Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Descriptions
2.2. Methodology for Carbon Footprint Accounting
2.2.1. Functional Unit
2.2.2. System Boundary
2.2.3. Uncertainty Analysis
2.3. Energy Consumption
2.4. Element Balance Analysis
3. Results
3.1. Carbon Footprint
3.1.1. Life Cycle Inventory
3.1.2. Carbon Footprint
3.1.3. Carbon Footprint under Green Electricity
3.1.4. Uncertainty Analysis
3.2. Energy Consumption
3.3. Element Balance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavoni, M.; Kriegler, E.; Riahi, K.; van Vuuren, D.P.; Aboumahboub, T.; Bowen, A.; Calvin, K.; Campiglio, E.; Kober, T.; Jewell, J.; et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Chang. 2015, 5, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; den Elzen, M.; Hohne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Chaeffer, R.S.; Ha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 degrees C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Peccia, J.; Westerhoff, P. We Should Expect More out of Our Sewage Sludge. Environ. Sci. Technol. 2015, 49, 8271–8276. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef]
- Liu, H.T. Novel approach on reduction in GHG emissions from sludge lime stabilization as an emergent and regional treatment in China. Sci. Rep. 2018, 8, 16564. [Google Scholar] [CrossRef] [Green Version]
- Biller, P.; Johannsen, I.; dos Passos, J.S.; Ottosen, L.D.M. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Water Res. 2018, 130, 58–68. [Google Scholar] [CrossRef]
- Callegari, A.; Capodaglio, A.G. Properties and Beneficial Uses of (Bio) Chars, with Special Attention to Products from Sewage Sludge Pyrolysis. Resources 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.L.; Gattie, D.K. Pathogen risks from applying sewage sludge to land. Environ. Sci. Technol. 2002, 36, 286A–293A. [Google Scholar] [CrossRef] [Green Version]
- Dumontet, S.; Scopa, A.; Kerje, S.; Krovacek, K. The importance of pathogenic organisms in sewage and sewage sludge. J. Air Waste Manag. Assoc. 2001, 51, 848–860. [Google Scholar] [CrossRef] [Green Version]
- Kouloumbis, P.; Rigas, F.; Mavridou, A. Environmental problems from the disposal of sewage sludge in Greece. Int. J. Environ. Health Res. 2000, 10, 77–83. [Google Scholar] [CrossRef]
- Moore, P.G. Sewage sludge: ‘All at sea’ no more, just up the proverbial without a comparative risk assessment. Aquat.Conserv. 2003, 13, 1–4. [Google Scholar] [CrossRef]
- Bondarczuk, K.; Markowicz, A.; Piotrowska-Seget, Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ. Int. 2016, 87, 49–55. [Google Scholar] [CrossRef]
- Wlodarczyk-Makula, M. Persistence of two-, three- and four-ring of PAHs in sewage sludge deposited in different light conditions. Desalin. Water Treat. 2016, 57, 1184–1199. [Google Scholar] [CrossRef]
- Racz, L.; Goel, R.K. Fate and removal of estrogens in municipal wastewater. J. Environ. Monit. 2010, 12, 58–70. [Google Scholar] [CrossRef]
- Verlicchi, P.; Zambello, E. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil—A critical review. Sci. Total Environ. 2015, 538, 750–767. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; Borrull, F.; Pocurull, E.; Marce, R.M. Occurrence of pharmaceuticals and hormones in sewage sludge. Environ. Toxicol. Chem. 2010, 29, 1484–1489. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Li, J.; Yan, B.; Wang, Y.; Wu, X.; Velichkova, R.; Cheng, Z.; Ma, W. Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge: A case study in China. Sci. Total Environ. 2019, 647, 1433–1443. [Google Scholar] [CrossRef] [PubMed]
- Samolada, M.C.; Zabaniotou, A.A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag. 2014, 34, 411–420. [Google Scholar] [CrossRef]
- Jiang, L.-B.; Yuan, X.-Z.; Li, H.; Chen, X.-H.; Xiao, Z.-H.; Liang, J.; Leng, L.-J.; Guo, Z.; Zeng, G.-M. Co-pelletization of sewage sludge and biomass: Thermogravimetric analysis and ash deposits. Fuel Process. Technol. 2016, 145, 109–115. [Google Scholar] [CrossRef]
- Chen, P.; Xie, Q.; Addy, M.; Zhou, W.; Liu, Y.; Wang, Y.; Cheng, Y.; Li, K.; Ruan, R. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresour. Technol. 2016, 215, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Rulkens, W. Sewage sludge as a biomass resource for the production of energy: Overview and assessment of the various options. Energy Fuel. 2008, 22, 9–15. [Google Scholar] [CrossRef]
- Ferrasse, J.H.; Seyssiecq, I.; Roche, N. Thermal gasification: A feasible solution for sewage sludge valorisation? Chem. Eng. Technol. 2003, 26, 941–945. [Google Scholar] [CrossRef]
- Cao, Y.; Pawlowski, A. Life cycle assessment of two emerging sewage sludge-to-energy systems: Evaluating energy and greenhouse gas emissions implications. Bioresour. Technol. 2013, 127, 81–91. [Google Scholar] [CrossRef]
- Ayol, A.; Yurdakos, O.T.; Gurgen, A. Investigation of municipal sludge gasification potential: Gasification characteristics of dried sludge in a pilot-scale downdraft fixed bed gasifier. Int. J. Hydrogen Energy 2019, 44, 17397–17410. [Google Scholar] [CrossRef]
- Karaca, C.; Sozen, S.; Orhon, D.; Okutan, H. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery. Waste Manag. 2018, 78, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Feng, K. Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis. J. Cleaner Prod. 2018, 195, 476–485. [Google Scholar] [CrossRef]
- Barry, D.; Barbiero, C.; Briens, C.; Berruti, F. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge. Biomass Bioenergy 2019, 122, 472–480. [Google Scholar] [CrossRef]
- Lozano, E.M.; Løkke, S.; Rosendahl, L.A.; Pedersen, T.H. Production of marine biofuels from hydrothermal liquefaction of sewage sludge. Preliminary techno-economic analysis and life-cycle GHG emissions assessment of Dutch case study. Energy Convers. Man-X 2022, 14, 100178. [Google Scholar] [CrossRef]
- Vardon, D.R.; Sharma, B.K.; Blazina, G.V.; Rajagopalan, K.; Strathmann, T.J. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 2012, 109, 178–187. [Google Scholar] [CrossRef]
- Han, X.; Niu, M.; Jiang, X.; Liu, J. Combustion characteristics of sewage sludgein a fluidized bed. Ind. Eng. Chem. Res. 2012, 51, 10565–10570. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Wang, W.-H.; Pan, S.-Y.; Ho, C.-C.; Hou, C.-J.; Chiang, P.-C. Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry. Appl. Energy 2016, 183, 369–379. [Google Scholar] [CrossRef]
- Chai, C.; Zhang, D.; Yu, Y.; Feng, Y.; Wong, M.S. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China. Water 2015, 7, 918–938. [Google Scholar] [CrossRef]
- ThiKieu Loan, N.; Huu Hao, N.; Guo, W.; Chang, S.W.; Dinh Duc, N.; Long Duc, N.; Liu, Y.; Ni, B.; Hai, F.I. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes. Sci. Total Environ. 2019, 671, 1302–1313. [Google Scholar]
- Carballa, M.; Duran, C.; Hospido, A. Should We Pretreat Solid Waste Prior to Anaerobic Digestion? An Assessment of Its Environmental Cost. Environ. Sci. Technol. 2011, 45, 10306–10314. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jin, C.; Mundree, S. Hybrid environmental and economic assessment of four approaches recovering energy from sludge with variant organic contents. J. Clean. Prod. 2017, 153, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Jin, C.; Zhang, Z.; O’Hara, I.; Mundree, S. Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways. Energy 2017, 126, 649–657. [Google Scholar] [CrossRef]
- Griffith, D.R.; Barnes, R.T.; Raymond, P.A. Inputs of Fossil Carbon from Wastewater Treatment Plants to US Rivers and Oceans. Environ. Sci. Technol. 2009, 43, 5647–5651. [Google Scholar] [CrossRef]
- Law, Y.; Jacobsen, G.E.; Smith, A.M.; Yuan, Z.; Lant, P. Fossil organic carbon in wastewater and its fate in treatment plants. Water Res. 2013, 47, 5270–5281. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, G.; Hospido, A.; Bagley, D.M.; Moreira, M.T.; Feijoo, G. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants. Environ. Impact Assess. Rev. 2012, 37, 37–46. [Google Scholar] [CrossRef]
- You, S.; Wang, W.; Dai, Y.; Tong, Y.W.; Wang, C.-H. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes. Bioresour. Technol. 2016, 218, 595–605. [Google Scholar] [CrossRef] [Green Version]
- Minowa, T.; Kondo, T.; Sudirjo, S.T. Thermochemical liquefaction of Indonesian biomass residues. Biomass Bioenergy 1998, 14, 517–524. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A.B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour. Technol. 2011, 102, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.L.; Wu, Q.Y. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 2004, 110, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Anastasakis, K.; Ross, A.B. Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel 2015, 139, 546–553. [Google Scholar] [CrossRef]
- Shen Ruixia, Z.L.; Feng, J.; Jing, Y.; Yu, J. Research progress on characteristics and utilization of products from hydrothermal liquefaction of biomass. Trans. CSAE 2020, 36, 266–274, (In Chinese with English abstract). [Google Scholar]
- Chen, H.; Rao, Y.; Cao, L.; Shi, Y.; Hao, S.; Luo, G.; Zhang, S. Hydrothermal conversion of sewage sludge: Focusing on the characterization of liquid products and their methane yields. Chem. Eng. J. 2019, 357, 367–375. [Google Scholar] [CrossRef]
- Chai, C. Study on the Characteristics of Greenhous Gas Emissions and Heat Island Effect of Municipal Wastewater Treament Plants; Harbin Institute of Technology: Harbin, China, 2017. [Google Scholar]
- Wei, L.L.; Zhu, F.Y.; Li, Q.Y.; Xue, C.H.; Xia, X.H.; Yu, H.; Zhao, Q.L.; Jiang, J.Q.; Bai, S.W. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef]
- Climate Change Division of National Development and Reform Commission of the People’s Republic of China. Second National Communication on Climate Change of the People’s Republic of China; China Economic Press: Beijing, China, 2013.
- Ministry of Ecology and Environment of the People’Republic of China. 2019 Emission Factor of China Regional Power Grid Base Line. Available online: https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/202012/t20201229_815386.shtml (accessed on 30 December 2022).
- Anastasakis, K.; Ross, A.B. Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresour. Technol. 2011, 102, 4876–4883. [Google Scholar] [CrossRef]
- Zhou, F. Study on Pollutants Emission from Sludge Combustion and Pysico-Chemical Proper Ties of Ash and Slag; Zhejiang University: Hangzhou, China, 2012. [Google Scholar]
- McCarty, P.L.; Bae, J.; Kim, J. Domestic Wastewater Treatment as a Net Energy Producer-Can This be Achieved? Environ. Sci. Technol. 2011, 45, 7100–7106. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Pawlowski, A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Chow, W.L.; Chong, S.; Lim, J.W.; Chan, Y.J.; Chong, M.F.; Tiong, T.J.; Chin, J.K.; Pan, G.-T. Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield. Processes 2020, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Posmanik, R.; Labatut, R.A.; Kim, A.H.; Usack, J.G.; Tester, J.W.; Angenent, L.T. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour. Technol. 2017, 233, 134–143. [Google Scholar] [CrossRef]
- Tommaso, G.; Chen, W.-T.; Li, P.; Schideman, L.; Zhang, Y. Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresour. Technol. 2015, 178, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Ren, S.; Zhou, N.; Chen, H.; Usman, M.; He, C.; Shi, Q.; Luo, G.; Zhang, S. Molecular composition of hydrothermal liquefaction wastewater from sewage sludge and its transformation during anaerobic digestion. J. Hazard. Mater. 2020, 383, 121163. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, X.; Deal, B.; Han, L. Biological systems for treatment and valorization of wastewater generated from hydrothermal liquefaction of biomass and systems thinking: A review. Bioresour. Technol. 2019, 278, 329–345. [Google Scholar] [CrossRef]
Item | Unit | Case 1 (HTL) [7,47,48,49] | Case 2 (Pyrolysis) [27,28] | Case 3 (Incineration) [18,27] |
---|---|---|---|---|
Energy input | ||||
Electricity | kWh/t SS | 251.8729 | 393.5651 | No electricity added |
Heat | MJ/t SS | No heat needed | No heat needed | 462 |
Auxiliary fuel | ||||
Coal | ton/t SS | No auxiliary fuel added | No auxiliary fuel added | 0.513 |
Diesel | kg/t SS | 0.055 | ||
Chemicals input | ||||
H2O | ton/t SS | No chemical added | No chemical added | 5 |
CaO | kg/t SS | 6 | ||
Direct gas emissions | ||||
CO2 | kg/t SS | 31.8492 | No gas directly emitted | 54.5 |
CH4 | kg/t SS | 0.162 | No CH4 directly emitted | |
Energy output | ||||
Electricity | kWh/t SS | No electricity produced | No electricity produced | 53 |
Fuel gas | MJ/t SS | No fuel gas produced | 1086.8 | No fuel gas produced |
Biochar | MJ/t SS | Biochar was landfilled without energy recovery | 488 | Biochar was landfilled without energy recovery |
Bio-oil | MJ/t SS | 2669.16 | 1250.64 | No bio-oil produced |
Case 1-HTL | Case 2-Pyrolysis | Case 3-Incineration | |
---|---|---|---|
EI(kJ) | 906,742 | 1,416,834 | 11,190,150 |
EP(kJ) | 2,669,160 | 2,825,440 | 190,800 |
ECR | 0.34 | 0.50 | 58.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Du, G.; Yan, B.; Wang, Y.; Zhao, Y.; Su, J.; Li, H.; Du, Y.; Sun, Y.; Chen, G.; et al. Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies. Sustainability 2023, 15, 4170. https://doi.org/10.3390/su15054170
Li L, Du G, Yan B, Wang Y, Zhao Y, Su J, Li H, Du Y, Sun Y, Chen G, et al. Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies. Sustainability. 2023; 15(5):4170. https://doi.org/10.3390/su15054170
Chicago/Turabian StyleLi, Liping, Guiyue Du, Beibei Yan, Yuan Wang, Yingxin Zhao, Jianming Su, Hongyi Li, Yanfeng Du, Yunan Sun, Guanyi Chen, and et al. 2023. "Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies" Sustainability 15, no. 5: 4170. https://doi.org/10.3390/su15054170
APA StyleLi, L., Du, G., Yan, B., Wang, Y., Zhao, Y., Su, J., Li, H., Du, Y., Sun, Y., Chen, G., Li, W., & Pedersen, T. H. (2023). Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies. Sustainability, 15(5), 4170. https://doi.org/10.3390/su15054170