ XLm||Rac

′

(XLm| |R ac
′)+XLr+XCr

∣∣∣×Vab

M = VLm
Vab

=
∣∣∣ XLm||Rac

′

(XLm| |R ac
′)+XLr+XCr

∣∣∣
=

XLm×Rac ′
XLm1+Rac ′

XLm×Rac ′
XLm+Rac ′

[1+
(

XLr+XCr)/ XLm×Rac ′
XLm+Rac ′

]
M = A√[

1+A− 1
f2n

]2
+Q2 A2

(
fn− 1

fn

)2

M = VLm
VAB

=
n
√

2Vo
π√

2Vbus
π

= nVo
Vbus

= A√[
1+A− 1

f2n

]2
+Q2 A2

(
fn− 1

fn

)2

(11)

Gdc =
Vo

Vbus
=

1
n
× A√[

1 + A− 1
f2
n

]2
+ Q2 A2

(
fn − 1

fn

)2
(12)

where V0 is the proposed converter output voltage, Vbus represents DC bus Voltage, Q is
the quality factor, A is the ratio of magnetizing inductance to resonant inductance, Rac is AC
load resistance, n is transformer’s turn ratio, fn normalized frequency and fr is resonance
frequency. Equation (13) can be used to compute the converter’s input power.

Pin = 2
Ts

Ts
2∫

0
Iavg(in) ×VindT

Pin =
Vp2

16×Lb×fs

[
1
2 −

2×Vp
3×π×Vbus

] (13)

5. Design Consideration

The LED driver’s components and parameters are accurately designed to attain the key
features of high efficiency, low switching losses, low stresses on switches, and low THD. To
drive the LEDs, the converter is designed for output voltages of 60 V DC and input voltages
of 220 V AC to 240 V as its specification is mentioned in Tables 1 and 2. The LLC resonant
converter’s typical voltage gain curve is shown in Figure 5. The proposed converter is
operated in the inductive region because the LLC resonant converter tank circuit impedance
is inductive, and switches are operated with zero voltage switching (ZVS).

Table 1. Basic design Parameters and Specifications.

Parameters Values

Input voltage (Vin) 220 V–240 V
Output voltage (Vout) 60 V

Output power (Po) 100 W
Switching frequency (fs) 75 kHz

Table 2. Components and parameters of the proposed converter.

Components Parameters

Boost inductor 260 Uh
Resonant Capacitor 12.48 Nf
Resonant Inductor 188 Uh

Magnetizing Inductor 1.5 Mh
Bus Capacitor 90 Uf

Output Capacitors 47 Uf
Voltage Dividing Capacitor 330 Nf
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BCM boost converter: The boost inductor value can be designed by assuming the
converter’s efficiency is greater than 90%, and the maximum bus voltage is up to 410 volts.

Pout= ηPin

Pout =
η×Vp2

16×Lb× f s

[
1
2 −

2×Vp
3×π×Vbus

]
Lb = η×Vp2

16×Pout× f s

[
1
2 −

2×Vp
3×π×Vbus

] (14)

Transformer’s turns ratio: The transformer turn ratio can be calculated by assuming a
maximum DC bus voltage equal to 410.

M = nVo
Vbus

n = Vbus×M
Vo

(15)

Gain calculations: For maximum gain calculation, DC bus voltages should not be
less than the peak value of input voltages. So, the maximum and minimum gain can be
calculated as:

Mmin = 1 (16)

Mmax =
nVo

Vbus(min)
=

6.8× 60
340

= 1.2 (17)

Selection of A and Q values: The A and Q values are selected by plotting the gain
curve for A = 8 and different Q values, shown in Figure 6.
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Table 1. Basic design Parameters and Specifications. 

BCM boost converter: The boost inductor value can be designed by assuming the 

converter’s efficiency is greater than 90%, and the maximum bus voltage is up to 410 volts. 

𝑃𝑜𝑢𝑡 = η𝑃𝑖𝑛 

𝑃𝑜𝑢𝑡 =
 η × 𝑉𝑝2

16 × 𝐿𝑏 × 𝑓𝑠
[
1

2
− 

2 × 𝑉𝑝

3 × 𝜋 × 𝑉𝑏𝑢𝑠
] 

Lb =
η × Vp2

16 × Pout × fs
[
1

2
−

2 × Vp

3 × π × Vbus
] 

(14) 

Transformer’s turns ratio: The transformer turn ratio can be calculated by assuming 

a maximum DC bus voltage equal to 410. 

𝑀 =
𝑛𝑉𝑜

𝑉𝑏𝑢𝑠
 (15) 

Parameters Values 

Input voltage (Vin) 

Output voltage (Vout) 

Output power (Po) 

Switching frequency (fs) 

220 V–240 V 

60 V 

100 W 

75 kHz 

Figure 5. Gain curve of LLC resonant converter. Red and black curves show the zero current
switching in capacitive region and zero voltage switching in inductive regions respectively.

Gain at Q = 0.35 is slightly higher than the necessary amount. In contrast, the maximum
gain at Q = 0.45 is substantially lower than the necessary maximum gain, so, the curve at
Q = 0.35 can be chosen for design purposes. Finally, the design is chosen with A = 8 and
Q = 0.35. The high frequency, measured in kHz, at which the planned LLC resonant partial
power converter operates. It runs at a frequency of 95 kHz.

Resonant frequency: The resonant frequency is determined using the following equa-
tion as the ratio of switching frequency (fs) and normalized frequency (fn):

fr =
fs

fn
=

95
0.95

Khz = 100 KHz (18)
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The value of ‘ R′ac can be calculated from the formula given below:

Rac =
2n2

π2 Ro (19)

Rac =
2n2Vco

π2Io
=

2n2V2
o

π2P
(20)

Resonant inductor: The value of the resonant inductor (Lr) is calculated through the
following equation.

r =
Q× Rac

2πfr.
(21)

Resonant capacitor: The value of the resonant capacitor is (Cr) calculated through the
following equation.

Cr =
1

Lr.(2.π.fr)2 (22)

Magnetic inductor: The value of magnetizing inductor (Lm) is calculated through the
following equation.

Lm = A × Lr (23)

Coupled inductor: A coupled inductor operates under high frequency, so, a ferrite
material core is required instead of a simple iron core. A ferrite core FU2014 with an effective
area of 91.8 mm2 is used which has a maximum flux density of 170 Mt. Equation (23)
calculates the number of turns of the coupled inductor.

N1 =
Vmax

Acore × w× Bcore
(24)

6. Simulation Results

The proposed system is powered by a 240 V AC, 50 HZ frequency, with output voltages
of 60 V and a 100 W output power. To validate the performance and operation, the LED
driver is simulated under various test conditions. The results obtained from the simulation
are presented in this section.
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6.1. No Mismatch in Secondary Windings of Transformer (Case-01)

When both secondary windings have equal magnetic coupling with the transformer’s
primary winding. Figure 7 shows that the input voltage and current are in-phase and
almost sinusoidal in shape, which means a maximum power factor of 0.99 is achieved
with a minimum THD of 10.98 which is very low compared to the existing LED driver.
The inductor current (iLb) work between negative and positive boundaries means that
the operation of boost converters in boundary conduction mode provides us with natural
power factor correction. The boost inductor current attains maximum peak value as the
input power is at its highest.

Figure 8 shows the waveforms of switches gate voltage VGS1 and VGS2 and switches
drain source voltage VDS1 and VDS2. Increase and decrease in switches source-drain voltage
alternately, therefore, two half-bridge switches share voltage stress equally across the bus
capacitor. For ZVS operation, a specific dead time was introduced between the consecutive
shift of switches.
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Figure 8. Waveform of VDS1, VS and VGS and VDS2− VS− VGS2.

Figure 9 presents simulation waveforms of VDS1, switch drain-source current iDS1,
diodes output current iDr3 and iDr4, and resonant current ir. Simulation results describe that
secondary side diodes are in ZVS mode. The secondary current increases with a sinusoidal
shape and becomes zero for a short time interval in each high-frequency switching half
cycle with a switching frequency of 78 K Hz and the lowest voltage stresses of about 360 V.

Simulation results of the output current and voltage of both sides are presented in
Figure 10, the voltage is about 60 V, and the current is about 0.82 A on both sides. The
large current ripple is double the input AC frequency. The current ripple is approximately
90 mA, while the voltage ripple is less than 5 V. The LEDs illuminated without flickering.
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6.2. Mismatch between Secondary Windings (Case-02)

As mentioned above, it is very difficult to make two identical secondary windings
because both secondaries cannot achieve the same coupling with the primary winding of
the transformer. In this case, the proposed system is analyzed with a 10% mismatch between
the windings. The waveform of boost inductor current (iLb), input voltage, and the input
current is the same as in case-1 because boost converters in our proposed system continue
to work in boundary conduction mode and improve the power factor. The secondary side
diodes attain ZCS, and the switches of the primary side attain ZVS. ZVS of MOSFETs is
shown in Figure 11.

Figure 11 shows the Simulation waveform of magnetizing current and resonant current.
These waveforms clearly depict that at a certain time magnetizing current of the transformer
and resonant current become equal which means the converter still manages to achieve ZCS.

6.3. Results of Proposed Topology with Coupled Inductor (Case-03)

The effect of coupled inductor simulation is carried out with a 10% mismatch between
the secondary windings. Coupled inductor did not affect the power factor correction
function; boost converters still operate in boundary conduction mode, which is verified by
simulation results. Due to this, the waveform of boost inductor current (iLb), input voltage,
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and input current are the same as in case-1. Both switches are operated alternatively, and
the stress on the switches is less than 400 V. The LLC resonant converter’s soft-switching
features are not disturbed. Both switches are operated in ZVS, as shown in Figure 12.
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In Figure 12, the waveforms of VDS1 and ILr and, VDS2 and ILr show that the soft
switching characteristics of the LLC resonant converter are not disturbed. Both switches
are operated in ZVS and ZCS. There are some dead intervals in each half cycle of the
high-frequency switching cycle which assures the ZCS operation of diodes.

7. Conclusions

A single-stage, 100 W with 240 V AC input, integrated LED driver topology is pre-
sented and simulated in this paper; the driver is based on the integration of two boundaries
conducted boost converters and a half-bridge LLC resonant converter, and the system has
two independent secondary windings which contain the two independent LED strings,
both boost converters have a common inductor and operated in boundary conduction
mode to realize the power factor correction. Moreover, switching losses are significantly
reduced due to the soft switching characteristic of the half-bridge LLC resonant converter,
which is verified through simulation results. Two capacitors are used on the input side for
voltage division, which reduces the voltage stresses on the switches. The effect of mismatch
between two identical windings is also presented in the results, which shows that the volt-
ages of the secondary sides are different from each other. Due to this, the LEDs connected
to low-voltage secondary windings do not glow properly. A coupled inductor is added on
the secondary side, which encountered the mismatch produced due to unequal magnetic
coupling of windings results with mismatch and coupled inductor verified and presented.
The addition of coupled inductor does not disturb the performance of the converter and
soft switching characteristic (ZVS & ZCS) of the LLC resonant converter, which is verified
through simulation results. The size of the DC bus capacitor is also reduced, so that, a film
capacitor can be used in practical applications.

In future work, the hardware of the proposed system will be implemented to compare
the simulation results with practical results. To improve the circuit’s dependability and
luminous efficiency, more LED channels will be added. Additionally, its control circuitry
will be changed.
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