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Abstract: The aim of this study is to analyze and model the geotechnical characteristics of soils in
Erbil city using Geographic Information Systems (GIS) and Artificial Neural Networks (ANNs). The
study used GIS to analyze the geotechnical properties of soils by collecting data from 102 boreholes
in three different depth levels (1.5 m–3.5 m, 3.5 m–6.5 m and 6.5 m–9.5 m) to visualize and analyze
soil characteristics such as fines content, moisture content, soil plasticity, shear strength parameters,
compressibility, Standard penetration test (SPT), and bearing capacity. The paper also establishes
the prediction of SPT-N value and bearing capacity based on geotechnical properties of soils using
ANN methods and made correlations between SPT values and shear strength parameters with the
bearing capacity of the soil. The results analyzed via GIS indicated that the soil classification was
silty clay with a small amount of sandy gravel (CL) in most of the study area. According to the
SPT–N values, most of the soils in Erbil City ranged between 33 and 50; a higher SPT value generally
indicates denser and stronger soil. The value of the shear strength parameter for the maximum
friction angle of the soil layers was found to be 36◦, and the predominant cohesion was approximately
100 kPa. The compression index of soils ranged between 0.11 to 0.31. The results showed that the
ANN models were able to accurately predict the geotechnical parameters of the soil types in the
study area. In addition, the use of GIS and ANN techniques allowed for a comprehensive analysis
of the geotechnical characteristics of the soils in Erbil, providing valuable information for future
construction and development projects.

Keywords: Erbil; geotechnical characterization; GIS; ANN

1. Introduction

One of the most important steps before constructing infrastructure is the geotechnical
site investigation. It provides information on the site suitability for design criteria and
possible construction problems such as time and resources. There are many methods for
site investigations and in-situ tests, including pressure meter test, dilatometer test, SPT,
cone penetration test (CPT), and plate load test [1]. For the construction of multistory
buildings, highways, bridges, and industrial facilities, a soil survey is required to determine
the type of soil, consistency, index properties, relative density, groundwater level, shear
strength parameters, (SPT) value and bearing capacity [2]. It is necessary to know the
bearing capacity of the soil layers for design, the choice of the foundation type, and the
foundation depth for any superstructure [2–4]. A geotechnical investigation provides
valuable information on the physical and mechanical properties of the soil and rock at a site,
which is necessary for safe and durable engineering structures. The information collected
from a geotechnical investigation is used to make informed decisions about the design and
construction of the foundation, and to identify potential hazards, such as soil liquefaction
or instability of slopes, that could compromise the safety of the structure. Therefore, to
obtain the geotechnical parameters required for the calculation of the soil bearing capacity
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and settlement, in situ testing is required in addition to the collecting of disturbed and
undisturbed specimens at different depths. Thus, several geotechnical experiments are
conducted on these specimens to determine various parameters that are typically used to
design the foundations [5]. Researchers have studied the reliability of SPT to determine
the bearing capacity of soil [6–8]. Currently, the SPT test is used to evaluate the bearing
capacity to design foundations [9,10].

GISs and ANNs could be used together in analyzing the geotechnical characteristics,
and to predict the shear strength, settlement, and bearing capacity of the soil from the index
properties of soils. The GISs provide an analytical function that is time–consuming for
developing model entry data at different spatial scales [10,11]. A GIS is an organization
of data that people interact with to integrate, analyze, and visualize data, to identify
relationships, patterns and trends, and to resolve complicated issues; GIS has been used
by many researchers to analyze various data [12–15]. ArcGIS was designed to capture
data, store, update, process and present data, and to conduct analyses [16]. GIS can help to
recognize possible challenges to the completion of the project early in the design process,
which can help to avoid time losses for a construction project. Therefore, a GIS is a modular
instrument that can be used to support geotechnical site assessments. It has been used to
guide land preparation and to integrate field data with existing data [17].

ANN is one of the prevalent algorithms among researchers nowadays, specifically in
geotechnical issues. ANN holds three significant advantages: first, the counting speed is
high. Second, it has a strong fault-tolerant capability. Third, it is proficient in dealing with
problems with complicated problem-solving rules [18]. The technique of utilizing ANN
could be a suggestion for predictions, especially in cases where theoretical modeling does
not give foreseen outcomes [19]. ANN aims to model the behavior of the nervous system
in the human brain. ANN is an adequate solution for solving complex and nonlinear data
modeling. Ref. [20] presents the estimation of standard penetration test values on cohesive
soil using an artificial neural network without data normalization. Some previous studies
investigated the assessment of geotechnical properties and determination of shear strength
parameters by unitized ANN [21–23]. In the geotechnical domain, the development situ-
ations generally have multiple variables, making them challenging to model employing
conventional mathematics [24].

In this study, the test results of 102 boreholes were gathered, categorized, and analyzed
and modeled using ArcGIS10.7 software. These data were used to construct models using
ANNs to predict the SPT values and bearing capacity of soils. The data represent the
area of Erbil City in Iraq, covering a depth of 9.5 m below the ground surface. Data were
collected from the Andrea Engineering Test Laboratory and the construction laboratory in
Erbil. Therefore, for a geotechnical engineer, this information can be used to classify areas
into zones according to GIS results. The purpose of this study is to analyze and model
the geotechnical parameters such as the fines content, moisture content, soil plasticity,
shear strength parameters, compressibility parameters, SPT–N values and soil bearing
capacity via GIS to create a group of maps in different layers. In addition, the prediction
of SPT-N value and bearing capacity based on geotechnical parameters were modeled by
ANN methods. Correlations between shear strength parameters, SPT values and bearing
capacities of soils were made by Minitab 17 programming.

By combining the capabilities of GIS and ANNs, researchers can develop models to an-
alyze geotechnical issues at different spatial scales, producing results that are more accurate
and efficient compared to manual methods In summary, GIS and ANNs complement each
other by providing an analytical function that is efficient for developing model data entry
at different spatial scales for geotechnical issues, allowing for more accurate predictions
and a better understanding of the relationships between soil properties and other factors.
To the best of our knowledge, this is the first study to cover mapping and modelling all the
geotechnical characteristics of soil in Erbil city.
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2. Study Area

Erbil is located in the northwestern region of Iraq. Geologically, it is in the low–folded
belt of northern Iraq in the structural trough with a NW–SE axial trend, and within the
foothill zone, which is part of the stable shelf tectonic unit of Iraq. Erbil City has an area of
approximately 250 km2 and GPS coordinates of 36◦11′27.4′′ N 44◦00′33.7′′ [25]. A location
map of Erbil City is shown in Figure 1. From a geomorphological perspective, the area is
flat with uncommon low–lying hills. In addition, Erbil City is stratigraphically covered by
quaternary and Pleistocene deposits, which are dominated by clay, silt, and sand [26]. Erbil
City is mainly covered by soils such as gravel and conglomerates with sand, clay, and silt.
Conglomerates cover more than 80% of the study area [27].
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Figure 1. Location of Erbil City, Iraq.

In the last decade, Erbil city had extensive development in the construction of railways,
internal and ring roads. Therefore, collecting data, building a database, producing GIS
maps for soil properties, and developing a model for soil behaviors and the bearing capacity
of the foundations would be very useful for site engineers to make immediate decisions
regarding the selection of project positions. Finally, the geotechnical properties at different
depths were collected from the study area (Erbil city), analyzed and tabulated for the
102 boreholes. The locations of the boreholes were selected to ensure a uniform distribution
throughout the study area. The borehole locations are shown in Figure 2.
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3. Methodology

The methodology of the study involved collecting data from the field in Erbil city center
and analyzing it using both GIS and ANNs. The data was processed and analyzed using
these tools to gain insights and conclusions about the study area. The flow chart represents
in Figure 3 the methodology of this study as a tool to help readers understand the process
used. A flow chart can show the different steps involved in integrating GIS, ANN, and lab
analyses, making it easier for readers to follow and comprehend the study’s methodology.
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3.1. Data Collection

In this study, the results of site investigations and numerous series of soil laboratory
tests were collected from 102 borehole locations that cover the main part of the region.
Soil investigation included drilling boreholes, taking both disturbed and undisturbed soil
samples at 1–meter intervals from 1.0 m to 9.5 m depth, and various field tests. Laboratory
work included a series of geotechnical tests to determine the soil index properties, sieve
analysis, compressibility, settlement, and shear strength.

A sample of the data collected from the laboratory and field tests is presented in
Table 1. This table includes some statistical information (e.g., min. values, max. values,
average values, and standard deviation of the input and output data). All data of the study
could find in Appendix A as a Table A1.

Table 1. Inputs and output of the present study.

No

LL% PL% PI% WC% c kN/m2 φ
Fine

Content
SPT-N Value

kN/m2
Q UL

kN/m2

ASTM D 4318 ASTM
D2216 ASTM 3080 ASTM D

6913 ASTM D1586 -

1 46 22 24 28.3 51 4 62.1 7 117
2 40 22 18 15.0 96 3 94.1 54 224
3 47 25 22 18.0 99 5 91.5 57 225
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

304 48 23 25 18.7 99 5 94.8 100 292
305 45 25 20 22.8 105 4 92.6 91 296
306 48 25 23 22.1 97 5 69.7 100 288

Min 0 0 0 12 29 3 42 5 74
Avarege 48.02 24.90 22.89 18.69 92.67 4.21 89.48 64.69 255.09

Max 71 36 37 29 136 6 100 100 375
SD * 7.51 3.67 5.59 2.87 19.55 0.62 11.65 25.93 60.98

SD * = Standard deviation.

3.2. Geographical Information Systems (GISs)

The results of the soil investigation and field and laboratory tests were employed to
create a digital database for the study region. A database of geotechnical properties was
used to provide the input values for the mapping software. In this study, the data were
analyzed and presented as maps using ArcGIS (10.7) software. Deterministic methods
(inverse distance weighting) were used to create maps and models of spatial data, which
rely on probability and uncertainty. Deterministic methods use a fixed set of rules or
algorithms to create maps and models, unlike geostatistical methods used for analyzing
and modeling spatial data [11]. These methods are commonly used to analyze patterns,
relationships, and trends in large, complex datasets.

Some of the most commonly used deterministic methods in ArcGIS include:

• Interpolation: This method is used to predict values at unsampled locations based on
observed data. Interpolation methods in ArcGIS include inverse distance weighting,
spline, and triangulated irregular network (TIN) interpolation.

• Buffering: This method is used to create a polygon around a feature that represents a
specified distance. Buffers are commonly used in spatial analysis to identify areas that
are within a certain distance of a feature of interest.

• Overlay: This method is used to combine two or more maps based on a set of rules
or conditions. Overlays can be used to create a new map that shows the spatial
relationships between features in the input maps.
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• Reclassification: This method is used to change the values of a raster or vector layer
based on a set of rules or conditions. Reclassification is often used to simplify complex
data or to create new data layers based on existing data.

• Extraction: This method is used to select features from a map based on a set of
conditions or rules. Extractions can be used to create new data layers that contain only
the features that meet specific criteria [11].

The resulting digital maps illustrate the soil formation patterns, distribution, and
geotechnical properties of soils at different depths. These maps simplify and help designers
and site engineers make the right decisions in the construction of projects. The aim of
drawing digital maps using the GIS method was to illustrate the bearing capacity of
foundations at three different depths. In this study, the bearing capacity was estimated
using two methods. The first Meyerhof method (1963) used shear strength parameters for
(10 × 10 m). In the second method, standard penetration numbers were used for bearing
capacity estimation [28].

3.3. Statistical Analysis

To make a correlation between the geotechnical properties, the data obtained from the
soil investigation of all boreholes in the study area were correlated by MINITAB 17 software.
For instance, correlations were made between the SPT values of soil strata with the shear
strength parameters of soils and the ultimate bearing capacity. This method is used to find
a correlation between the response (Y) and predictor (X) using regression analysis, which is
an extensively used method for analyzing multifactor data.

3.4. Neural Network Model

The process for creating an artificial neural network is assumed by using the Matlab
application. This study aims to make models by an artificial neural network. The network
model developed was formed from data collection of geotechnical properties of soils in
the study area. The ANN analysis result aims to predict SPT N-value and bearing capacity
using the identical algorithm, the Back-propagation algorithm, and the same activation
function. The network architecture was chosen using hidden layers and varying the
number of neurons in the hidden layer. The relation number of neurons in the hidden layer
is between 15 and 18 according to previous researches [29,30]. The network performance
that has the smallest error and the correlation coefficient value that is proximate to 1 is
most suitable for data predictions. Root Mean Squared Error (RMSE) is a commonly used
evaluation metric in ANN models. RMSE measures the difference between the predicted
and actual values, and it is expressed in the same units as the target variable. A low RMSE
value indicates that the predictions are close to the actual values, while a high RMSE value
displays that the predictions are far from the actual values. In ANN models, RMSE is used
to evaluate the performance of the model and determine the quality of the predictions. A
lower RMSE value shows a better fit between the predictions and the actual values and
a more accurate model. In this research, the R2, RMSE, and MAE values of the estimated
and actual target parameters are computed in the implementation evaluation of regression
models. The R2, RMSE, and MAE represented mathematically as Equations (1)–(3):

R2 = 1−
∑N

I=1

(
ymea − ypre

)2

∑N
I=1
(
ymea − ym

)2 (1)

RMSE =

√√√√∑N
I=1

(
ymea − ypre

)2

N
(2)

MAE =
1
N

N

∑
I=1

∣∣∣ymea − ypre

∣∣∣ (3)



Sustainability 2023, 15, 4030 7 of 40

where ymea, ypre, and ym represent the average of existing output, predicted output, and
actual output, respectively. N denotes for all number of data. The degree of fitting is raised
with R2 immediacy to 1. RMSE and MAE are utilized to assess the model’s prediction
capability. For the RMSE and MAE, the prediction model will be more exact and its accuracy
will be higher with a smallish value.

Figure 4 illustrates the structure of neural network models to predict SPT N value
as output with two models: (a) using input as (LL%, PL%, PI%, WC, cohesion, φ, Fine
content) and (b) using inputs as (LL%, PL%, PI%, WC, φ, Fine content). The structures of
neural network models to predict ultimate bearing capacity are presented in Figure 5. The
parameters were used as input in two models: (c) (LL%, PL%, PI%, WC, cohesion, φ, Fine
content) and (d) (LL%, PL%, PI%, WC, φ, Fine content).
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4. Results and Discussions
4.1. Modeling of Soil Properties Using GIS Maps

GIS maps of the soil properties of the study area were produced. These maps included
the distribution of the soil fines content, natural water content, liquid limit, plastic limit,
cohesion, angle of internal friction, compression index, rebound index, SPT–N values,
and bearing capacity of foundations at three different levels (1.5 m–3.5 m, 3.5 m–6.5 m,
and 6.5 m–9.5 m). The soil characteristics at different depths were interpolated for the
survey area to show the distribution of these properties in a clear way. In general, the
soil characteristics in all the maps were divided into six major legends, each of which was
represented by a unique color.

4.1.1. Fines Content Model

Fines content in soils is one of the most significant parameters that affect soil behaviors
such as shear strength, compressibility, plasticity, and indirectly, the bearing capacity of
foundations [31]. The results presented in Figure 6 indicate that the majority of the study
area in Erbil city center has a high fines content. According to the figure, the fines content
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in most of the area is greater than 81%, meaning that the proportion of soil particles that are
smaller than 0.075 mm in diameter is high. This high fine content will likely have significant
effects on the soil’s engineering properties, such as its shear strength, compressibility, and
plasticity. The impact of soil properties on its ability to support loads, resist deformation,
and transmit loads must be carefully considered in future construction and development
projects in the area. The results from Figure 6 provide crucial information for engineers and
planners in Erbil city center, emphasizing the need to consider the fines content of soil in
decision-making for development projects. The compression level of soil becomes crucial
when large particles are replaced by fine particles, and the impact of fines content is more
pronounced when the soil is near saturation. This has been noted by other researchers
in the field [31–33]. The relationship between natural water content and fines content is
intertwined and cannot be evaluated separately. Sometimes, improving natural water
content weakens the effect of fines content on soil shear strength, due to the sensitivity of
fines to changes in natural water content. In dry conditions, fines do not significantly affect
soil behavior due to the influence of suction [34,35].
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4.1.2. Atterberg Limits

Atterberg limits can be used to characterize soil behavior and classification, including
the swelling potential of expansive soils, the consistency and plasticity of the soil. Two
essential index properties can be obtained from the values of the natural water content:
liquid limit and plastic limit [36]. Soil water content affects its consistency. A high water
content in clay makes it behave like a liquid due to the reduction of attraction between clay
particles caused by the excess water between the particles [37]. The liquid limit was used
to determine the consistency of the fine-grained soil. This measure of soil consistency is
useful for estimating soil consolidation properties and calculating the acceptable bearing
capacity and settlement of foundations [38].

The variations in the soil liquid limit throughout the study area at the three different
depths are illustrated in Figure 7. The results of the analysis of liquid limit values in the
study area show that a significant portion of the soils have a liquid limit range between
40% and 52%. This range indicates the presence of low plastic clay, which is a type of soil
that has low resistance to deformation when subjected to stress and is prone to collapsing.
The presence of low plastic clay in high percentages in the study area is an important
factor to consider in construction and development projects, as it may impact the stability
and integrity of structures built on these soils. Additionally, the observation of soils with
high liquid limit values (greater than 53%) in relatively central regions is also important.
These central zones are considered critical points in the study area, as soils with high
liquid limit values are prone to deformation and instability. These critical points need to be
carefully evaluated and addressed in any future construction and development projects in
the area to ensure the stability and integrity of the structures built on these soils. Numerous
researchers have investigated the relationship between the liquid limit of soils and swelling
potential. Some types of clay minerals with a high cation exchange capacity (CEC) suffer
from expansion and an increase in the volume of the available water [38–41].

Plasticity is one of the most important features of clay, and the crystallinity of clay
minerals is the primary source of this plasticity [39–41]. Soil is plastic when the water
content is below the liquid and plastic limits. The plastic range, which is the difference
between the two limit values, is called the plasticity index [42]. The plastic limit provides
geotechnical engineers with indirect information about the activity, toughness index, and
optimum moisture content of soils. Figure 8 shows the plastic limit variation in the study
area at different depths. The analysis of the figure reveals that half of the study area has a
plastic limit of soils that ranges between 19% and 24%, while the other half has a plastic
limit ranging between 25% and 30%. This indicates that the soils in the study area have
different levels of plasticity, which is a measure of the soil’s ability to change shape without
breaking under stress. The presence of soils with low plastic limits (Figure 8a) in small
zones in the southeast direction is also an important observation. Soils with low plastic
limits are less plastic and more brittle, making them more prone to cracking and failure
under stress. These areas need to be carefully assessed and addressed in future construction
projects in the area to ensure the stability and reliability of the structures built on these soils.

4.1.3. Natural Water Content Model

The natural water content can be considered a parameter that profoundly affects the
geotechnical properties [43,44]. Figure 9 shows the variations in the natural water content
in Erbil City. The figure presents the water content at depths of 1.5 m–3.5 m, 3.5 m–6.5 m,
and 6.5 m–9.5 m. The results show that the natural water content in the study area is
mostly found to range between 16% and 20% at the three levels of investigation depths.
The natural water content of soils is an important factor to consider in construction and
development projects, as it affects the soil’s stability, bearing capacity, and compressibility.
Soils with high natural water content are more susceptible to instability, while soils with
low natural water content are more prone to drying and cracking.
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This is consistent with the findings of many researchers working in this region [43,44].
The water table, during the time of exploration, was in very high depths below the natural
ground level (NGL), meaning the groundwater was relatively shallow. The water table
fluctuates seasonally, with an increase during spring. The soil above the water table
affects its strength and compressibility, as more moisture results in decreased strength and
increased compressibility. Saturated soil below the water table creates settling issues as the
consolidation process reduces the natural water content under stable load.
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4.1.4. Shear Strength Parameters

The shear strength of soils is a crucial parameter in many foundation engineering
designs. It refers to the ability of soil to resist forces that cause slipping or sliding along a
plane within the soil. The shear strength of soils is important in determining the bearing
capacity of shallow and deep foundations, slope stability, tunnels, and lateral pressure on
structures [28]. The soil’s shear strength comes from its cohesive strength (c) and frictional
strength, represented by the angle of internal friction (φ). Cohesive strength is due to
the bonding force between soil grains and the binding material, while frictional strength
arises from the friction, interlocking, and rolling of soil grains [44–47]. The strength of
any soil decreases as the shear strain and expansion or contraction increase or decrease,
respectively, with respect to the soil density due to applied loads. Shear strength parameters
are widely utilized by different standard equations in the design of foundations, particularly
in empirical equations. [48].
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Figures 10 and 11 show the variations in the cohesion and angle of internal friction,
respectively. The combination of these two parameters produces the shear strength of
the soil, its variation throughout the study area, and the soil depth. Most of the soils in
the study area at shallow depths (1.5 m–3.5 m) had cohesion values between 76 kPa and
100 kPa. However, there were relatively small regions with cohesion values greater than
100 kPa and less than 50 kPa. The area covered with soil had cohesion values greater than
100 kPa, which increased with the depth. The results of the figures are in agreement with
the distribution of the fines content in the study area. The fines content of soils in the
majority of the study area was found to be greater than 80%, and this high fine content is
likely contributing to the high cohesion values in the area.



Sustainability 2023, 15, 4030 14 of 40

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 39 
 

are widely utilized by different standard equations in the design of foundations, particu-
larly in empirical equations. [48]. 

Figures 10 and 11 show the variations in the cohesion and angle of internal friction, 
respectively. The combination of these two parameters produces the shear strength of the 
soil, its variation throughout the study area, and the soil depth. Most of the soils in the 
study area at shallow depths (1.5 m–3.5 m) had cohesion values between 76 kPa and 100 
kPa. However, there were relatively small regions with cohesion values greater than 100 
kPa and less than 50 kPa. The area covered with soil had cohesion values greater than 100 
kPa, which increased with the depth. The results of the figures are in agreement with the 
distribution of the fines content in the study area. The fines content of soils in the majority 
of the study area was found to be greater than 80%, and this high fine content is likely 
contributing to the high cohesion values in the area. 

  

      

Figure 10. Cohesion of soils (kPa) at depths (a) 1.5–3.5 m. (b) 3.5–6.5 m. (c) 6.5–9.5 m. 
Figure 10. Cohesion of soils (kPa) at depths (a) 1.5–3.5 m. (b) 3.5–6.5 m. (c) 6.5–9.5 m.

Soils with high fines content produce higher cohesion values [49]. The angle of internal
friction is a parameter of the soil shear strength and is employed in bearing capacity
estimation, slope stability analyses, and estimation of soil lateral earth pressures. The soils
in the study area were found to have an angle of internal friction between 2◦ and 6◦, which
was found to be similar at all three depths in this investigation. The east-south part of
the study area had soils with an angle of internal friction ranging from 7◦ to 12◦. These
results indicate that the angle of friction values found in the study area are consistent with
those found in similar studies in the region. The angle of internal friction is an important
parameter in determining the shear strength of the soil, and these results suggest that
the soils in the study area have moderate to low shear strength values. The results of the
figures can be used to identify zones of high and low shear strength, which are important in
determining the suitability of the soil for different types of structures. The information can
also be used to design and construct structures that are appropriate for the soil conditions
in the area [47,50].
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4.1.5. Consolidation Parameter Model

The consolidation parameters (compression index and swelling index) of saturated
clayey soil should be checked during the analysis and design of the foundations [51]. In
this study, the distribution of the compression index and swelling index throughout the
study area and their variation with the soil depth were investigated. Figure 12 shows that
the compression index of soils in the study area, Erbil city center, has a range of values
between 0.17 and 0.22, with a lower value found at greater depths. The compression index
is an important factor in determining soil compression and consolidation. The results
suggest that the shallow soil strata in the study area have high consolidation and settlement
potential, while the settlement potential is expected to decrease with depth due to the
variation in compression indices.
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The rebound index is an important parameter in geotechnical engineering as it rep-
resents the soil’s tendency to expand or contract under changes in moisture content. A
high rebound index value designates that the soil is more susceptible to expansion and
contraction, whereas a low value indicates that the soil is more stable. The results shown
in Figure 13 suggest that the soil in the study area has moderate to low rebound index
values in the range 0.015–0.078, indicating that the soil is relatively stable and less likely
to expand or contract under changes in moisture content. This indicated that there was
no soil swelling or shrinkage potential in the study area. The minimum values showed a
consistent trend across all levels in the study area (Figure 13a), with the highest swelling
index values located north of Erbil at the first level and in the south at the second and
third levels. Most of the study area had moderate parameter values of 0.015–0.078. The
consolidation parameters were consistent with previous studies [47,50,52].
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4.1.6. Standard Penetration Test Model

The SPT is one of the many standard in situ tests used to identify soil type, stratigraphy,
and relative strength measures during site investigations [53,54]. The eastern part of Erbil
had higher SPT values, which is attributed to the higher unit weight of soils and the
presence of stiffer and stronger soil layers as shown in Figure 14. The SPT values of soils at
a depth of 6.5 m–9.5 m was mostly between 35 and 60, and the range increased from the
west to the east of the study area. The increase in the SPT values with increasing depth
is due to the influence of several factors. Soil type affects the SPT values as different soil
types have different characteristics such as density, porosity, and strength, which all impact
the SPT results. Unit weight, or the weight per unit volume of soil, is also a factor, as a
higher unit weight results in higher SPT values. Confining pressure, the pressure applied
to the soil from the surrounding material, also increases with depth, leading to higher SPT
values. Overall, the results of SPT tests provide a good indication of the soil strength and
its variation throughout the study area. To confirm the relationship between the SPT values
and shear strength parameters (cohesion and angle of internal friction), data obtained from
the boreholes were correlated. Figures 15 and 16 illustrate the correlation between the
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SPT values and shear strength parameters for the soils within the study area. The figures
evidently show that there is a good correlation between the SPT values, cohesion, and
angle of internal friction. Generally, most values of SPT–N distribution from the center
to the west of Erbil City were found to be between 17 and 48, while in the northeast and
southeast, the values were higher than 50. As mentioned in various studies [55–57], the
results of SPT–N showed that the soil in Erbil city is medium to very dense.
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4.1.7. Bearing Capacity

The design of a footing depends on its soil’s bearing capacity. Many methods for
estimating soil bearing capacity exist, relying on factors such as soil shear strength, footing
type, and SPT value [58]. In this study, the soil strata’s ultimate bearing capacity was
estimated using two methods, one based on shear strength parameters using Meyerhof’s
equation, and the other based on SPT-N values. The variation in the soil strata’s ultimate
bearing capacity based on Meyerhof’s equation is shown in Figure 17.
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Figure 18 shows the ultimate bearing capacity of the soil strata in the study area at
three different depths that were estimated from the SPT values. Changes in the ultimate
bearing capacity were observed throughout the study area. The ultimate bearing capacity
of the soil strata in the study area is a significant factor in the design of shallow and deep
foundations. The results from Figure 18 indicate that the majority of the study area at
shallow depths had an ultimate bearing capacity be-tween 170 kPa and 940 kPa. However,
there were some small areas with lower ultimate bearing capacities. The ultimate bearing
capacity increased with increasing depth, which can be attributed to the increase in soil
confining pressure and soil unit weight. These findings are useful in determining the design
and load-bearing capacity of foundations in the study area.
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Figure 19 presents the correlation between the ultimate bearing capacity from Meyer-
hof’s equation and the SPT values of the soils within the study area. This figure indicates
a good correlation between the SPT values and the ultimate bearing capacity of the foun-
dations. The correlation between the ultimate bearing capacity from the SPT values of
the soil strata within the study area and soil cohesion (shear strength parameter). The
ultimate bearing capacity from Meyerhof’s equation and the ultimate bearing capacity
from the SPT values of the soil strata within the study area were correlated, and the results
are presented in Figure 20. The estimation of ultimate bearing capacity from the Standard
Penetration Test (SPT) values is a relatively simple method compared to other methods that
require more experimental tests and complex equations established on the shear strength
parameters of the soil. The estimation of ultimate bearing capacity from SPT values is based
on empirical correlations and has been widely used in the field of geotechnical engineering.
The advantage of this method is its simplicity; however, it may not accurately reflect the
actual soil conditions, which can be affected by factors such as soil type, stratigraphy, and
loading conditions [59].
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4.2. Artificial Neural Network Models

ANN models are commonly used for regression and classification tasks, including
prediction problems. ANN models consist of interconnected nodes, or artificial neurons,
that process and transmit information. The nodes are organized into layers, and the
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connections between them can be adjusted during the training process to minimize the
error between the predicted and actual outcomes. ANN models have been widely used
in various fields due to their ability to handle complex relationships and make accurate
predictions. The relationship between the predicted original SPT values and bearing
capacity in the training data and test data was demonstrated in four models that have
an acceptable R2 and the smallest error. After input and output data are gathered and
structured, training and test sets were established. 70% of the data were used for training
and 15% used for testing and 15% for validation of the total data of boreholes. Predictions
for SPT-N value from two models were developed.

4.2.1. Validation of Interpolations Based on Semivariograms

The transformed data’s spatial autocorrelation is modeled using semivariograms/
covariance modeling for SPT-N values at depth 1.5–3.5 m, depicting the similarity decrease
between data points as their distance increases. Binned values (red dots) are generated by
grouping semivariograms/covariance points using square cells, while average points (blue
crosses) are generated by binning empirical points in angular sectors. Binned points show
local variation, while average values show smooth variation. A stable type model (dark
blue line) is fitted to the empirical variogram for the measured data points.

At h = 0, the semivariogram should be 0. However, at an infinitesimally small separa-
tion distance, the semivariogram often exhibits a nugget effect, which is some value greater
than zero. In this case, the nugget effect exists which is zero. The range is the distance at
which the model levels out (5750.634). Locations closer than the range are spatially auto cor-
related, while farther locations are not. The partial sill is the sill minus the nugget (462.1716).
The lag size is the distance class size (674.7548) with 12 lags. Semivariogram values are
shown in Figure 21 with higher values in orange/red and lower values in blue/green.

Kriging estimates unknown spatial values. The search neighborhood step involves
selecting nearby points with significant influence on the prediction location, determined by
spatial auto-correlation. The method eliminates irrelevant points and weights nearby points
using a search neighborhood of adjacent points, radius, and number of sectors to estimate
values at the unknown location. Accurate neighborhood identification and selection of
nearby points are crucial for successful kriging. As shown in Figure 22, five neighboring
points are selected and a circle with four sectors is selected. The points highlighted in the
data give an indicator of the weights associated with each point, and these weights are
used to estimate the value at the unknown location, which is at the center of the crosshair.

4.2.2. Prediction for SPT-N Value

In Figures 23 and 24 the results of the ANN model (a) show a good agreement between
the predicted and measured SPT-N values, with an R2 of 0.92 for the training data and
0.81 for the testing data. The model uses Atterberg limit values, water content, cohesion,
and internal friction as input variables and predicts the SPT value as its output. On the
other hand, to predict SPT N value as output with (LL%, PL%, PI%, WC, φ, Fine content)
as input, the result showed R2 values of 0.90 and 0.8 for training and testing, respectively.
As mentioned in previous studies [60], the predictions of the SPT values in model (a) and
model (b) were conducted with more superficial R2 values that give a significant agreement
for using ANN modeling in geotechnical engineering that helps the engineering to be
utilized in the design of infrastructures.
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4.2.3. Prediction of Ultimate Bearing Capacity

The prediction of the ultimate bearing capacity of soil using ANNs is a machine
learning approach that involves training a neural network model with a dataset of soil
properties and corresponding ultimate bearing capacity values. The trained model can
then be used to predict the ultimate bearing capacity of new soil samples based on their
properties. Advantages of ANN prediction include the handling of non-linear relationships
between soil properties and ultimate bearing capacity, the ability to incorporate complex
relationships between soil properties and ultimate bearing capacity, and the ability to
handle large datasets with many input variables.

To determine the best prediction results for the ultimate bearing capacity, two models
were used. The inputs and outputs of the models are listed in Table 2 along with the value
of R2, which is a measure of the goodness of fit of the model to the data. R2 ranges from
0 to 1, with a higher value indicating a better fit between the model and the data. The
R2 value provides an indication of how well the models are able to predict the ultimate
bearing capacity based on the inputs.

Table 2. ANN models for Q-Ultimate prediction.

No Model No. Input Output Training Validation Testing Adjust R2

1 Model (c) LL%, PL%, PI%, WC, c,
φ, Fine content

Q-Ultimate
91.5 83.8 82 88.79

3 Model (d) LL%, PL%, PI%, WC, φ,
Fine content 73.97 34.8 86.98 70.8

The results of bearing capacity prediction using ANN modeling show similarities
with the results of previous studies [60]. In Figures 25 and 26 the relationship between
the predicted ultimate bearing capacity and the original ultimate bearing capacity on the
training and testing data are illustrated.
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Model (c) has a high R2 value, indicating a strong correlation between the predicted
and actual values, and a low variance in the residuals. The high R2 value for the training
data (0.91) indicates that the model is able to fit the training data well, while the R2 value
of 0.82 for the testing data suggests that the model has good generalization ability and
can predict unseen data with a certain degree of accuracy. In Model (d), the decrease
in R2 value is likely due to the absence of the cohesion value as an input. Cohesion is
an important factor that affects the bearing capacity of soil, so its absence in the input
could result in a decrease in the accuracy of the model. This highlights the importance of
considering all relevant factors in the input variables of the model to improve its accuracy
and predictability.

Soil cohesion is a measure of the shear strength of soil, which determines its ability
to support loads. The results of research in geotechnical engineering have shown that soil
cohesion is the most important factor in estimating soil bearing capacity. This is because it
determines the resistance of soil to sliding or deformation under load, and is essential for
ensuring the stability of structures built on the soil. Therefore, accurate determination of
soil cohesion is crucial for safe and effective design of geotechnical structures.

4.2.4. Percentage Error of ANN Models

Figures 27 and 28 demonstrate the error percentage lines for model (a) and (b) out-
comes referring to the difference between the predicted values and the actual values. It is a
measure of the accuracy of the model’s predictions. A lower error percentage indicates a
more accurate model, while a higher error percentage means that the model is less accurate.
The acceptable error percentage depends on the specific application and the acceptable
level of error for that particular field. In some cases, a low error percentage, such as 1–2%,
may be acceptable, while in others, a higher error percentage may be acceptable if the cost
of a lower error is too high [61]. It is important to note that no model can be 100% accurate
and some level of error is always present. The goal is to reduce the error to the lowest
possible level while still making predictions that are useful and relevant.
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4.2.5. Analysis of Models

Sensitivity analysis is an important aspect of model evaluation, as it helps to assess
the impact of individual model parameters on the final results. The absence of a sensitivity
analysis in the study you are referring to could limit the understanding of the model’s
behavior and the confidence in the results obtained. Analysis of models is particularly
important when using ANOVA, as the parameters of these models can have a significant
impact on the spatial structure of the data. By conducting a sensitivity analysis, the
researchers could determine the robustness of the model results. The sensitivity analysis to
evaluate the effect of each model parameter based on the semivariograms shown in Table 3.
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Table 3. Analysis of models and effect each parameter on the output of prediction.

Model a Model b Model c Model d

Parameters F-Value p-Value Parameters F-Value p-Value Parameters F-Value p-Value Parameters F-Value p-Value

LL% 1.63 0.204 LL% 0.03 0.862 LL% 0.17 0.677 LL% 2.02 0.157
PL% 1.07 0.303 PL% 0.51 0.477 PL% 0.07 0.792 PL% 2.19 0.142
PI% 0.46 0.497 PI% 0.27 0.607 PI% 1.01 0.316 PI% 0.24 0.627
WC 2.52 0.115 WC 2.36 0.126 WC 1.12 0.291 WC 5.95 0.016

c 157.85 0.000 ϕ 0.75 0.387 c 320.21 0.000 ϕ 0.03 0.873
ϕ 10.29 0.002 No.200 46.73 0.000 ϕ 28.47 0.000 No.200 68.38 0.000

No.200 1.81 0.180 No.200 0.04 0.843

A p-value less than 0.05 is commonly used as a threshold for determining statistical
significance in hypothesis testing. In this context, a p-value less than 0.05 for a particular
model parameter means that the results suggest a statistically significant relationship
between the parameter and the outcome variable being modeled.

In this study, a p-value less than 0.05 for a particular model parameter would indicate
that the parameter has a significant impact on the model results. This information can be
useful in understanding the underlying relationships in the data and in guiding further
analysis or interpretation of the results. However, it is important to consider other factors
such as the sample size, the quality of the data, and the overall fit of the model in evaluating
the reliability and robustness of the results.

5. Conclusions

This study focuses on developing maps for soil geotechnical properties that are widely
utilized by geotechnical engineers in foundation design capacity. The main conclusions are
as follows. An artificial neural network (NN) model was established for estimating SPT-N
value and ultimate bearing capacity:

• GIS is an effective tool that can be used by engineers to analyze the preliminary
exploration of geotechnical sites. Information from 102 boreholes, considering the
main geotechnical properties, was collected, evaluated, and used as input data for
GIS analysis.

• This information suggests that a significant portion of Erbil city has soil with a high
proportion of fine-grained materials, such as clay and silt. High fines content can
impact the soil’s physical and engineering properties, such as its compressibility,
permeability, and shear strength. The presence of high fines content can also increase
the susceptibility of soil to swelling and shrinkage, which can lead to instability in
structures built on or in the soil. The small zones in the southeast of the study area with
lower fine contents may have different soil characteristics and may offer potential sites
for structures that require more stable soil conditions. These findings are important
for the design of infrastructure and buildings in the city.

• Atterberg limits in most of Erbil City were found to be between 40% and 52%, and 19%
and 30% for the liquid and plastic limits, respectively. This indicates the high presence
of low–plasticity clay and clayey silt. The results of the analysis of liquid limit and
plastic limit values in the study area provide important information for engineers and
planners in Erbil city center. They highlight the presence of low plastic clay in high
percentages in the study area, as well as the need to carefully evaluate critical points
with high liquid limit and plastic limit in future construction and development projects.

• Digital mapping of shear strength parameters showed that most soil strata at three
different depths had an internal friction angle between 2◦ and 6◦, and the cohesive
strength ranged between 76 kPa and 130 kPa. The results of the cohesion values show
that the soils in the study area at shallow depths have moderate to high cohesion
values, and that the soils with high cohesion values tend to be located in areas with
high fines content. However, the results of the angle of internal friction show that the
soils in the study area have moderate to low shear strength values, with the soils in
the east-south part of the area having slightly higher shear strength values. These
findings are important in determining the suitability of the soil for different types of
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structures and in designing and constructing structures that are appropriate for the
soil conditions in the area.

• The soil in the study area mostly has a moderate compressibility and resilience, with a
moderate to low amount of rebound. The compression index decreases with depth,
suggesting that the soil becomes less compressible as one moves deeper into the
ground. The rebound index indicates that the soil has a moderate to low ability to
recover its original volume after being compressed. These findings provide valuable
information for designing structures that are built on or into the soil in the study area.

• SPT values in the study area indicate moderate soil strength in the shallow strata, with
a range of 17 to 48. As the depth of the soil strata increases, the SPT values increase
and become higher, covering large parts of the study area. This suggests that the
soil becomes stronger with increasing depth. The SPT is a widely used in-situ test
for measuring soil strength, and these results provide valuable information for the
design of foundations and other structures that are supported by the soil. The higher
SPT values at greater depths indicate improved soil strength characteristics and can
influence the design of these structures in terms of load-bearing capacity and stability.

• This conclusion suggests that the soil in Erbil City is not capable of supporting heavy
loads without modification or special design measures. The ultimate bearing capacity
is a measure of the maximum weight or load that a soil can support without failure. A
value lower than 170 kPa indicates that the soil may not be suitable for supporting
heavy structures, such as buildings and bridges, without additional treatment or
specialized foundation design. Improving the soil, such as through compaction or
stabilization, and utilizing special footing designs, such piles, can increase the soil’s
bearing capacity and ensure the stability and safety of structures built on the soil.

• At the preliminary design point, the completed digital geotechnical maps are vital.
The designer could use the geotechnical parameters, consolidation characteristics and
SPT as an effective visual display tool simply by using the digital values of these
parameters for the proposed region, where the necessary decisions can be made.

• The correlation between the SPT values and shear strength parameters for the soils
within the study area demonstrated a strong relationship between them.

• The results obtained from the models were compared with those measured from
the field tests. It was found that predicted SPT-N values and Q-ultimate bearing
capacity are quite close to the measured values. In order to check the prediction
performance of the ANN model developed, several performance indices, such as R2,
MAPE, and RMSE were also calculated. The ANN model has shown good prediction
performance based on the performance indices. Thus, the developed ANN model can
be used to predict SPT-N and Q-ultimate bearing capacity from the soil parameters and
borehole coordinates. The ANN model’s implementation has also demonstrated that
the neural network is a valuable tool to minimize the uncertainties encountered during
geotechnical engineering projects. Therefore, using Artificial Neural Networks may
provide new techniques and methodologies and minimize the potential inconsistency
of correlations. ANN prediction is a useful tool for predicting the ultimate bearing
capacity of soil, but it should be used in conjunction with other methods and validated
with independent data to ensure accurate predictions.
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Appendix A

The data of all boreholes are provided demonstrated in Table A1.

Table A1. Full data of all boreholes of study area.

BH
NO

DEPTH
m X Y LL% PL% PI% WC% c

(kN/m2)
Φ
(◦)

Fine
Content

SPT-N Value
(kN/m2)

1 1.5–3.5 406,851.5 4,009,570 46 22 24 28.3 51 4 62.1 7

2 1.5–3.5 405,972.9 4,009,284.2 40 22 18 15 96 3 94.1 54

3 1.5–3.5 407,487.6 4,007,947.1 47 25 22 18 99 5 91.5 57

4 1.5–3.5 406,121.1 4,008,204.7 40 22 18 15.0 96 3 94.1 54

5 1.5–3.5 407,443.2 4,008,702.7 50 27 23 20.8 109 5 92.9 41

6 1.5–3.5 407,941.4 4,009,347.7 50 28 22 13.9 108 4 91.8 45

7 1.5–3.5 408,217.9 4,008,512.23 35 20 19 20.0 96 4 96 41

8 1.5–3.5 408,997.4 4,008,917.8 39 21 18 16.3 109 5 89.4 45

9 1.5–3.5 408,743.4 4,009,398.1 47 25 22 18.0 99 5 91.5 57

10 1.5–3.5 408,026.1 4,010,406 45 24 21 16.6 96 5 95.5 63

11 1.5–3.5 409,617.8 4,011,321.6 46 27 19 20.2 99 5 90.7 41

12 1.5–3.5 408,588.1 4,011,780.2 45 25 20 19.0 97 4 91.6 60

13 1.5–3.5 409,762.1 4,012,805.4 48 26 22 19.7 94 5 81.3 75

14 1.5–3.5 411,184.2 4,011,787.2 49 23 26 19.6 108 4 96.3 33

15 1.5–3.5 411,184.3 4,012,540.7 47 25 22 15.6 105 5 97.4 30

16 1.5–3.5 411,247.7 4,013,522.9 48 26 22 18.4 58 3 92.7 19

17 1.5–3.5 409,969.9 4,010,643.8 58 31 27 20.5 91 4 88.9 40

18 1.5–3.5 409,662.9 4,009,977 56 30 26 18.8 94 4 69.1 42

19 1.5–3.5 409,915.1 4,009,232.2 45 24 21 13.6 77 3 95.9 29

20 1.5–3.5 410,862.1 4,009,607.35 44 25 19 18.3 69 5 94.5 30

21 1.5–3.5 411,994.6 4,009,216.9 42 23 19 19.2 70 4 98.2 29

22 1.5–3.5 411,166.1 4,010,438.9 50 26 24 17.9 95 5 92.2 58

23 1.5–3.5 412,126.9 4,010,308.3 51 29 29 19.8 95 5 96.2 70

24 1.5–3.5 411,550.5 4,011,441.2 44 23 21 14.8 95 7 100 80

25 1.5–3.5 413,143.3 4,011,488.9 44 25 19 20.5 97 4 93.5 41

26 1.5–3.5 414,064.7 4,011,692.8 41 23 18 17.4 110 4 53.6 37

27 1.5–3.5 415,317.3 4,010,885.4 50 26 24 15.9 116 5 68.5 23

28 1.5–3.5 414,149.3 4,009,671.4 51 27 24 19.1 94 4 87.3 19

29 1.5–3.5 414,362.5 4,008,450.6 52 24 28 19.7 90 4 86.4 17

30 1.5–3.5 416,171.1 4,012,249.6 45 24 21 15.3 98 6 79.8 43

31 1.5–3.5 415,609.8 4,012,761.8 38 21 17 16.0 95 5 70.6 45

32 1.5–3.5 414,549.1 4,013,637 38 21 17 70 12 97 100

33 1.5–3.5 417,922.5 4,010,462 53 27 26 21.6 69 3 92.6 25

34 1.5–3.5 416,961.1 4,011,319.3 49 23 26 15.1 112 5 86.7 71

35 1.5–3.5 416,542.1 4,010,233.5 43 23 20 17.8 91 3 89.3 79

36 1.5–3.5 416,909.4 4,008,754 44 24 20 14.8 92 4 66.2 85
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Table A1. Cont.

BH
NO

DEPTH
m X Y LL% PL% PI% WC% c

(kN/m2)
Φ
(◦)

Fine
Content

SPT-N Value
(kN/m2)

37 1.5–3.5 406,775.3 4,007,107.5 50 26 24 18.3 82 4 92.1 18

38 1.5–3.5 405,227.4 4,007,274.3 53 27 26 17.3 74 3 96.4 25

39 1.5–3.5 407,403.9 4,006,885.3 40 22 18 13.6 105 5 63.8 19

40 1.5–3.5 407,715.1 4,007,488.5 43 22 21 19.1 90 4 93.2 20

41 1.5–3.5 408,445.4 4,007,069.4 45 24 21 15.8 58 5 95.9 19

42 1.5–3.5 408,736.7 4,005,101.9 44 25 19 17.6 60 4 95.5 22

43 1.5–3.5 408,248.5 4,006,694.7 43 24 19 19.9 69 4 92.1 22

44 1.5–3.5 407,872.4 4,006,657.22 56 25 31 15.6 116 5 95.5 28

45 1.5–3.5 409,311.9 4,005,786 46 24 22 17.7 112 4 97.4 32

46 1.5–3.5 408,775.59 4,006,631.24 46 22 24 21.1 85 4 95.8 19

47 1.5–3.5 409,973.4 4,006,133 53 25 28 20.9 87 5 93.6 31

48 1.5–3.5 409,048.64 4,007,069.39 46 24 22 16.6 89 4 96.2 29

49 1.5–3.5 409,874.19 4,007,406.1 46 24 22 17.7 92 5 94.1 37

50 1.5–3.5 408,985.14 4,007,907.6 54 26 28 15.3 99 4 94.1 39

51 1.5–3.5 411,015.2 4,007,902.7 55 24 31 15.3 112 5 95.2 82

52 1.5–3.5 418,521.8 4,007,163.4 57 25 32 19.6 104 4 92.9 77

53 1.5–3.5 409,785.25 4,008,333.1 48 22 26 14.4 97 4 95.5 22

54 1.5–3.5 410,998.6 4,008,878.3 49 26 23 18.8 105 4 92.2 32

55 1.5–3.5 410,109.1 4,006,834.44 41 19 22 16.8 101 4 87.3 41

56 1.5–3.5 410,419.8 4,006,001 45 21 24 16.3 123 5 52.3 28

57 1.5–3.5 412,049.02 4,007,215.97 52 24 28 21.8 109 5 51.8 44

58 1.5–3.5 411,263 4,006,447.5 51 27 24 19.4 96 4 94.2 33

59 1.5–3.5 412,664.18 4,007,328.4 49 25 24 19.4 124 4 92.6 38

60 1.5–3.5 411,990 4,006,315.2 44 25 19 21.7 136 5 95.7 39

61 1.5–3.5 413,164.9 4,008,779 43 23 20 18.9 119 5 96.6 41

62 1.5–3.5 412,846.74 4,006,559.81 49 26 23 17.4 79 4 93.5 39

63 1.5–3.5 412,536.5 4,005,174.2 48 27 21 18.0 81 4 93.5 35

64 1.5–3.5 415,747.4 4,005,960.69 48 23 25 16.8 96 4 96.4 21

65 1.5–3.5 414,814.8 4,007,156.9 40 21 19 17.9 97 5 39.7 31

66 1.5–3.5 415,071.9 4,004,866.9 47 24 23 19.0 95 5 90.8 34

67 1.5–3.5 417,971.23 4,001,685.01 48 27 21 17.4 88 8 30 61

68 1.5–3.5 418,519 4,003,222.9 0 0 0 17.7 85 10 18 37

69 1.5–3.5 415,926 4,002,878 0 0 0 19.0 83 9 14 50

70 1.5–3.5 416,167 4,004,572.3 0 0 0 11.0 80 8 15 36

71 1.5–3.5 419,289 4,001,977.6 0 0 0 18.6 114 5 25 40

72 1.5–3.5 411,924.27 4,004,297.59 57 25 32 16.4 116 5 94.7 72

73 1.5–3.5 410,482.29 4,003,953.63 48 23 25 13.4 109 5 91.4 74

74 1.5–3.5 412,426.98 4,002,802.69 45 21 24 12.1 144 4 95.6 23

75 1.5–3.5 414,365 4,003,408 44 21 23 13.7 135 4 94.6 20

76 1.5–3.5 411,975.73 4,001,202.95 47 21 26 13.8 118 5 93.2 39

77 1.5–3.5 414,022.9 4,002,387 45 22 23 15.4 95 4 94.7 44

78 1.5–3.5 411,697.91 4,000,107.57 41 27 14 11.9 55 6 77.8 8

79 1.5–3.5 410,200 3,999,706 35 23 12 12.6 47 3 83.7 11

80 1.5–3.5 413,372.73 4,001,528.38 0 0 0 13.7 98 5 8.4 100
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81 1.5–3.5 414,253.79 4,000,845.76 47 22 25 17.5 86 5 91.7 81

82 1.5–3.5 415,598.5 4,000,259 45 22 24 20.1 89 3 93.5 83

83 1.5–3.5 413,510.13 3,999,595.57 47 25 22 20.5 81 3 95.6 27

84 1.5–3.5 412,160.93 3,999,051.88 41 22 19 12.7 12 36 100 45

85 1.5–3.5 410,732.9 3,999,785 40 21 19 10.8 15 30 33 47

86 1.5–3.5 410,253 3,998,445 43 23 20 5.7 19 35 42 53

87 1.5–3.5 413,309 3,998,392.5 41 21 20 12.3 108 5 81.6 60

88 1.5–3.5 410,136.16 4,001,490.72 55 26 29 17.3 81 3 96.2 22

89 1.5–3.5 409,296.11 4,002,026.51 46 24 22 22.1 96 5 96.8 31

90 1.5–3.5 408,932.6 4,003,851.9 50 24 26 14.8 90 3 97.3 29

91 1.5–3.5 408,515.58 4,002,310.93 44 30 14 31.1 25 2 90.1 18

92 1.5–3.5 409,939 4,003,009.6 44 28 16 29.2 29 3 89.2 12

93 1.5–3.5 407,821.05 4,002,866.56 42 21 21 23.2 45 4 91.6 19

94 1.5–3.5 407,298.5 4,004,255.62 49 26 23 16.7 38 3 89.8 5

95 1.5–3.5 405,937 4,003,224 43 23 20 13.3 90 4 93.3 7

96 1.5–3.5 407,774.75 4,005,380.1 38 21 17 16.9 98 4 96.6 39

97 1.5–3.5 407,844.33 4,005,870.11 39 22 17 18.9 43 4 56.7 19

98 1.5–3.5 406,914.85 4,005,671.15 45 23 22 14.5 121 6 94.6 23

99 1.5–3.5 405,242 4,004,431.7 46 25 21 15.6 110 4 98.1 25

100 1.5–3.5 405,684.54 4,005,717.45 43 21 22 14.8 95 4 94.3 41

101 1.5–3.5 408,025.12 3,999,907.5 46 24 22 15.7 103 4 96.2 54

102 1.5–3.5 406,400.4 4,001,124 42 26 16 15.5 94 4 96.1 75

103 3.5–6.5 406,851.5 4,009,570 49 23 26 29.4 40 4 83.5 11

104 3.5–6.5 405,972.9 4,009,284.2 48 23 25 29.1 45 5 87 9

105 3.5–6.5 407,487.6 4,007,947.1 50 24 26 19.2 109 5 95.1 72

106 3.5–6.5 406,121.1 4,008,204.7 46 26 20 19.4 85 4 97.9 60

107 3.5–6.5 407,443.2 4,008,702.7 52 26 26 23.2 112 4 94.9 70

108 3.5–6.5 407,941.4 4,009,347.7 52 29 23 14.8 103 4 93.7 77

109 3.5–6.5 408,217.9 4,008,512.23 40 22 18 20.5 113 5 100 90

110 3.5–6.5 408,997.4 4,008,917.8 36 23 13 105 5 98.4 73

111 3.5–6.5 408,743.4 4,009,398.1 44 24 20 19.3 102 5 95.1 86

112 3.5–6.5 408,026.1 4,010,406 42 23 19 15.5 102 6 94.1 80

113 3.5–6.5 409,617.8 4,011,321.6 64 33 31 19.5 89 4 80.5 97

114 3.5–6.5 408,588.1 4,011,780.2 48 25 23 20.1 93 5 89.1 99

115 3.5–6.5 409,762.1 4,012,805.4 46 25 21 17.2 98 5 72.5 100

116 3.5–6.5 411,184.2 4,011,787.2 45 24 21 14.3 104 4 95.7 50

117 3.5–6.5 411,184.3 4,012,540.7 49 28 21 18.2 132 6 92.9 62

118 3.5–6.5 411,247.7 4,013,522.9 45 27 18 19.0 62 4 100 25

119 3.5–6.5 409,969.9 4,010,643.8 51 27 24 18.7 93 5 94.3 91

120 3.5–6.5 409,662.9 4,009,977 54 29 25 19.3 95 5 94.2 89

121 3.5–6.5 409,915.1 4,009,232.2 47 23 24 17.5 87 5 94.6 33

122 3.5–6.5 410,862.1 4,009,607.35 46 22 24 20.7 82 4 98.2 41

123 3.5–6.5 411,994.6 4,009,216.9 45 21 23 17.0 72 5 97.5 35
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124 3.5–6.5 411,166.1 4,010,438.9 54 25 29 18.6 91 4 97.8 76

125 3.5–6.5 412,126.9 4,010,308.3 55 26 29 19.3 93 4 92.1 79

126 3.5–6.5 411,550.5 4,011,441.2 46 22 24 14.8 97 8 100 100

127 3.5–6.5 413,143.3 4,011,488.9 46 25 21 21.1 99 4 95.2 75

128 3.5–6.5 414,064.7 4,011,692.8 60 32 28 21.2 147 5 86.6 50

129 3.5–6.5 415,317.3 4,010,885.4 50 28 22 20.2 98 5 91.9 56

130 3.5–6.5 414,149.3 4,009,671.4 42 23 19 19.4 95 5 41.6 100

131 3.5–6.5 414,362.5 4,008,450.6 71 36 35 19.7 95 5 59.7 43

132 3.5–6.5 416,171.1 4,012,249.6 38 21 17 16.8 95 5 82.6 82

133 3.5–6.5 415,609.8 4,012,761.8 44 25 19 16.1 97 6 85.8 83

134 3.5–6.5 414,549.1 4,013,637 42 23 19 10.4 75 11 100 100

135 3.5–6.5 417,922.5 4,010,462 48 26 22 20.2 76 5 96.1 37

136 3.5–6.5 416,961.1 4,011,319.3 48 23 25 114 5 69.1 75

137 3.5–6.5 416,542.1 4,010,233.5 45 26 19 21.6 94 5 94.9 87

138 3.5–6.5 416,909.4 4,008,754 54 32 22 19.6 94 4 89.4 83

139 3.5–6.5 406,775.3 4,007,107.5 53 28 25 19.3 78 3 97.9 45

140 3.5–6.5 405,227.4 4,007,274.3 54 28 26 16.8 82 4 98.6 32

141 3.5–6.5 407,403.9 4,006,885.3 38 21 17 17.3 98 5 92.5 39

142 3.5–6.5 407,715.1 4,007,488.5 47 23 24 21.5 92 5 96.1 55

143 3.5–6.5 408,445.4 4,007,069.4 44 23 21 19.3 81 3 96.3 40

144 3.5–6.5 408,736.7 4,005,101.9 46 23 23 19.2 87 4 93.8 38

145 3.5–6.5 408,248.5 4,006,694.7 52 26 26 22.3 93 5 94.6 53

146 3.5–6.5 407,872.4 4,006,657.22 57 26 31 18.7 106 5 95.6 61

147 3.5–6.5 409,311.9 4,005,786 55 26 29 17.6 103 4 96.9 63

148 3.5–6.5 408,775.59 4,006,631.24 47 23 25 15.8 96 5 92.2 70

149 3.5–6.5 409,973.4 4,006,133 43 21 22 20.5 107 4 87.9 69

150 3.5–6.5 409,048.64 4,007,069.39 46 23 23 17.3 90 4 94.6 50

151 3.5–6.5 409,874.19 4,007,406.1 45 22 23 17.5 92 5 94 73

152 3.5–6.5 408,985.14 4,007,907.6 56 30 26 18.2 110 5 93.3 72

153 3.5–6.5 411,015.2 4,007,902.7 63 28 35 21.8 102 6 94 91

154 3.5–6.5 418,521.8 4,007,163.4 56 24 32 16.6 129 5 96.1 86

155 3.5–6.5 409,785.25 4,008,333.1 51 27 24 18.2 118 6 96.4 40

156 3.5–6.5 410,998.6 4,008,878.3 49 26 23 18.7 99 5 96.3 100

157 3.5–6.5 410,109.1 4,006,834.44 46 19 27 17.2 98 5 90.3 30

158 3.5–6.5 410,419.8 4,006,001 48 20 28 18.2 126 5 87.2 50

159 3.5–6.5 412,049.02 4,007,215.97 54 28 26 17.8 134 6 96.4 63

160 3.5–6.5 411,263 4,006,447.5 55 24 31 19.5 99 5 94.2 79

161 3.5–6.5 412,664.18 4,007,328.4 46 26 20 17.2 118 4 96.6 22

162 3.5–6.5 411,990 4,006,315.2 46 25 21 17.1 121 5 96.5 38

163 3.5–6.5 413,164.9 4,008,779 47 23 24 16.3 115 6 69.1 36

164 3.5–6.5 412,846.74 4,006,559.81 45 24 21 23.8 76 4 94.7 45

165 3.5–6.5 412,536.5 4,005,174.2 47 26 21 18.9 89 5 98.1 41

166 3.5–6.5 415,747.4 4,005,960.69 45 21 24 20.4 126 5 98.4 100

167 3.5–6.5 414,814.8 4,007,156.9 44 22 22 20.4 120 5 96.4 100
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168 3.5–6.5 415,071.9 4,004,866.9 46 23 23 18.9 117 5 90.8 100

169 3.5–6.5 417,971.23 4,001,685.01 45 25 20 17.4 91 9 39 76

170 3.5–6.5 418,519 4,003,222.9 45 24 21 17.7 95 11 64 90

171 3.5–6.5 415,926 4,002,878 41 23 19 19.0 89 11 39 68

172 3.5–6.5 416,167 4,004,572.3 40 20 24 18.0 76 9 55 99

173 3.5–6.5 419,289 4,001,977.6 0 0 0 18.6 112 5 78.8 92

174 3.5–6.5 411,924.27 4,004,297.59 62 26 36 16.6 125 5 68.3 80

175 3.5–6.5 410,482.29 4,003,953.63 49 23 26 16.6 115 6 17.6 69

176 3.5–6.5 412,426.98 4,002,802.69 48 25 23 18.1 140 5 39.9 100

177 3.5–6.5 414,365 4,003,408 39 21 18 17.5 92 4 98.1 80

178 3.5–6.5 411,975.73 4,001,202.95 61 26 35 16.9 137 5 97.2 72

179 3.5–6.5 414,022.9 4,002,387 53 26 27 16.6 119 5 63.6 73

180 3.5–6.5 411,697.91 4,000,107.57 44 23 21 20.3 98 5 50.4 20

181 3.5–6.5 410,200 3,999,706 37 25 12 17.8 60 6 94.2 37

182 3.5–6.5 413,372.73 4,001,528.38 42 21 21 16.3 94 6 87.5 29

183 3.5–6.5 414,253.79 4,000,845.76 46 22 24 20.1 92 4 76.5 91

184 3.5–6.5 408,932.6 4,000,259 48 23 25 19.2 94 4 94.7 100

185 3.5–6.5 413,510.13 3,999,595.57 48 24 24 17.4 85 3 88.6 97

186 3.5–6.5 412,160.93 3,999,051.88 39 21 18 14.1 38 29 100 100

187 3.5–6.5 410,732.9 3,999,785 38 20 18 10.8 8 32 41 100

188 3.5–6.5 410,253 3,998,445 41 20 21 8.7 13 29 44 100

189 3.5–6.5 413,309 3,998,392.5 46 24 22 13.4 94 5 61.1 63

190 3.5–6.5 410,136.16 4,001,490.72 58 27 31 18.4 93 5 99.1 41

191 3.5–6.5 409,296.11 4,002,026.51 50 26 24 21.0 108 4 93.5 39

192 3.5–6.5 409,707 4,003,851.9 51 28 23 15.0 87 3 96 48

193 3.5–6.5 408,515.58 4,002,310.93 50 28 22 28.2 38 4 95.3 20

194 3.5–6.5 409,939 4,003,009.6 41 24 17 25.4 40 5 78.4 29

195 3.5–6.5 407,821.05 4,002,866.56 45 26 19 24.7 51 4 87.9 100

196 3.5–6.5 407,298.5 4,004,255.62 45 23 22 12.2 102 5 93.4 20

197 3.5–6.5 405,937 4,003,224 41 23 18 15.0 87 3 89.8 26

198 3.5–6.5 407,774.75 4,005,380.1 48 23 25 19.9 128 6 91.4 81

199 3.5–6.5 407,844.33 4,005,870.11 38 26 12 23.7 50 4 66.7 31

200 3.5–6.5 406,914.85 4,005,671.15 55 26 29 17.4 112 5 98.7 71

201 3.5–6.5 405,242 4,004,431.7 48 23 25 17.2 125 5 93.8 70

202 3.5–6.5 405,684.54 4,005,717.45 50 27 23 16.2 94 3 98.1 45

203 3.5–6.5 408,025.12 3,999,907.5 48 26 22 17.7 81 3 99.1 81

204 3.5–6.5 406,400.4 4,001,124 49 26 23 21 85 4 98.8 100

205 6.5–9.5 406,851.5 4,009,570 47 23 24 26.9 41 3 83.5 10

206 6.5–9.5 405,972.9 4,009,284.2 51 24 27 30.4 51 3.5 93.8 12

207 6.5–9.5 407,487.6 4,007,947.1 56 30 26 19.1 107 4 93.5 83

208 6.5–9.5 406,121.1 4,008,204.7 54 28 26 16.4 112 5 95.7 80

209 6.5–9.5 407,443.2 4,008,702.7 49 27 22 13.6 105 4.5 94.8 96

210 6.5–9.5 407,941.4 4,009,347.7 55 26 29 21.7 97 4 97.5 82

211 6.5–9.5 408,217.9 4,008,512.23 42 28 0 18.3 117 5 100 100
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212 6.5–9.5 408,997.4 4,008,917.8 54 26 28 18.5 110 5 98.4 82

213 6.5–9.5 408,743.4 4,009,398.1 42 23 19 17.4 108 6.5 97.3 95

214 6.5–9.5 408,026.1 4,010,406 41 28 13 17.4 110 5.5 91.7 82

215 6.5–9.5 409,617.8 4,011,321.6 46 25 21 18.4 122 5.5 52.1 100

216 6.5–9.5 408,588.1 4,011,780.2 42 25 17 19.1 103 5.5 86.3 100

217 6.5–9.5 409,762.1 4,012,805.4 47 26 21 21.4 99 5 90.9 100

218 6.5–9.5 411,184.2 4,011,787.2 47 26 21 21.9 118 4.5 91.7 80

219 6.5–9.5 411,184.3 4,012,540.7 53 25 28 18.3 103 4.5 90 85

220 6.5–9.5 411,247.7 4,013,522.9 47 28 0 19.7 67 4.5 100 29

221 6.5–9.5 409,969.9 4,010,643.8 56 30 26 18.8 93 4 90.7 85

222 6.5–9.5 409,662.9 4,009,977 39 21 18 18.2 95 4.5 82.4 90

223 6.5–9.5 409,915.1 4,009,232.2 44 22 22 16.2 91 4 91.3 47

224 6.5–9.5 410,862.1 4,009,607.35 55 28 27 17.4 85 4 96.1 80

225 6.5–9.5 411,994.6 4,009,216.9 48 23 25 16.1 87 4.5 98.5 78

226 6.5–9.5 411,166.1 4,010,438.9 53 25 28 21.7 92 4.5 90.1 100

227 6.5–9.5 412,126.9 4,010,308.3 56 26 30 12.9 91 4 96.6 99

228 6.5–9.5 411,550.5 4,011,441.2 47 21 26 15.6 108 8.5 100 100

229 6.5–9.5 413,143.3 4,011,488.9 41 21 20 21.7 95 3.5 76.9 90

230 6.5–9.5 414,064.7 4,011,692.8 59 28 31 16.6 130 5 93.8 47

231 6.5–9.5 415,317.3 4,010,885.4 64 33 31 18.7 92 4 64.2 74

232 6.5–9.5 414,149.3 4,009,671.4 56 33 23 18.1 92 4 73.4 72

233 6.5–9.5 414,362.5 4,008,450.6 66 29 37 18.2 96 4.5 61.6 55

234 6.5–9.5 416,171.1 4,012,249.6 32 15 17 16.1 94 4.5 52.4 100

235 6.5–9.5 415,609.8 4,012,761.8 36 20 16 18.2 93 4.5 42.3 100

236 6.5–9.5 414,549.1 4,013,637 44 21 23 11.3 78 14 100 100

237 6.5–9.5 417,922.5 4,010,462 43 25 18 17.1 62 3.5 94.9 40

238 6.5–9.5 416,961.1 4,011,319.3 46 22 24 17.2 110 4.5 74.3 81

239 6.5–9.5 416,542.1 4,010,233.5 55 31 24 20.7 116 4 88.7 100

240 6.5–9.5 416,909.4 4,008,754 48 24 24 22.7 110 5 86.2 100

241 6.5–9.5 406,775.3 4,007,107.5 52 27 25 17.8 85 4 98.4 52

242 6.5–9.5 405,227.4 4,007,274.3 51 26 25 18.2 85 4.5 94.3 54

243 6.5–9.5 407,403.9 4,006,885.3 45 25 20 20.5 103 4 94.4 45

244 6.5–9.5 407,715.1 4,007,488.5 49 26 23 20.1 97 4.5 96.1 71

245 6.5–9.5 408,445.4 4,007,069.4 48 26 22 20.7 85 4 93.1 82

246 6.5–9.5 408,736.7 4,005,101.9 54 25 29 16.6 83 3.5 94.1 83

247 6.5–9.5 408,248.5 4,006,694.7 50 27 23 19.2 97 5 93 79

248 6.5–9.5 407,872.4 4,006,657.22 51 25 26 19.4 138 4 93.3 60

249 6.5–9.5 409,311.9 4,005,786 49 26 23 18.2 130 4.5 97.5 70

250 6.5–9.5 408,775.59 4,006,631.24 48 23 25 17.6 97 5 94.9 69

251 6.5–9.5 409,973.4 4,006,133 44 24 20 17.7 99 5 92.2 75

252 6.5–9.5 409,048.64 4,007,069.39 48 24 24 18.4 97 4.5 90.4 90

253 6.5–9.5 409,874.19 4,007,406.1 46 23 23 15.8 98 5 93.3 89

254 6.5–9.5 408,985.14 4,007,907.6 56 25 31 18.8 108 4.5 96.7 91

255 6.5–9.5 411,015.2 4,007,902.7 45 23 22 14.5 115 5 93.2 99

256 6.5–9.5 418,521.8 4,007,163.4 48 23 25 13.5 113 4.5 93.8 100
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257 6.5–9.5 409,785.25 4,008,333.1 46 24 22 18.8 95 3.5 94 43

258 6.5–9.5 410,998.6 4,008,878.3 49 27 22 18.6 103 4.5 92.9 100

259 6.5–9.5 410,109.1 4,006,834.44 42 28 14 17.2 108 5.5 92.1 59

260 6.5–9.5 410,419.8 4,006,001 55 23 32 17.1 120 4.5 91.2 72

261 6.5–9.5 412,049.02 4,007,215.97 55 24 31 15.4 130 5 82.3 89

262 6.5–9.5 411,263 4,006,447.5 55 26 29 18.4 102 4 92.7 81

263 6.5–9.5 412,664.18 4,007,328.4 48 25 23 16.4 133 5.5 96.1 43

264 6.5–9.5 411,990 4,006,315.2 49 26 23 16.5 120 5 89.7 71

265 6.5–9.5 413,164.9 4,008,779 45 27 18 20.2 123 5.5 86 69

266 6.5–9.5 412,846.74 4,006,559.81 45 24 21 19.6 85 4.5 94.7 75

267 6.5–9.5 412,536.5 4,005,174.2 37 18 19 20.2 88 4 98.0 84

268 6.5–9.5 415,747.4 4,005,960.69 46 22 24 18.4 89 4 91.2 100

269 6.5–9.5 414,814.8 4,007,156.9 43 22 21 16.3 128 5 42.3 87

270 6.5–9.5 415,071.9 4,004,866.9 38 21 17 16.3 122 4 45 100

271 6.5–9.5 417,971.23 4,001,685.01 47 25 22 17.2 97 9.5 42 100

272 6.5–9.5 418,519 4,003,222.9 37 21 16 16.8 90 9.5 36 100

273 6.5–9.5 415,926 4,002,878 44 23 21 17.0 93 10 42 100

274 6.5–9.5 416,167 4,004,572.3 43 23 20 20.1 80 9 60 100

275 6.5–9.5 419,289 4,001,977.6 44 24 20 17.7 109 4 81.4 98

276 6.5–9.5 411,924.27 4,004,297.59 56 25 31 14.4 142 5 96.3 100

277 6.5–9.5 410,482.29 4,003,953.63 0 0 0 15.6 131 7 18.1 100

278 6.5–9.5 412,426.98 4,002,802.69 43 23 20 20.5 136 4.5 93.1 100

279 6.5–9.5 414,365 4,003,408 58 32 26 17.2 97 5 93.7 100

280 6.5–9.5 411,975.73 4,001,202.95 51 24 27 18.1 129 5.5 97.6 72

281 6.5–9.5 414,022.9 4,002,387 81 26 55 15.3 140 5 95.1 79

282 6.5–9.5 411,697.91 4,000,107.57 51 28 23 17.5 131 4.5 94.2 40

283 6.5–9.5 410,200 3,999,706 48 28 22 16.8 103 5 61.4 45

284 6.5–9.5 413,372.73 4,001,528.38 45 21 24 17.2 99 6 93.7 42

285 6.5–9.5 414,253.79 4,000,845.76 49 26 23 18.6 96 4.5 82 100

286 6.5–9.5 415,598.5 4,000,259 41 23 18 21.0 89 4 76.5 100

287 6.5–9.5 413,510.13 3,999,595.57 43 23 20 13.9 87 3.5 26.6 93

288 6.5–9.5 412,160.93 3,999,051.88 36 17 19 13.2 6 32 100 80

289 6.5–9.5 410,732.9 3,999,785 43 21 22 17.0 16 31 45 100

290 6.5–9.5 410,253 3,998,445 42 22 20 9.0 7 30 41 100

291 6.5–9.5 413,309 3,998,392.5 59 26 33 15.7 94 3.5 70.8 100

292 6.5–9.5 410,136.16 4,001,490.72 55 26 29 21.8 97 5 95.9 79

293 6.5–9.5 409,296.11 4,002,026.51 53 25 28 19.2 115 4.5 95.2 42

294 6.5–9.5 408,932.6 4,003,851.9 50 28 22 17.5 94 4 96.8 49

295 6.5–9.5 408,515.58 4,002,310.93 45 28 17 25.9 33 4.5 87.9 38

296 6.5–9.5 409,939 4,003,009.6 43 28 15 26.4 55 4.5 93 33

297 6.5–9.5 407,821.05 4,002,866.56 0 0 0 19.7 52 3.5 25.8 100

298 6.5–9.5 407,298.5 4,004,255.62 41 23 18 15.2 119 4.5 94.7 40

299 6.5–9.5 405,937 4,003,224 46 24 22 19.3 93 4.5 63.7 38

300 6.5–9.5 407,774.75 4,005,380.1 43 21 22 20.5 130 6 94.2 89
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Table A1. Cont.

BH
NO

DEPTH
m X Y LL% PL% PI% WC% c

(kN/m2)
Φ
(◦)

Fine
Content

SPT-N Value
(kN/m2)

301 6.5–9.5 407,844.33 4,005,870.11 43 23 20 19.8 49 3.5 98.9 38

302 6.5–9.5 406,914.85 4,005,671.15 48 23 25 18.7 99 4.5 94.8 100

303 6.5–9.5 405,242 4,004,431.7 50 26 24 15.5 115 5 96 73

304 6.5–9.5 405,684.54 4,005,717.45 48 23 25 18.7 99 5 94.8 100

305 6.5–9.5 408,025.12 3,999,907.5 45 25 20 22.8 105 4 92.6 91

306 6.5–9.5 406,400.4 4,001,124 48 25 23 22.1 97 5 69.7 100
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