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Abstract: With rapid urbanization and increasingly prominent environmental issues, objective
evaluation of the quality of the ecological environment is crucial for environmental protection
and sustainable development. Most remote sensing ecological indices (RSEI) used for ecological
environmental quality evaluation include only four indicators (greenness, humidity, heat, and
dryness), and many studies have ignored the impact of air quality on urban ecological environmental
quality in arid areas. This study used the urban agglomeration on the northern slope of the Tianshan
Mountains (UANSTM), China, as the research area based on the Google Earth Engine platform via
Landsat remote sensing images and NPP/VIIRS data to establish a new remote sensing ecological
index (RSEInew) and compounded night light index of urbanization level. The coupling coordination
degree model was used to quantitatively analyze the characteristics of the coordinated development
of the ecological environment and urbanization in UANSTM and major cities from 2015 to 2020. The
results showed that: (1) compared to RSEI, RSEInew is more suitable for assessing the ecological quality
of arid zones because it accounts for air quality; (2) the RSEInew value for the eco-environmental
quality of UANSTM from 2015 to 2020 improved and then deteriorated with an overall declining
trend. The variation in the RSEInew rating was between “strongly bad” and “neutral,” and there were
differences in the quality of the ecological environments among cities; (3) the level of urbanization
in the economic zone of UANSTM from 2015 to 2020 increased significantly, and the degree of
coordination between urbanization and ecological environmental quality coupling steadily increased
but remained moderately imbalanced. The results of this study provide a scientific reference for the
economic development and ecological environmental protection of the study area.

Keywords: new remote sensing ecological index; urbanization; coupling coordination; Google Earth
Engine; urban agglomeration on the northern slope of the Tianshan Mountains

1. Introduction

The quality of the ecological environment refers to the extent by which the ecological
environment affects human survival and social and economic development within a certain
time and space and is the basic attribute of the ecological environment [1,2]. Urbanization
is an inevitable process of human progress and has become a major factor that exerts
continuous pressure on the natural environment and is thus an issue of global concern [3,4].
A complex interaction exists between urbanization and ecological environmental quality.
High-intensity urbanization interferes with and destroys the ecological environment, and
the deterioration of the ecological environment restricts urbanization and sustainable
development [5,6]. For ecologically fragile arid areas, it is particularly important to research
ecological environmental quality and discuss how to coordinate the relationship between
economic development and the ecological environment.
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Remote sensing technology provides the means for rapid, real-time, and large-scale
monitoring [7,8] and has been widely used in ecological monitoring and evaluation [9–11].
Some studies have evaluated the growth of forest communities using vegetation indices
from remote sensing inversion [12], the urban heat island effect using land surface tem-
perature [13], and the quality of the urban ecological environment by analyzing urban
impervious surfaces extracted by remote sensing technology [14]. However, the forma-
tion and development of ecosystems are influenced by a variety of factors. Further, to a
certain extent, a single indicator cannot fully reflect the real situation of natural processes.
Xu proposed a remote sensing ecological index (RSEI) constructed using multiple indica-
tors [15], which has been widely used at different scales and in multiple fields [16,17]. The
RSEI should be appropriately improved when analyzing specific regions with different
ecological conditions. Some studies have established RSEIs based on moving windows and
considering the impact of mining areas on the ecological environment [18], while others
have improved the RSEI by selecting the principal components and setting the weight [19].
However, air quality is an important factor affecting the urban environment, with particu-
late matter posing a significant impact on human respiratory and vascular systems [20].
Therefore, it is necessary to integrate air quality data into ecological evaluations.

Nighttime light (NTL) data are widely used in research on human activities and urban
development [21,22]. Socio-economic statistic indicators for overall regional analysis have
been used by studies investigating the relationship between urbanization and the ecological
environment [23–26]. With the development of remote sensing technology providing new
ways to investigate both, some studies have used the compounded nighttime light index
(CNLI), which represents the level of urbanization, to analyze the coupling coordination
relationship between urbanization and the ecological environment [27]. Arid areas are vast
and ecologically fragile, and with the rapid expansion of cities, there is bound to be an
impact on the environment; therefore, the use of remote sensing technology to research the
coordination relationship between urbanization and the ecological environment in arid
areas may be valuable. The urban agglomeration on the northern slope of the Tianshan
Mountains (UANSTM) study area was one of the 19 urban agglomerations promoted by
China during the “13th Five-Year Plan”.

This current study used China’s typical arid oasis UANSTM as an example. A new
remote sensing ecological index (RSEInew) was constructed by introducing the particulate
matter 2.5 (PM2.5) concentration difference index (DI) based on the RSEI model using the
Google Earth Engine (GEE) platform via Landsat remote sensing images. NTL data were
used to estimate the urbanization development indicators of the study area. Based on
these results, the coupling coordination degree model (CCDM) was used to quantitatively
explore the coordinated development of the ecological environment and urbanization in
UANSTM from 2015 to 2020. Therefore, this study aims to: (1) construct RSEInew to monitor
the spatial and temporal patterns and evolutionary trends of ecological and environmental
quality in the UANSTM; (2) quantitatively analyze the coordination between ecological
environment quality and urbanization levels in the arid area; and (3) analyze causes of the
coupled coordination degree of ecological quality and urbanization in the study area. The
results of this study have practical significance for promoting the coordinated development
of urbanization and ecological environmental quality in the study area, as well as for
informing environmental protection and sustainable development.

2. Materials and Methods
2.1. Study Area

UANSTM (42◦45′–46◦8′ N, 81◦46′–88◦58′ E) is the most economically developed area
and an economic development center of the Xinjiang Uygur Autonomous Region in north-
west China, located adjacent to the Gurbantunggut Desert to the north. It has a total
area of approximately 95,400 km2, complex topography, and a temperate continental arid
climate [28]. UANSTM includes the Wu-Chang urban economic zone with Urumqi City as
the center, the Shihezi-Manasi-Shawan urban economic zone with Shihezi City as the center,
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and the Kuitun-Wusu-Kelamayi “Golden Triangle”. By incorporating various factors, such
as urban development level and natural environment, this study considered Urumqi City,
Shihezi City, and Kelamayi City as the axes and selected key cities in the economic belt,
including Changji City, Fukang City, Kuitun City, Hutubi County, Manasi County, and
Shawan County as the study area (Figure 1). UANSTM has the highest economic level,
most developed transportation, densest population, and most concentrated industries
in Xinjiang. At the end of 2018, the total population of the urban agglomeration was
5.92 million people, accounting for approximately a fifth of the total population of Xin-
jiang, with a gross domestic product of CNY 656.6 billion. This is the main area for new
urbanization in Xinjiang in the future and a strategic core area for social and economic
development [29].
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Figure 1. Urban agglomeration on the northern slope of the Tianshan Mountains (UANSTM)
location map.

2.2. Data Resources and Preprocessing

The GEE is a powerful remote sensing data source and processing platform. Us-
ing this platform, we performed batch stitching, cropping, water body masking, and
other preprocessing on Landsat with 30 m spatial resolution remote sensing image data
(2442 scenes) in the study area from 2015 to 2021 during three seasons (spring, sum-
mer, and autumn) each year. The greenness, humidity, heat, and dryness [30] and the
PM2.5 concentration (DI) were calculated in the study area [31]. Principal component
analysis (PCA) was used to build RSEInew. The NTL data in the study area from 2015
to 2020 were derived from the global “NPP-VIIRS” nighttime light time series product
(https://doi.org/10.7910/DVN/YGIVCD, accessed on 17 March 2022) [32] with a spatial
resolution of 500 m. Land-use data for 2015–2020 were collected from the National Earth
System Science Data Center (http://www.geodata.cn/, accessed on 15 March 2022) with a
spatial resolution of 30 m and reclassified into six categories: woodland, grassland, crop-
land, construction land, unused land, and water area (Table 1). All data and maps in this
study were in the geographical coordinate system (GCS_WGS_1984).

https://doi.org/10.7910/DVN/YGIVCD
http://www.geodata.cn/
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Table 1. Detailed descriptions of the study data.

Data Data Attribute Source Function

Landsat5, 8 Spatial resolution: 30 m
Temporal resolution: 16 days Google Earth Engine Calculate the NDVI, WET,

LST, NDBSI, DI

Land-use type data Spatial resolution: 30 m
National Earth System Science Data
Center (http://www.geodata.cn/,

accessed on 15 March 2022)
Base map data

Nighttime light data Spatial resolution: 500 m
Temporal resolution: Annual

An extended time series (2000–2020)
of global NPP-VIIRS-like nighttime
light data (https://doi.org/10.7910/

DVN/YGIVCD, accessed on 17
March 2022)

Calculate the LAP, MLI, CNLI

2.3. Methods
2.3.1. New Remote Sensing Ecological Index

RSEInew was constructed by employing five ecological factors and conducting a
PCA [33]. The normalized vegetation index (NDVI), wetness index (WET), land sur-
face temperature (LST), and normalized differential built-up and bare soil index (NDBSI)
represented greenness, humidity, heat, and dryness, respectively. These four ecological
factors were also the main indicators for constructing conventional RSEI models [15]. This
study introduced air quality as a fifth factor, namely the PM2.5 concentration DI [34,35].
The calculation formulas for all ecological factors are as follows:

(1) Normalized vegetation index (NDVI)

NDVI can reflect vegetation growth and coverage in the study area [36].

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) (1)

(2) Wetness index (WET)

WET can better reflect the water information of soil and vegetation [37,38] in the
study area.

WETTM = 0.0315ρBlue + 0.2021ρGreen + 0.3102ρRed + 0.1594ρNIR − 0.6806ρSWIR1 − 0.6109ρSWIR2 (2)

WETOLI = 0.1511ρBlue + 0.1972ρGreen + 0.3283ρRed + 0.3407ρNIR − 0.7117ρSWIR1 − 4559ρSWIR2 (3)

where ρi(i = Blue, Green, Red, NIR, SWIR1, SWIR2) are the reflectance of the blue, green,
red, near-infrared, short infrared band1, and short infrared band2, respectively [39].

(3) Land surface temperature (LST)

LST is closely related to the urban ecological environment and therefore it was used
to represent the heat index [40–42]. In this paper, we use the thermal infra-red band of
Landsat images to calculate the radiometric brightness and then the radiometric bright-
ness is corrected according to the land surface emissivity, thus inverse performing the
surface temperature.

L6(10) = gain× DN + bias (4)

B(Ts) =
K2

ln
(

K1
L6(10)

+ 1
) − 273.15 (5)

LST = B(Ts)/[1 + (λB(Ts)/ρ)lnε] (6)

where L6(10) is the radiance of the TM (TIRS) thermal infra-red band, and gain and bias
denote the band’s gain value and the offset value, respectively. Digital number (DN) is
the pixel gray value; B(Ts) is the black body radiance, for Landsat5 image K1 = 607.76,

http://www.geodata.cn/
https://doi.org/10.7910/DVN/YGIVCD
https://doi.org/10.7910/DVN/YGIVCD
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K2 = 1260.56; for Landsat7 image K1 = 666.09, K2 = 1282.71; for Landsat8 image K1 = 774.89,
K2=1201.14 [43]. λ is the center wavelength of the thermal infrared band (λTM = 11.435
and λOLI = 10.896), ρ = 1.438.10−2 m K, and ε is the land surface emissivity estimated by
NDVI [40].

(4) Normalized differential built-up and bare soil index (NDBSI)

The continuous expansion of the urban building land area and wide distribution of
bare land around the city are factors causing soil drying in the study area and harming
the regional ecological environment. Therefore, NDBSI [15,44], which is obtained via the
weighted average of the soil index (SI) [15,45] and index-based built-up index (IBI) [30,46,47],
was used as the dryness index to reflect the degree of drought in the study area.

NDBSI = (IBI + SI)/2 (7)

IBI =
{

2ρSWIR1
ρSWIR1 + ρNIR

−
[

ρNIR
ρNIR + ρRed

+
ρGreen

ρGreen + ρSWIR1

]}
/
{

2ρSWIR1
ρSWIR1 + ρNIR

+

[
ρNIR

ρNIR + ρRed
+

ρGreen
ρGreen + ρSWIR1

]}
(8)

SI = [(ρSWIR1 + ρRed)− (ρNIR + ρBlue)]/[(ρSWIR1 + ρRed) + (ρNIR + ρBlue)] (9)

where ρi(i = Blue, Green, Red, NIR, SWIR1) are the reflectance of the blue, green, red, near-infrared,
and short infrared band1, respectively.

(5) Difference index (DI)

PM2.5, the main constituent of urban pollution, is closely related to the quality of the ecological
environment. The introduction of the PM2.5 concentration index can more accurately reflect the urban
ecological environmental quality of the study area [33,48]. The current spatial resolution of PM2.5
concentrations estimated based on satellite remote sensing is low, and problems such as missing data
often occur [35]. For this reason, many scholars have made algorithm improvements, such as Feng
H.Y [34], Zha Y [31], and He J [49], who constructed indices to directly estimate PM2.5 concentrations
by combining different wavebands. In this study, the difference index (DI) constructed using red
and near-infrared bands was used to represent the concentration of PM2.5 as based on previous
studies [33,34].

DI = (ρRed − ρNIR) (10)

To prevent different units and numerical ranges of different ecological factors from affecting
the accuracy of the RSEInew results, all indicators were normalized before constructing the RSEInew
to ensure that the numerical ranges of the five factors were between 0 and 1 [50]. PCA was used to
calculate the initial value of the remote sensing ecological environment index (RSEI0 = 1 − PC1). The
formula for calculating the RSEInew is as follows:

RSEInew = (RSEI0 − RSEI0−min)/(RSEI0−max − RSEI0−min) (11)

where RSEI0−max and RSEI0−min are the maximum and minimum values of the initial value RSEI0,
respectively. The closer RSEInew is to 1, the better the quality of the ecological environment; the closer
it is to 0, the worse the quality of the ecological environment [51]. Based on previous studies on
ecological environmental quality classification, the RSEInew was divided into five categories: strongly
good (0.8–1.0), slightly good (0.6–0.8), neutral (0.4–0.6), slightly bad (0.2–0.4), and strongly bad
(0–0.2) [52–54]. The annual RSEInew was calculated using the monthly scale RSEInew (with less snow
cover) from March to November each year, and the monthly scale RSEInew was calculated to obtain
the RSEInew of the study area at different seasonal scales.

2.3.2. Estimation of Compounded Nighttime Light Index (CNLI)
The CNLI reflects the level of urbanization and intensity of human activities on the Earth’s

surface and can effectively monitor the development of regional urbanization [55]. CNLI was
estimated using the light area ratio product (LAP) and mean light intensity (MLI) [56] as follows:

CNLI = LAP×MLI (12)

LAP =
Arealight

Area
(13)
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MLI = ∑DNmax
i=1 DNi ×

ni
N × DNmax

(14)

where Arealight represents the lighting area, Area is the total study area, DNi is the brightness value of
the ith brightness level, ni is the total number of pixels of the ith brightness level, and N is the total
number of pixels of lights.

2.3.3. Coupling Coordination Degree Model (CCDM)
Coupling coordination analysis includes the coupling degree and coupling coordination degree

analysis [57]. Coupling refers to the degree of interaction between two or more systems [58]. The
coupling coordination analysis equation is as follows:

C =

√
(U × E)/(U + E)2 (15)

where U represents the CNLI, E represents the RSEInew, and C is the degree of interaction between
urbanization and the ecological environment [59]. Owing to the coupling level, it is not possible to
determine the level at which each subsystem is coordinated [60]. Therefore, based on the coupling
degree, CCDM was introduced to evaluate the degree of coordinated development of the ecological
environment and urbanization. The calculation formula is as follows:

D =
√
(αU + βE)× C (16)

where D is the degree of coupling coordination, indicating the development level of the two sub-
systems; the higher the value, the higher the level of coupling coordination development. α and β

represent the contribution ratios of urbanization and ecological environmental quality, respectively.
Generally, urbanization and the ecological environment have the same importance to the healthy
development of cities; therefore, this study adopted α = β = 0.5 [61]. According to urbanization
level U and ecological environmental quality E, the coupling coordination degree D of urbanization
and ecological environmental quality was divided into five types [62] (Table 2).

Table 2. Classification principles of coordinated development of urbanization and ecological environment.

Coordination Level Subcategory Systematic Exponential Comparison

0.8 < D ≤ 1 High coordination
E-U > 0.1 (High coordination; Sluggish urbanization)

E-U < −0.1 (High coordination; Ecological environment lag)
0 ≤ |E-U| ≤ 0.1 (High coordination)

0.6 < D ≤ 0.8 Moderate coordination
E-U > 0.1 (Moderate coordination; Sluggish urbanization)

E-U < −0.1 (Moderate coordination; Ecological environment lag)
0 ≤ |E-U| ≤ 0.1 (Moderate coordination)

0.4 < D ≤ 0.6 Reluctant coordination
E-U > 0.1 (Reluctant coordination; Sluggish urbanization)

E-U < −0.1 (Reluctant coordination; Ecological environment lag)
0 ≤ |E-U| ≤ 0.1 (Reluctant coordination)

0.2 < D ≤ 0.4 Moderate imbalance
E-U > 0.1 (Moderate imbalance; Sluggish urbanization)

E-U < −0.1 (Moderate imbalance; Ecological environment lag)
0 ≤ |E-U| ≤ 0.1 (Moderate imbalance)

0 < D ≤ 0.2 Serious imbalance
E-U > 0.1 (Serious imbalance; Sluggish urbanization)

E-U < −0.1 (Serious imbalance; Ecological environment lag)
0 ≤ |E-U| ≤ 0.1 (Serious imbalance)

3. Results and Analysis
3.1. RSEInew Model Testing

To test whether the RSEInew constructed in this study had better applicability than the traditional
RSEI, a 5000 m × 5000 m grid was used to extract two ecological environmental indices for each year
of the study period, and 3645 grid data were obtained. The contribution rate of the first principal
component (PC1) and the average correlation between each factor were calculated to construct
RSEInew and RSEI, respectively.

As shown in Figure 2, the values of PC1 for each indicator are controlled within a relatively
stable range, while the fluctuation ranges of PC2, PC3, PC4, and PC5 were large, indicating that
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PC1 contains most of the information of the five indicators. Meanwhile, the contribution of each
index to PC1 demonstrates that both NDVI and WET were positive, which promoted the ecological
environment of UANSTM, whereas LST, NDBSI, and DI were negative, posing a negative effect
on the ecological environment. As shown in Table 3, the overall spatial and temporal patterns of
urban ecological quality responded by RSEInew and RSEI are similar, but with higher eigenvalue
contribution rates and eigenvalues of the PC1 in RSEInew than RSEI. For RSEInew, the eigenvalue
contribution rates of the PC1 in 2015–2020 were 81.97%, 75.47%, 82.14%, 81.59%, 84.15%, 79.56%, and
85.12%; for RSEI, the eigenvalue contribution rates of the PC1 in 2015–2020 were 80.71%, 74.60%,
80.02%, 79.12%, 80.99%, 77.69%, and 81.46%. The results showed that the contribution rate of the PC1
in constructing the RSEInew was higher than that of the RSEI. Hence, RSEInew is more suitable than
RSEI for evaluating ecological environmental quality in the study area.
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Figure 2. Principal component analysis results of five factors for 2015, 2018, and 2021.

Table 3. Principal component analysis of RSEInew and RSEI.

Year Model Eigenvalue Percent
Eigenvalue/% Model Mean Value

2015
RSEI 0.070 80.71 0.320

RSEInew 0.088 81.97 0.321

2016
RSEI 0.064 74.60 0.322

RSEInew 0.067 75.47 0.345

2017
RSEI 0.074 80.02 0.324

RSEInew 0.085 82.14 0.350

2018
RSEI 0.066 79.12 0.307

RSEInew 0.098 81.59 0.325

2019
RSEI 0.064 80.99 0.314

RSEInew 0.099 84.15 0.317

2020
RSEI 0.066 77.69 0.310

RSEInew 0.076 79.56 0.314

2021
RSEI 0.071 81.46 0.293

RSEInew 0.112 85.12 0.311

As shown in Figure 3, the average correlation between the RSEInew model and each factor was
higher than that of RSEI. The average correlation between RSEInew and the five factors was 0.858,
and that between RSEI and the four factors was 0.448. RSEInew and RSEI had consistent positive
and negative correlations, respectively, for each factor. The correlation between the factors in the
RSEInew model was stronger than in the RSEI model. The factor with the highest annual correlation
between RSEInew and RSEI was NDBSI, indicating that NDBSI had the greatest impact on ecological
environmental quality. This was mainly due to the decline in the ecological environment caused
by the increase in urban expansion and construction land. Hence, compared with RSEI, RSEInew
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integrates the majority of the information of each factor, which is more representative than any single
index and can better reflect the study area’s ecological environment.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 17 
 

RSEInew 0.076 79.56 0.314 

2021 
RSEI 0.071 81.46 0.293 

RSEInew 0.112 85.12 0.311 

As shown in Figure 3, the average correlation between the RSEInew model and each 
factor was higher than that of RSEI. The average correlation between RSEInew and the five 
factors was 0.858, and that between RSEI and the four factors was 0.448. RSEInew and RSEI 
had consistent positive and negative correlations, respectively, for each factor. The corre-
lation between the factors in the RSEInew model was stronger than in the RSEI model. The 
factor with the highest annual correlation between RSEInew and RSEI was NDBSI, indicat-
ing that NDBSI had the greatest impact on ecological environmental quality. This was 
mainly due to the decline in the ecological environment caused by the increase in urban 
expansion and construction land. Hence, compared with RSEI, RSEInew integrates the ma-
jority of the information of each factor, which is more representative than any single index 
and can better reflect the study area’s ecological environment. 

 
Figure 3. Mean correlation of each indicator with (a) RSEInew and (b) RSEI. 

3.2. Spatial and Temporal Pattern Analysis of RSEInew 
3.2.1. Estimation of RSEInew 

The annual mean value trends for the five ecological factors and RSEInew in UANSTM 
from 2015 to 2021 are shown in Figure 4. The overall annual average value of RSEInew 
demonstrated a decreasing trend, with a 3.12% rate of decline. The different years initially 
showed an increasing trend, followed by a decreasing trend. RSEInew increased from 0.321 
in 2015 to 0.350 in 2017 and decreased to 0.311 in 2021. Similar to RSEInew, the annual av-
erage WET decreased by 7.22%. The annual mean values of the LST, NDBSI, and DI in-
creased by 5%, 33.6%, and 6.61%, respectively. 

Figure 3. Mean correlation of each indicator with (a) RSEInew and (b) RSEI.

3.2. Spatial and Temporal Pattern Analysis of RSEInew

3.2.1. Estimation of RSEInew

The annual mean value trends for the five ecological factors and RSEInew in UANSTM from
2015 to 2021 are shown in Figure 4. The overall annual average value of RSEInew demonstrated a
decreasing trend, with a 3.12% rate of decline. The different years initially showed an increasing
trend, followed by a decreasing trend. RSEInew increased from 0.321 in 2015 to 0.350 in 2017 and
decreased to 0.311 in 2021. Similar to RSEInew, the annual average WET decreased by 7.22%. The
annual mean values of the LST, NDBSI, and DI increased by 5%, 33.6%, and 6.61%, respectively.
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3.2.2. Spatial Distribution Characteristics of RSEInew

As shown in Figure 5, the area with “strongly bad” ecological environmental quality increased
by 8% in 2021 to approximately 6808.71 km2. The area with “slightly bad” ecological environmental
quality decreased by 2.17% to approximately 1668.94 km2. The area with “neutral” ecological envi-
ronmental quality decreased by 4.2%, and that with “slightly good” and “strongly good” ecological
environmental quality decreased by approximately 1.61%. The grade transformation of RSEInew in
the study area from 2015 to 2021 was mainly concentrated between “strongly bad” and “neutral.”
Compared to other years, the RSEInew in 2017 was higher, indicating that the ecological environmental
quality had improved dramatically.
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To discover the dynamic characteristics of ecological environmental quality during different
periods, the RSEInew of recent and previous years in the study area were subtracted to obtain the
spatial difference (Figure 6). Figure 6 shows that the RSEInew in 2017 improved more than in 2015.
Compared with 2017 and 2021, RSEInew showed a decreasing trend in 2019, and the deterioration
area accounted for 17.77% and 9.13% of the total study area, respectively. Compared with 2015, the
RSEInew deterioration area in 2021 was larger than the improved area, with the deterioration and
improved areas accounting for 17.37% and 6.32% of the total area, respectively. Therefore, areas with
degraded ecological quality are mainly located in the central cities, surrounding cities, and southern
high-altitude areas. Areas where the quality of the ecological environment remained unchanged
were mainly located in the northern desert and high-altitude forested areas. Areas with improved
ecological quality were mainly located in central and western farmland. Areas of strong improvement
and serious decline were very small, accounting for less than 1% of the total area, and areas with
stable ecological environmental quality accounted for approximately 75% of the total area.
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3.2.3. Seasonal Analysis of RSEInew

In this study, RSEInew was calculated for the spring (March, April, and May), summer (June,
July, and August), and autumn (September, October, and November) seasons during different years
in the study area based on the GEE platform. As shown in Table 4, the mean RSEInew values during
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spring from 2015 to 2021 presented decreasing, increasing, decreasing, increasing, and decreasing
trends, respectively. An increasing-decreasing-increasing-decreasing trend was observed for the
mean summer RSEInew values from 2015 to 2021. The mean fall RSEInew from 2015 to 2021 presented
an increasing-decreasing-increasing-decreasing trend. These results show that RSEInew changes
with time and environment, and the RSEInew estimated by selecting the remote sensing data of the
same season or a certain day cannot accurately reflect the change characteristics of the ecological
environmental quality for different years. Therefore, this study used high-quality Landsat remote
sensing images in the spring, summer, and autumn of 2015–2021 (March–November) to construct the
annual-scale RSEInew.

Table 4. Changes in average seasonal RSEInew of the study area.

Season 2015 2016 2017 2018 2019 2020 2021

Spring 0.287 0.238 0.343 0.306 0.310 0.313 0.305
Summer 0.324 0.360 0.388 0.363 0.335 0.341 0.327
Autumn 0.301 0.336 0.362 0.322 0.344 0.312 0.312

3.3. Coupling Relationship between Urbanization and Eco-Environment
3.3.1. Change in the Mean RSEInew Value in the Main City of UANSTM

From 2015 to 2021, the annual average RSEInew changes in the main urban areas of the nine
major cities (Figure 7) showed that the ecological environmental quality of different cities in the
study area was significantly different. From 2015 to 2021, the average RSEInew values of Urumqi
City, Fukang City, Kelamayi City, and Hutubi County showed a decreasing trend, and the ecological
environmental quality of Urumqi City and Kelamayi City was relatively poor. The RSEInew of Urumqi
City decreased from 0.331 in 2015 to 0.278 in 2021. The RSEInew in Kelamayi City decreased from
0.239 in 2015 to 0.210 in 2021. The mean RSEInew values for Kuitun City, Shihezi City, Changji City,
Shawan County, and Manasi County showed an increasing trend. The RSEInew of Manasi County
increased from 0.535 in 2015 to 0.564 in 2021, and the RSEInew of Shawan County increased from
0.476 in 2015 to 0.578 in 2021. Compared with 2015, the average RSEInew value of Shawan County
in 2021 exhibited the highest change, with an increase of 0.102, and the average RSEInew value of
Shihezi City was the least changed, with an increase of 0.01.
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3.3.2. Extraction of Urbanization Features in UANSTM
Figure 8a–c shows the NTL space distribution in the study area for 2015 and 2020. The total

number of pixels with light information and the brightness value in the study area exhibited an
increasing trend. Among them, night lights were mainly concentrated in the three major urban
agglomerations of the UANSTM: Urumqi-Fukang-Changji, Manasi-Shihezi-Shawan, and Kelamayi-
Kuitun-Wusu. The lighted area increased from 3800.41 km2 in 2015 to 5785.42 km2 in 2020. In this
study, the DN value of a light image was divided into four levels: very low, low, high, and very
high [63]. Figure 8c,d shows that the areas with high DN values in 2020 relative to 2015 increased
slightly, and areas with lower DN values increased significantly. It also indicates an increasing
characteristic from the periphery to the center of the main urban area of the city and a contiguous
distribution with neighboring cities.
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Owing to the large area covered by this study, the non-construction land area is much greater
than the construction land area. To avoid underestimating the urbanization level caused by the
calculation of the CNLI of the municipal area, this study used the CNLI of the main urban areas
of each city to investigate the urbanization level of the study area [64]. Table 5 shows that the MLI
of major cities in the study area did not significantly change in 2015 and 2020, but the LAP and
CNLI increased considerably. The LAP of the main urban areas of Manasi County, Kelamayi City,
Kuitun City, and Changji City in 2020 increased by 27.9%, 27.1%, 25.3%, and 23.5%, respectively,
compared with 2015, and the LAP of other cities increased by more than 10%. Based on these results,
the urbanization levels of Urumqi City, Kelamayi City, Changji City, and Shihezi City were relatively
high among the nine cities. In addition, cities with lower urbanization levels developed faster than
those with higher urbanization levels. This shows that the urbanization development level of each
city in UANSTM exhibits a rapid growth trend.

Table 5. Mean change of mean light intensity (MLI), light area ratio product (LAP), and compounded
nighttime light index (CNLI) in nine major cities of urban agglomeration on the northern slope of the
Tianshan Mountains.

City
2015 2020

MLI LAP CNLI MLI LAP CNLI

Urumqi 0.109 0.650 0.071 0.113 0.753 0.085
Fukang 0.044 0.171 0.008 0.014 0.315 0.014
Hutubi 0.045 0.389 0.018 0.041 0.563 0.023

Kelamayi 0.082 0.586 0.045 0.070 0.857 0.060
Kuitun 0.085 0.425 0.036 0.068 0.678 0.046
Manasi 0.038 0.326 0.012 0.036 0.605 0.022
Shawan 0.026 0.108 0.003 0.029 0.22 0.006
Shihezi 0.050 0.653 0.033 0.053 0.859 0.047
Changji 0.103 0.465 0.048 0.083 0.700 0.058
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3.3.3. Coupling Coordination Degree Analysis of Different Cities
The coupling coordination degree was calculated based on the CCDM for the main urban areas

of the major cities in the study area. Figure 9a,b shows that the coupling coordination degree of
urbanization and ecological environmental quality in the main urban areas of the nine major cities
from 2015 to 2020 exhibited an increasing trend, with an average increase from 0.221 in 2015 to
0.239 in 2020. Among them, the coupling coordination degree of Urumqi City, Changji City, Shihezi
City, Kuitun City, and Kelamayi City was higher than that of the other cities. This indicates that
the coupled coordinated development of urbanization and ecological environment has improved
from 2015 to 2020; however, it is still characterized by moderate imbalance and a level of gradual
urbanization. Therefore, although the urbanization and ecological environment of cities in UANSTM
are changing rapidly, the coupling coordination between the two remains at a low level. Moreover,
ecological environmental quality is changing at a faster rate than the development of urbanization
and they have not reached the stage of coordinated development.
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4. Discussion
4.1. Suitability of RSEInew

With the rapid economic development and urban expansion in Xinjiang, air pollution has
become an urgent environmental problem. The desert area is widely distributed, and the heating
period is long in winter, resulting in PM2.5, which is the main air pollutant in Xinjiang. Particulate
matter pollution poses a serious threat to human health and the ecological environment [65]. RSEInew,
which comprehensively considers PM2.5, can more accurately evaluate the ecological environmental
quality of the study area [66]. Through comparison and analysis, this paper finds that, compared
with the general RSEI, this RSEInew is more effective in evaluating the ecological environment quality
of urban clusters in arid zones, and this index can be more widely applied to the evaluation of
ecological environment quality in arid zones in the future. Furthermore, this study used the GEE
platform to estimate RSEInew with higher spatial and temporal resolution over a large area, which
overcomes the problem of low accuracy of the estimation results because of the lack of remote
sensing data, cloudiness, and time inconsistency in the traditional method of RSEI. The spatial and
temporal characteristics of ecological environmental quality were extracted at monthly, seasonal, and
annual intervals.

4.2. Cause Analysis of RSEInew Index and Coupling Coordination Degree
The results of the ecological environmental quality of UANSTM from 2015 to 2020 initially

demonstrated a rising and then declining trend, where the quality of the ecological environment in
2017 was the best. Figure 4 shows that compared to other years, NDVI was positively correlated with
the quality of the ecological environment, and LST was negatively correlated with the maximum
and minimum values in 2017. We superimposed the effects of other factors to prove the best
ecological quality performance in the study area in 2017. As approximately 45% of the land-use
types in UANSTM are bare land with extremely low vegetation coverage [67], the overall ecological
environmental quality is poor. Areas where the quality of the ecological environment has remained
poor are the desert areas to the north. Areas with good ecological environmental quality were
mainly concentrated in the central oasis agricultural area and southern pre-mountain grassland zone
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of the study area. The ecological quality of the study area strongly depends on water resources.
Furthermore, with the continuous increase in urban construction land, the fragmentation of the
vegetation landscape in the main urban area of the city and its surrounding areas has intensified and
deteriorated the ecological environmental quality.

Figure 8 shows that the light intensity in the central areas of the cities with high urbanization
levels (Urumqi City, Kelamyi City, Shihezi City, and Changji City) did not change significantly
from 2015 to 2020, whereas the light intensity in the areas around the main urban areas increased
significantly. The main reason is that the urbanization of the central urban area had a high level of
urbanization in the early stage of this study; therefore, the light intensity changed less compared to
the surrounding areas. From 2015 to 2020, the degree of coordinated development of urbanization
and the ecological environment in the UANSTM showed an upward trend, but the overall condition
was in a state of moderate imbalance, mainly due to gradual urbanization. From 2015 to 2020,
the research area was in an important stage of accelerating economic development during the
national “12th Five-Year Plan” and “13th Five-Year Plan” and promoting the sustainable and healthy
development of the regional social economy. Motivated by relevant policies, UANSTM has achieved
tremendous economic, social, and environmental development and progress. However, as the study
area is underdeveloped in western China, urbanization development is relatively slow, and the
fragile natural ecological environment is easily threatened by economic development. For cities with
rapid urbanization and insufficient environmental input, the quality of the ecological environment
declines with the acceleration of urbanization, resulting in a low overall degree of coupling and
coordination between urbanization and the ecological environment in the study area. To improve
the coordinated development of urbanization and the ecological environment in the study area, the
primary task is to increase the pace of urban economic development and increase investment in
environmental construction.

5. Conclusions
This study constructed RSEInew for the study area using the GEE platform. The remote sensing

data of NTL were combined to estimate the index of the CNLI and comprehensively evaluate the
coupling relationship between urbanization and ecological environmental quality in UANSTM and
the main urban areas of major cities from 2015 to 2020. The main conclusions are as follows:

(1) From 2015 to 2021, the average RSEInew value of UANSTM ecological environmental quality
improved and then deteriorated, with an overall declining trend. The quality changes for RSEInew
were mainly concentrated between the “strongly bad” and “neutral” grades. The ecological quality
of the study area showed strong dependence on water resources. In addition, with the continuous
increase in urban construction land, vegetation landscape fragmentation in the main urban area and
its surrounding areas is aggravated, and ecological environmental quality is decreased. RSEInew is
more suitable for evaluating the quality of urban ecological environments in arid regions;

(2) From 2015 to 2020, the urbanization development level of the main urban areas in all
cities exhibited an increasing trend. The degree of coupling coordination between urbanization and
ecological environmental quality in the main urban areas of each city increased steadily each year;
however, the coupling coordination remains at a low level;

(3) Approximately 45% of the land-use types in UANSTM were bare land, resulting in poor
ecological environmental quality in the study area. Areas with good ecological environmental quality
were mainly concentrated in the central oasis farming area and southern piedmont grassland zone.
With the development and expansion of UANSTM, fragile ecological environments are under greater
pressure. In the majority of the study area, the urbanization process is fast; however, environmental
investment is insufficient, leading to the acceleration of urbanization but a decline in ecological
environmental quality. Overall, this results in a low degree of coupling coordination between
urbanization and the ecological environment. Therefore, to ensure the sustainability of environmental
resources, urban development and environmental governance are equally important in arid areas.
This study only discussed the impact of land-use type on ecological environmental quality. Future
research should aim to analyze the impact of natural and human factors on eco-environmental quality,
urbanization, and their degree of coordination.
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