Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium
Abstract
:1. Introduction
2. Mathematical Formulation
3. Solution Method
4. Results and Discussion
5. Validation of Results
6. Conclusions
- The fluid temperature rises with an increase in the values of and , while it reduces due to an increase in the values of and . The enhancement of temperature is at its maximum in rather than in . Therefore, buoyancy forces dominate the temperature enhancement;
- The rise in the values of and results in subdued concentration fluid; in turn, it increases the species diffusion in the medium;
- The velocity was found to be enhanced for raising values of and in the clear fluid region rather than in the nanofluid region;
- In the presence of solute buoyancy force, in all the profiles of velocity for increasing values of in Region I, the velocity first increases, and at the interface, it exhibits a minor increase; then, they meet at a specific point in the Region II, and then a reverse phenomenon is observed;
- For increasing values of and the velocity showing reducing nature in both the regions and found to be more in the nanofluid region;
- In all the cases, the enhancement of temperature was found to be optimal in the case of nanoparticles with water as the base fluid, while a minimum can be observed for with ethylene glycol as the base fluid in the nanofluid region. So, ethylene glycol acts as a cooling agent;
- The velocity was found to be maximum in the nanofluid region for and minimum for ;
- The rate of heat transfer increases at for water-based nanofluids and decreases for -based nanofluids while decreasing at the right boundary for all the varying parameters in both nanofluids;
- The skin friction coefficient increases at the left boundary for -based nanofluids and decreases for water-based nanofluids with increasing values of and while it decreases at the right plate;
- The presence of a chemical reaction reduces the fluid concentration;
- The base fluids have the capacity to boost heat transfer intensity by incorporating nanoparticles into them.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Thermal conductivity |
Solid volume fraction |
Coefficient of thermal expansion |
Coefficient of solutal expansion |
Acceleration due to gravity |
Velocity of the fluid |
—Mean absorption coefficient |
Stefan–Boltzmann constant |
Radiative heat flux |
Viscosity |
Brinkman number |
Permeability |
Porosity |
Angle of inclination |
Thermal Grashof number |
Solute Grashof number |
Radiation parameter |
Subscripts: |
Fluid |
Nanofluid |
Solid |
Fluid |
References
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne National Lab. (ANL), Argonne, IL (United States), ANL/MSD/CP-84938; CONF-951135-29, October 1995. Available online: https://www.osti.gov/biblio/196525 (accessed on 4 February 2023).
- Teletov, S.G. On the problem of fluid dynamics of two-phase mixtures, I. Hydrodynamic and energy equations. Bull. Mosc. Univ. 1958, 2, 15. [Google Scholar]
- Joseph, D.D.; Nguyen, K.; Beavers, G.S. Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities. J. Fluid Mech. 1984, 141, 319–345. [Google Scholar] [CrossRef]
- Lohrasbi, J.; Sahai, V. Magnetohydrodynamic heat transfer in two-phase flow between parallel plates. Flow Turbul. Combust. 1988, 45, 53–66. [Google Scholar] [CrossRef]
- Malashetty, M.S.; Leela, V. Magnetohydrodynamic heat transfer in two phase flow. Int. J. Eng. Sci. 1992, 30, 371–377. [Google Scholar] [CrossRef]
- Malashetty, M.S.; Umavathi, J.C.; Kumar, J.P. Magnetoconvection of two-immiscible fluids in vertical enclosure. Heat Mass Transf. 2006, 42, 977–993. [Google Scholar] [CrossRef]
- Vafai, K.; Tien, C.L. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 1981, 24, 195–203. [Google Scholar] [CrossRef]
- Vajravelu, K.; Arunachalam, P.V.; Sreenadh, S. Unsteady flow of two immiscible conducting fluids between two permeable beds. J. Math. Anal. Appl. 1995, 196, 1105–1116. [Google Scholar] [CrossRef]
- Kuznetsov, A.V. Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model. Acta Mech. 1998, 129, 13–24. [Google Scholar] [CrossRef]
- Cimpean, D.S.; Pop, I. Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int. J. Heat Mass Transf. 2012, 55, 907–914. [Google Scholar] [CrossRef]
- Ahmad, S.; Pop, I. Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Commun. Heat Mass Transf. 2010, 37, 987–991. [Google Scholar] [CrossRef]
- Chamkha, A.J. Flow of Two-immiscible fluids in porous and nonporous channels. J. Fluids Eng. 2000, 122, 117–124. [Google Scholar] [CrossRef]
- Yadav, P.K.; Jaiswal, S.; Sharma, B.D. Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel. Appl. Math. Mech. 2018, 39, 993–1006. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Liu, I.-C.; Kumar, J.P. Magnetohydrodynamic Poiseuille-Couette Flow and Heat Transfer in an Inclined Channel. J. Mech. 2010, 26, 525–532. [Google Scholar] [CrossRef]
- Dogonchi, A.S.; Ganji, D.D. Impact of Cattaneo–Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effect. J. Taiwan Inst. Chem. Eng. 2017, 80, 52–63. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Bég, O.A. Effects of thermophysical properties on heat transfer at the interface of two immisicible fluids in a vertical duct: Numerical study. Int. J. Heat Mass Transf. 2020, 154, 119613. [Google Scholar] [CrossRef]
- Dawar, A.; Saeed, A.; Kumam, P. Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with Brownian motion and thermophoresis effects. Int. Commun. Heat Mass Transf. 2022, 133, 105982. [Google Scholar] [CrossRef]
- Aleem, M.; Asjad, M.I.; Shaheen, A.; Khan, I. MHD Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating. Chaos Solitons Fractals 2020, 130, 109437. [Google Scholar] [CrossRef]
- Esmaeilpour, M.; Korzani, M.G. Enhancement of immiscible two-phase displacement flow by introducing nanoparticles and employing electro- and magneto-hydrodynamics. J. Pet. Sci. Eng. 2021, 196, 108044. [Google Scholar] [CrossRef]
- Narahari, M.; Raju, S.S.K.; Pendyala, R. Unsteady natural convection flow of multi-phase nanofluid past a vertical plate with constant heat flux. Chem. Eng. Sci. 2017, 167, 229–241. [Google Scholar] [CrossRef]
- Santhosh, H.B.; Mahesha; Raju, S.S.K.; Raju, C.S.K. Comparative study on MHD CARREAU fluid due to stretching/shrinking surface in suspension of dust and graphene nanoparticles. Bionanoscience 2019, 9, 483–494. [Google Scholar] [CrossRef]
- Shah, N.A.; Alrabaiah, H.; Vieru, D.; Yook, S.-J. Induced magnetic field and viscous dissipation on flows of two immiscible fluids in a rectangular channel. Sci. Rep. 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.K.; Kumar, A. An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit. Int. Commun. Heat Mass Transf. 2021, 124, 105266. [Google Scholar] [CrossRef]
- Zeeshan, A.; Shehzad, N.; Atif, M.; Ellahi, R.; Sait, S.M. Electromagnetic flow of SWCNT/MWCNT suspensions in two immiscible water- and engine-oil-based newtonian fluids through porous media. Symmetry 2022, 14, 406. [Google Scholar] [CrossRef]
- Raju, S.S.K. Dynamics of magneto-electric hybrid nanoparticles with chemically reacting and radiated moving plate: Entropy analysis. Int. Commun. Heat Mass Transf. 2022, 138, 106325. [Google Scholar] [CrossRef]
- Elmaboud, Y.A. Two layers of immiscible fluids in a vertical semi-corrugated channel with heat transfer: Impact of nanoparticles. Results Phys. 2018, 9, 1643–1655. [Google Scholar] [CrossRef]
- Hisham, M.D.; Rauf, A.; Vieru, D.; Awan, A.U. Analytical and semi-analytical solutions to flows of two immiscible Maxwell fluids between moving plates. Chin. J. Phys. 2018, 56, 3020–3032. [Google Scholar] [CrossRef]
- Sohail, M.; Nazir, U.; Chu, Y.M.; Al-Kouz, W.; Thounthong, P. Bioconvection phenomenon for the bound ary layer flow of magnetohydrodynamic Carreau liquid over a heated disk. Sci. Iran. 2021, 28, 1896–1907. [Google Scholar]
- Al-Kouz, W.; Abderrahmane, A.; Shamshuddin, M.D.; Younis, O.; Mohammed, S.; Bég, O.A.; Toghraie, D. Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method. Eur. Phys. J. Plus 2021, 136, 1184. [Google Scholar] [CrossRef]
- Rana, P.; Al-Kouz, W.; Mahanthesh, B.; Mackolil, J. Heat transfer of TiO2—EG nanoliquid with active and passive control of nanoparticles subject to nonlinear Boussinesq approximation. Int. Commun. Heat Mass Transf. 2021, 126, 105443. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Medebber, M.A.; Elkotb, M.A.; Abderrahmane, A.; Aimad, K.; Al-Farhany, K.; Jamshed, W.; Moria, H.; Aldawi, F.; Saleel, C.A.; et al. Galerkin finite element analysis of Darcy–Brinkman–Forchheimer natural convective flow in conical annular enclosure with discrete heat sources. Energy Rep. 2021, 7, 6172–6181. [Google Scholar] [CrossRef]
- Mahesh, A.; Varma, S.V.K.; Raju, C.S.K.; Babu, M.J.; Vajravelu, K.; Al-Kouz, W. Significance of non-Fourier heat flux and radiation on PEG—Water based hybrid nanofluid flow among revolving disks with chemical reaction and entropy generation optimization. Int. Commun. Heat Mass Transf. 2021, 127, 105572. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Al-Waked, R.; Sari, M.E.; Owhaib, W.; Atieh, A. Numerical study of heat transfer enhancement in the entrance region for low-pressure gaseous laminar pipe flows using Al2O3—Air nanofluid. Adv. Mech. Eng. 2018, 10, 1687814018784410. [Google Scholar] [CrossRef] [Green Version]
- Ferhi, M.; Djebali, R.; Al-Kouz, W.; Abboudi, S.; Chamkha, A.J. MHD conjugate heat transfer and entropy generation analysis of MWCNT/water nanofluid in a partially heated divided medium. Heat Transf. 2021, 50, 126–144. [Google Scholar] [CrossRef]
- Rana, P.; Mahanthesh, B.; Mackolil, J.; Al-Kouz, W. Nanofluid flow past a vertical plate with nanoparticle aggregation kinematics, thermal slip and significant buoyancy force effects using modified Buongiorno model. Waves Random Complex Media 2021, 1–25. [Google Scholar] [CrossRef]
- Alshare, A.; Al-Kouz, W.; Alkhalidi, A.; Kiwan, S.; Chamkha, A. Periodically fully developed nanofluid transport through a wavy module. J. Therm. Anal. Calorim. 2021, 144, 779–791. [Google Scholar] [CrossRef]
- Alshare, A.; Al-Kouz, W.; Khan, W. Cu-Al2O3 Water hybrid nanofluid transport in a periodic structure. Processes 2020, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Al-Kouz, W.; Mahanthesh, B.; Alqarni, M.; Thriveni, K. A study of quadratic thermal radiation and quadratic convection on viscoelastic material flow with two different heat source modulations. Int. Commun. Heat Mass Transf. 2021, 126, 105364. [Google Scholar] [CrossRef]
- Al-Kouz, W.; Bendrer, B.A.-I.; Aissa, A.; Almuhtady, A.; Jamshed, W.; Nisar, K.S.; Mourad, A.; Alshehri, N.A.; Zakarya, M. Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder. Sci. Rep. 2021, 11, 16494. [Google Scholar] [CrossRef]
- Saini, G.; Hanumagowda, B.N.; Mulki, H.; Raju, S.; Varma, S.V.K.; Barghout, K.; Murshid, N.; Al-Kouz, W. Entropy Generation Optimization in Couple Stress Fluid Flow with Variable Viscosity and Aligned Magnetic Field. Sustainability 2023, 15, 2493. [Google Scholar] [CrossRef]
- Umavathi, J.C.; Hemavathi, K. Flow and heat transfer of composite porous medium saturated with nanofluid. Propuls. Power Res. 2019, 8, 173–181. [Google Scholar] [CrossRef]
- Rajeev, A.; Mahanthesh, B. Multilayer flow and heat transport of nanoliquids with nonlinear Boussinesq approximation and viscous heating using differential transform method. Heat Transf. 2021, 50, 4309–4327. [Google Scholar] [CrossRef]
- Eshed, M.; Pol, S.; Gedanken, A.; Balasubramanian, M. Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method. Beilstein J. Nanotechnol. 2011, 2, 198–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, J.P.; Umavathi, J.C.; Kalyan, S. Chemical reaction effects on mixed convection flow of two immiscible viscous fluids in a vertical channel. Open J. Heat Mass Momentum Transf. 2014, 2, 28–46. [Google Scholar] [CrossRef]
- Malashetty, M.S.; Umavathi, J.C.; Kumar, J.P. Two fluid flow and heat transfer in an inclined channel containing porous and fluid layer. Heat Mass Transf. 2004, 40, 871–876. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Alazmi, B.; Vafai, K. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 2001, 44, 1735–1749. [Google Scholar] [CrossRef]
- Mahanthesh, B.; Gireesha, B.J.; Gorla, R.S.R. Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate. Alex. Eng. J. 2016, 55, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A. A brief review on viscosity of nanofluids. Int. Nano Lett. 2014, 4, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.C. Electricity and Magnetism; Dover: New York, NY, USA, 1954; Volume 2. [Google Scholar]
- Ahmad, S.; Ali, K.; Faridi, A.A.; Ashraf, M. Novel thermal aspects of hybrid nanoparticles Cu-TiO2 in the flow of ethylene glycol. Int. Commun. Heat Mass Transf. 2021, 129, 105708. [Google Scholar] [CrossRef]
- Shahri, M.F.; Sarhaddi, F. Second law analysis for two-immiscible fluids inside an inclined channel in the presence of a uniform magnetic field and different types of nanoparticles. J. Mech. 2018, 34, 541–549. [Google Scholar] [CrossRef]
- Zirconium-Properties-Price-Applications-Production, Material Properties, 8 December 2020. Available online: https://material-properties.org/zirconium-properties-applications-price-production/ (accessed on 4 February 2023).
- Siegel, R.; Howell, J.R. Thermal Radiation Heat Transfer, 3rd ed.; Hemisphere: Washington, DC, USA, 1936. [Google Scholar]
- Rosseland, S. Theoretical Astrophysics; Oxford University Press: London, UK, 1936. [Google Scholar]
- Kataria, H.R.; Patel, H.R. Effects of chemical reaction and heat generation/absorption on magnetohydrodynamic (MHD) Casson fluid flow over an exponentially accelerated vertical plate embedded in porous medium with ramped wall temperature and ramped surface concentration. Propuls. Power Res. 2019, 8, 35–46. [Google Scholar] [CrossRef]
- Chamkha, A.J. MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction. Int. Commun. Heat Mass Transf. 2003, 30, 413–422. [Google Scholar] [CrossRef]
997.1 | 0.613 | 21 × 10−5 | |
3970 | 40 | 0.85 × 10−5 | |
6506 | 23 | 0.0057 | |
1114 | 0.252 | 65 × 10−5 |
Temperature | ||||||
---|---|---|---|---|---|---|
Present | Kumar et al. [45] | Present | Kumar et al. [45] | |||
PM | FDT | PM | FDT | |||
−1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
−0.8 | 0.1000 | 0.1000 | 0.1000 | 0.1759 | 0.1790 | 0.1937 |
−0.6 | 0.2000 | 0.2000 | 0.2000 | 0.3282 | 0.3219 | 0.3444 |
−0.4 | 0.3000 | 0.3000 | 0.3000 | 0.4481 | 0.4407 | 0.4664 |
−0.2 | 0.4000 | 0.4000 | 0.4000 | 0.5437 | 0.5459 | 0.5724 |
0 | 0.5000 | 0.5000 | 0.5000 | 0.6489 | 0.6458 | 0.6723 |
0.2 | 0.6000 | 0.6000 | 0.6000 | 0.7410 | 0.7447 | 0.7711 |
0.4 | 0.7000 | 0.7000 | 0.7000 | 0.8499 | 0.8421 | 0.8678 |
0.6 | 0.8000 | 0.8000 | 0.8000 | 0.9355 | 0.9303 | 0.9535 |
0.8 | 0.9000 | 0.9000 | 0.9000 | 0.9950 | 0.9924 | 1.0084 |
1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavithra, K.M.; Hanumagowda, B.N.; Raju, S.S.K.; Varma, S.V.K.; Murshid, N.; Mulki, H.; Al-Kouz, W. Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium. Sustainability 2023, 15, 4342. https://doi.org/10.3390/su15054342
Pavithra KM, Hanumagowda BN, Raju SSK, Varma SVK, Murshid N, Mulki H, Al-Kouz W. Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium. Sustainability. 2023; 15(5):4342. https://doi.org/10.3390/su15054342
Chicago/Turabian StylePavithra, K. M., B. N. Hanumagowda, S. Suresh Kumar Raju, S. V. K. Varma, Nimer Murshid, Hasan Mulki, and Wael Al-Kouz. 2023. "Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium" Sustainability 15, no. 5: 4342. https://doi.org/10.3390/su15054342
APA StylePavithra, K. M., Hanumagowda, B. N., Raju, S. S. K., Varma, S. V. K., Murshid, N., Mulki, H., & Al-Kouz, W. (2023). Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium. Sustainability, 15(5), 4342. https://doi.org/10.3390/su15054342