Dispersal Mechanisms of Trace Metal Elements in the Environment: The Case of Mineral Wastes Stored in Tshamilemba District of the City of Lubumbashi, DR Congo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Description of the Study Area
2.2. Description of Samples and Sampling Procedures
2.2.1. Sampling of Soil, Plants and Well Water
- Concerning the sampling of water, a weighed container was attached to a rope and placed in the well to collect water. Each water sample was kept in a clean polyethylene (500 mL) bottle;
- The soil was sampled at the surface and at a depth of approximately 20 cm. A 30 cm long steel pipe, with the inner diameter of 4 cm, was driven into the soil using a hammer until the desired depth was reached. Afterwards, it was removed to collect both the surface soil and the deep soil. Every time, two samples were prepared for the analysis and kept in small, well-coded plastics bags;
- To sample the Saccharum officinarum, sugar canes were collected and cut into small pieces. They were first washed with distilled water before being placed into clean plastics bags. As for Musa acuminata sampling, whole bananas were collected, peeled and cut into small slices. Afterwards, they were washed with distilled water and kept in plastics bags.
2.2.2. Sampling of Near-White Substances Observed on the Soil
2.3. Samples Analysis Procedures Description
2.3.1. Soil and Water Sample pH Determination
2.3.2. Spectrophotometric Measurement of Chemical Species Concentrations in Water
2.3.3. Analysis of Suspended Solid Matters in Water Samples
2.3.4. Electrical Conductivity Analysis of Water Samples
2.3.5. Water Samples Turbidity and Color Measuring
2.4. Trace Metal Elements Analysis in Samples
2.4.1. Soil Samples Preparation and Mineralization
2.4.2. Water Sample Preparation and Trace Metal Element Analysis
2.4.3. Plant Sample Preparation and Trace Metal Element Analysis
3. Results
3.1. Physicochemical Characteristics of the Near-white Crusts Covering the Soil
3.2. Physicochemical Characteristics of Water Samples
3.3. Soil Samples pH Measurements
3.4. Concentrations of Trace Metal Elements in Samples
3.4.1. Trace Metal Elements in Water Samples
3.4.2. Trace Metal Elements in Soil Samples
3.4.3. Trace Metal Elements in Plant Samples
4. Discussion
4.1. Chemical Composition and Plausible Origin of Near-white Crusts Collected on the Soil
4.2. Well Water Sample Quality and Implications on Consumer Health
4.3. Soil pH and Its Role in the Near-White Crust Formation and Mobility or Spread of Metals
4.4. Trace Metal Element Presence in Water Samples and Health Implications
4.5. Trace Metal Element Presence in Surface Soil Samples and a Suggestion of Their Dispersion Model
4.6. Trace Metal Element Presence in Deep Soil Samples and a Suggestion of Their Dispersion Model
5. Conclusions
- The population fear about the environment pollution, of which harmful effects are visible, is well justified, since toxic metals were observed at high concentrations in the soil, surface water and grown edible plants.
- The spatial distribution of metals in the soil enables comprehending their dispersal mechanisms in the environment. The chemical species come from the run-off waters and the metal-rich, acidic waters liberated due to the weathering of stored mineral waste.
- Metals also spread in the environment as airborne particles due to the aerial erosion of mineral waste stockpiles during periods of high winds.
- A better understanding of the dispersal mechanisms of metals is a great step forward in the search for strategies to better control and to mitigate the mineral pollution experienced in Tshamilemba district so to minimize its harmful effects on wildlife and human health.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bridge, G. Contested Terrain: Mining and the Environment. Ann. Rev. Environ. Resour. 2004, 29, 205–259. [Google Scholar] [CrossRef]
- Burdizieva, O.G.; Zaalishvili, V.B.; Beriev, O.G.; Kanukov, A.S.; Maysuradze, M.V. Mining Impact on Environment on The North Ossetian Territory. Inter. J. Geomat. 2016, 10, 1693–1697. [Google Scholar]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Inter. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar] [CrossRef]
- Ngoy, K.J. Economic and Toxicological aspects of copper industry in Katanga, DR Congo. Jpn. J. Vet. Res. 2013, 61, S23–S32. [Google Scholar]
- Hilson, G. Pollution prevention and cleaner production in the mining industry: An analysis of current issues. J. Clean. Prod. 2000, 8, 119–126. [Google Scholar] [CrossRef]
- Pohrebennyk, V.; Karpinski, M.; Dzhumelia, E.; Klos-Witkowska, A.; Falat, P. Water bodies pollution of the mining and chemical enterprise. Int. Multidiscip. Sci. GeoConf. 2018, 18, 1035–1042. [Google Scholar] [CrossRef]
- Setiwan, A.A.; Budianta, D.; Suheryanto Priadi, D.P. Review: Pollution due to Coal Mining Activity and its Impact on Environment. Sriwij. J. Environ. 2018, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; He, F. The Environmental Pollution Perception of Residents in Coal Mining Areas: A Case Study in the Hancheng Mine Area, Shaanxi Province, China. Environ. Manag. 2012, 50, 505–513. [Google Scholar] [CrossRef]
- Mpanga, F.I.; Lutandula, M.S. Assessment of the Pollution of Soils Utilized for Growing Edible Plants in the DR Congo. Glob. Environ. Eng. 2022, 9, 12–13. Available online: https://avantipublisher.com/index.php/tgevnie/article/view/1097 (accessed on 14 January 2023). [CrossRef]
- Atibu, K.E.; Devarajan, N.; Laftite, A.; Giuliani, G.; Salumu, A.J.; Muteb, C.R.; Mulaji, K.C.; Otamonga, J.-P.; Elongo, V.; Mpiana, T.P.; et al. Assessment of trace metal and rare eath elements contamination in rivers around abandoned and active mine areas: The case of Lubumbashi River and Tshamilemba Canal, Katanga, Democratique Republic of Congo. Geochemistry 2016, 76, 353–362. [Google Scholar] [CrossRef]
- Atibu, K.E.; Devarajan, N.; Thevenon, F.; Mwanamoki, M.P.; Tshibanda, B.J.; Mpiana, T.P.; Prabakar, K.; Mubedi, I.J.; Wildi, W.; Poté, J. Concentration of metals in surface water and sediment of Luilu and Musonoie Rivers, Kolwezi-Katanga, Democratic Republic of Congo. Appl. Geochem. 2013, 39, 26–32. [Google Scholar] [CrossRef]
- Banza, L.N.C.; Nawrot, T.S.; Haufroid, V.; Decrée, S.; De Putter, T.; Smolders, E.; Kabyla, B.I.; Luboya, N.O.; Ilunga, N.A.; Mutombo, M.A.; et al. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 2009, 109, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Kaniki, T.A.; Kaniki, N. Management of mineral processing tailings and metallurgical slags of the Congolese copperbelt: Environmental stakes and perspectives. J. Clean. Prod. 2019, 210, 1406–1413. [Google Scholar] [CrossRef]
- Mudimbi, K.D.; Kabamba, T.A.; Kodondi, K.-K.F.; Luboya, N.O.; Kasongo, B.C.; Kabundi, K.D.; Kisunka, B.Y.; Musola, C.H.; Longanga, O.A.; Lukumwena, K.Z. Impact of mining on water of the rivers Shinkolobwe, Lwisha and Kansonga in the province of Katanga (DRC). J. Med. Res. 2017, 3, 71–73. [Google Scholar]
- Pourret, O.; Lange, B.; Bonhoure, J.; Colinet, G.; Decrée, S.; Mahy, G.; Séleck, M.; Shutcha, M.; Faucon, M.-P. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl. Geochem. 2016, 64, 43–55. [Google Scholar] [CrossRef]
- Banza, L.N.C.; Casas, L.; Haufroid, V.; De Putter, T.; Saenen, N.D.; Kayembe, K.T.; Musa, O.P.; Kyanika, W.M.D.; Lunda, I.J.-M.; Nawrot, S.T.; et al. Sustainability of artisanal mining of cobalt in DR Congo. Nat. Sustain. 2018, 1, 495–504. [Google Scholar] [CrossRef]
- Kashimbo, K.S.; Mongoli, M.B.; Kazadi, K.P.; Mpundu, M.M. Impact of liquid tailings of Chemical Plant of Africa (CHEMAF) in activity on groundwater quality in the area Tshamilemba in Lubumbashi (Katanga/DR. Congo). Inter. J. Inn. Sci. Res. 2015, 16, 448–464. Available online: http://www.ijisr.issr-journals.org/ (accessed on 11 December 2022).
- Mees, F.; Masalehdani, M.N.N.; De Putter, D.; Hollander, T.C.; Van Biezen, E.; Mujinya, B.B.; Potdevin, J.L.; Van Ranst, E. Concentrations and forms of heavy metals around two ore processing sites in Katanga, Democratic Republic of Congo. J. Afr. Earth Sci. 2013, 77, 22–30. [Google Scholar] [CrossRef]
- Shengo, L.M. Review of Practices in the Managements of Mineral Wastes: The Case of Waste Rocks and Mine Tailings. Water Air Soil Pollut. 2021, 232, 273. [Google Scholar] [CrossRef]
- Brown, C.; Boyd, D.S.; Kara, S. Landscape Analysis of Cobalt Mining Activities from 2009 to 2021 Using Very High Resolution Satellite Data (Democratic Republic of the Congo). Sustainability 2022, 14, 9545. [Google Scholar] [CrossRef]
- Lutandula, M.S.; Banza, M. Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ores. J. Environ. Chem. Eng. 2013, 1, 1085–1090. [Google Scholar] [CrossRef]
- Shengo, M.L.; Mutiti, W.N.C. Bio-treatment and water reuse as feasible treatment approaches for improving wastewater management during flotation of copper ores. Int. J. Environ. Sci. Technol. 2016, 13, 2505–2520. [Google Scholar] [CrossRef] [Green Version]
- Shengo, L.M.; Kitungwa, B.K.; Mutiti, C.W.N.; Mulumba, J.L.M.; Lunga, F.P. Recovery of Copper Metal through Reprocessing of Residues from a Hydrometallurgical Plant: An Advance Study. Adv. Asp. Eng. Res. 2021, 13, 32–47. [Google Scholar] [CrossRef]
- Shengo, L.M. Etude du Recyclage de L’Eau Résiduaire Dans la Flottation Des Minerais Oxydés Cuprocobaltfières du Gisement de Luiswishi. Doctoral Thesis, Engineering Sciences, ArGEnCo Department, Faculty of Applied Sciences, University of Liege, Liège, Belgium, 2013; 208p. [Google Scholar]
- Banza, L.N.C. Rapport de l’enquête sur la pollution chimique dans les quartiers Tshamilemba et Kabecha de la ville de Lubumbashi. In Mining Investments in the DRC: Development or Impoverishment of Local Communities? Toxicology and Environment Unit, School of Public Health, Faculty of Medicine, University of Lubumbashi: Lubumbashi, Democratic Republic of the Congo, 2012. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022; 563p.
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating First Addendum; WHO: Geneva, Switzerland, 2017.
- Schöpp, W.; Klimont, Z.; Winiwarter, W.; Cofala, J.; Rafaj, P.; Höglund-Isaksson, L.; Gomez-Sabriana, A.; Heyes, C.; Purohit, P.; Borken-Kleefeld, J.; et al. Reducing global air pollution: The scope for further policy interventions. Philos. Trans. R. Soc. A 2020, 378, 20190331. [Google Scholar] [CrossRef]
- Hussain, A.; Rehman, F.; Rafeeq, H.; Waqas, M.; Asghar, A.; Afsheen, N.; Rahdar, A.; Bilal, M.; Iqbal, H.M.N. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air—A review. Chemosphere 2022, 289, 133252. [Google Scholar] [CrossRef] [PubMed]
- International Standard-ISO 11464:2006(E); Soil Quality—Pretreatment of Samples for Physicochemical Analysis, Second Edition. ISO: Geneva, Switzerland, 2006; pp. 1–11.
- Greenberg, H.J. Mathematical Programming Models for Environmental Quality Control. Oper. Res. 1995, 43, 578–622. [Google Scholar] [CrossRef] [Green Version]
- Kalembkiewicz, J.; Sitarz-Palczak, E. Optimization of Mineralization Procedures for the Determination of Mn in Soil Samples by FAAS. Atoms. Spectrosc. 2001, 22, 433–437. [Google Scholar]
- Pequerul, A.; Pérez, C.; Madero, P.; Val, J.; Monge, E. A rapid wet digestion method for plant analysis. In Optimization of Plant Nutrition; Fragoso, M.A.C., Van Beusichem, M.L., Houwers, A., Eds.; Springer: Dordrecht, The Netherlands, 1993; Volume 53. [Google Scholar] [CrossRef]
- Ye, Z.; Zhou, J.; Liao, P.; Finfrock, Y.Z.; Liu, Y.; Shu, C.; Liu, P. Metal (Fe, Cu, and As) transformation and association within secondary minerals in neutralized acid mine drainage characterized using X-ray absorption spectroscopy. Appl. Geochem. 2022, 139, 105242. [Google Scholar] [CrossRef]
- Golovin, V.L.; Popova, T.Y.; Medved, P.V.; Bezborodov, S.A. Treatment Features of High-Color Natural Waters. IOP Conf. Ser. Earth Environ. Sci. 2021, 666, 042039. [Google Scholar] [CrossRef]
- Popova, T.; Golovin, V.; Medved, P. Microbiological Treatment of High-Coloring Natural Waters. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 052042. [Google Scholar] [CrossRef]
- Kalis, E.J.J. Chemical Speciation and Bioavailability of Heavy Metals in Soil and Surface Water. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2006; 139p. [Google Scholar]
- Kavula, N.E.; Kasongo, W.M.P.; Libasse, S.; Ngoy, B.B.; Kavula, M.; Tshibwabwa, K.O. Coupling Discriminating Statistical Analysis and Artificial Intelligence for Geotechnical Characterization of the Kampemba’s Municipality Soils (Lubumbashi, DR Congo). Geomaterials 2020, 10, 35–55. [Google Scholar] [CrossRef]
- Kasongo, W.M.P.; Mukoko, K.G.; Kipata, M.L.; Lunda, I.J.-M. Elaboration De La Carte Géotechnique De La Ville De Lubumbashi Guide Technique De Sélection Des Sites D’implantation D’ouvrages Du Génie Civil. Eur. Sci. J. 2018, 14, 1857–7881. [Google Scholar]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Lawrence, R.W.; Wang, Y. Determination of Neutralization Potential for Acid Rock Drainage Prediction, MEND Project 1.16.3; A report of laboratory investigations prepared for Environment Canada and Hudson Bay Mining and Smelting; Mining and Mineral Process Engineering, University of British Columbia: Vancouver, BC, Canada, 1996; pp. 1–73. [Google Scholar]
- Lawrence, R.; Scheske, M. A method to calculate the neutralization potential of mining wastes. Environ. Geol. 1997, 32, 100–106. [Google Scholar] [CrossRef]
Sample Number | Analyzed Parameter | |||||||
---|---|---|---|---|---|---|---|---|
pH | Sulfates (mg/kg) | Phosphates (mg/kg) | Nitrates (mg/kg) | Cu (mg/kg) | Zn (mg/kg) | Fe (mg/kg) | Cr (mg/kg) | |
1 | 9.7 | 80 | 30.0 | 35.0 | 2.74 | 1.16 | 3.30 | 0.53 |
9 | 8.6 | 80 | 30.0 | 35.1 | 2.60 | 1.15 | 3.25 | 0.55 |
17 | 8.7 | 77 | 29.6 | 34.5 | 2.80 | 0.99 | 2.25 | 0.50 |
23 | 9.4 | 80 | 29.8 | 33.5 | 2.73 | 1.11 | 3.29 | 0.40 |
WHO STD | - | 250 | 50 | 50 | 0.5 | 5 | 0.3–3 | 0.1 |
Sample Number | Analyzed Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|
pH | Temperature (°C) | Electric Conductivity (µS/cm) | Turbidity (NTU) | Colour (Hazen) | Matters in Suspension (mg/L) | Sulfates (mg/L) | Phosphates (mg/L) | Nitrates (mg/L) | |
1 | 7.01 | 24.5 | 1034 | 0 | 0 | 0 | 0 | 0.33 | 0.2 |
7 | 7.25 | 24.5 | 1110 | 19 | 111 | 19 | 2 | 1.81 | 3.4 |
8 | 7.04 | 24.0 | 1003 | 10 | 35 | 10 | 1 | 0.55 | 2.0 |
10 | 7.16 | 23.6 | 950.1 | 22 | 50 | 7 | 2 | 0.61 | 2.8 |
11 | 7.24 | 24.3 | 1050 | 8 | 94 | 18 | 0 | 0.35 | 3.2 |
12 | 7.25 | 22.2 | 1020 | 15 | 53 | 16 | 0 | 0.64 | 1.2 |
13 | 7.19 | 23.0 | 500 | 13 | 20 | 19 | 2 | 0.57 | 2.7 |
14 | 7.03 | 24.3 | 273.2 | 6 | 44 | 6 | 1 | 0.58 | 1.9 |
15 | 7.11 | 24.4 | 830.0 | 11 | 59 | 11 | 1 | 1.06 | 3.5 |
16 | 7.29 | 24.5 | 1111 | 25 | 168 | 20 | 3 | 1.85 | 3.3 |
17 | 7.17 | 24.0 | 650 | 9 | 40 | 20 | 3 | 0.42 | 3.4 |
18 | 7.03 | 23.7 | 1000 | 5 | 12 | 15 | 3 | 0.90 | 0.1 |
19 | 7.13 | 23.3 | 660.2 | 8 | 101 | 12 | 1 | 0.57 | 0.05 |
20 | 7.29 | 24.5 | 663.2 | 3 | 18 | 6 | 0 | 0.48 | 2.7 |
22 | 7.07 | 22.8 | 280.9 | 3 | 20 | 18 | 0 | 0.71 | 3.3 |
23 | 7.05 | 24.4 | 450.5 | 14 | 41 | 13 | 1 | 1.04 | 2.5 |
24 | 7.28 | 22.5 | 725 | 9 | 30 | 7 | 3 | 0.56 | 3.0 |
WHO STD [24] | 6.5–8.5 | ≤35 | ≤2000 | ≤5 | ≤20 | ≤20 | ≤250 | ≤50 | ≤50 |
Soil 1 | Soil 7 | Soil 11 | Soil 14 | Soil 15 | Soil 19 | Soil 20 | Soil 22 | Soil 23 | WHO STD | |
---|---|---|---|---|---|---|---|---|---|---|
pH | 7.6 | 8.0 | 7.88 | 8.05 | 7.75 | 7.92 | 7.61 | 7.45 | 7.23 | 6 < pH < 7 |
SPL | Chemical Element Concentration (mg/L) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Co | Cu | Pb | Zn | Fe | Mn | Ni | Cr | Ca | Mg | Na | K | As | Se | |
1 | 0.000 | 0.000 | 0.03 | 0.000 | 0.000 | 0.12 | 0.205 | 0.001 | 0.38 | 37.14 | 15.72 | 8.195 | 1.037 | 0.026 | 0.003 |
7 | 0.039 | 0.030 | 0.06 | 0.003 | 0.000 | 0.35 | 0.898 | 0.004 | 0.07 | 28.84 | 16.71 | 82.38 | 2.477 | 0.027 | 0.047 |
8 | 0.000 | 0.014 | 0.08 | 0.001 | 0.000 | 0.04 | 1.582 | 0.017 | 0.04 | 49.67 | 28.90 | 47.81 | 4.259 | 0.027 | 0.003 |
10 | 0.000 | 0.899 | 0.000 | 0.000 | 0.000 | 0.000 | 1.294 | 0.011 | 0.001 | 27.20 | 58.88 | 29.87 | 0.768 | 0.048 | 0.017 |
11 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 1.789 | 0.045 | 0.002 | 22.65 | 32.74 | 8.479 | 4.742 | 0.047 | 0.000 |
12 | 0.000 | 0.008 | 0.000 | 0.000 | 0.000 | 0.191 | 0.485 | 0.018 | 0.000 | 19.82 | 35.89 | 30.49 | 1.962 | 0.035 | 0.000 |
13 | 0.000 | 2.004 | 0.000 | 0.000 | 0.160 | 0.037 | 0.289 | 0.069 | 0.000 | 15.50 | 16.21 | 60.87 | 3.958 | 0.036 | 0.000 |
14 | 0.000 | 3.244 | 0.08 | 0.012 | 0.163 | 0.17 | 3.197 | 0.107 | 0.04 | 27.22 | 39.61 | 7.965 | 1.215 | 0.041 | 0.000 |
15 | 0.000 | 0.085 | 0.05 | 0.000 | 0.000 | 0.21 | 0.263 | 0.008 | 0.04 | 14.36 | 8.147 | 18.44 | 1.033 | 0.000 | 0.017 |
16 | 0.000 | 0.958 | 0.08 | 0.000 | 0.000 | 0.16 | 1.302 | 0.010 | 0.05 | 25.68 | 55.72 | 29.00 | 0.696 | 0.021 | 0.000 |
17 | 0.000 | 1.258 | 0.000 | 0.000 | 0.000 | 0.348 | 1.367 | 0.073 | 0.003 | 17.84 | 54.56 | 61.25 | 1.025 | 0.028 | 0.000 |
18 | 0.000 | 0.708 | 0.000 | 0.000 | 0.000 | 0.062 | 2.849 | 0.021 | 0.000 | 31.80 | 43.02 | 40.61 | 2.081 | 0.000 | 0.036 |
19 | 0.000 | 0.024 | 0.018 | 0.000 | 0.000 | 0.000 | 0.143 | 0.004 | 0.002 | 5.520 | 7.607 | 13.77 | 1.201 | 0.020 | 0.000 |
20 | 0.002 | 0.015 | 0.09 | 0.000 | 0.000 | 0.43 | 0.559 | 0.011 | 0.06 | 26.61 | 15.37 | 51.50 | 2.641 | 0.035 | 0.013 |
22 | 0.000 | 0.006 | 0.000 | 0.001 | 0.000 | 0.062 | 1.289 | 0.012 | 0.001 | 27.20 | 50.23 | 70.84 | 3.582 | 0.021 | 0.018 |
23 | 0.000 | 0.051 | 0.000 | 0.000 | 0.000 | 0.173 | 3.021 | 0.009 | 0.000 | 33.12 | 39.58 | 45.12 | 2.456 | 0.020 | 0.041 |
24 | 0.000 | 0.269 | 0.000 | 0.000 | 0.000 | 0.062 | 2.968 | 0.178 | 0.000 | 45.63 | 19.78 | 25.62 | 2.784 | 0.001 | 0.035 |
QS | (3–5)10−3 | 0.1 | 0.5 | 0.01 | 5 | 5 | 0.5 | 0.2 | 0.1 | 50 | 0.5 | - | - | 0.1 | 0.02 |
Sample | Cd (mg/kg) | Co (mg/kg) | Cu (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Ni (mg/kg) |
---|---|---|---|---|---|---|---|---|
SS1 | 0.000 | 30 | 562 | 0 | 0 | 12,333 | 0 | 0 |
SS2 | 0.000 | 140 | 580 | 170 | 1610 | 13,850 | 320 | 20 |
SS3 | 0.000 | 65 | 308 | 80 | 745 | 10,781 | 259 | 17 |
SS4 | 0.000 | 50 | 279 | 30 | 360 | 11,710 | 200 | 10 |
SS5 | 0.000 | 73 | 254 | 45 | 508 | 12,352 | 214 | 11 |
SS6 | 0.000 | 47 | 396 | 100 | 420 | 10,891 | 300 | 15 |
SS7 | 0.000 | 86 | 475 | 60 | 1655 | 13,750 | 307 | 16 |
SS8 | 0.000 | 90 | 270 | 30 | 170 | 12,490 | 260 | 10 |
SS9 | 0.000 | 69 | 500 | 50 | 960 | 11,454 | 288 | 13 |
SS10 | 0.000 | 95 | 509 | 65 | 820 | 12,200 | 254 | 12 |
SS11 | 0.000 | 80 | 480 | 50 | 1200 | 12,490 | 298 | 14 |
SS12 | 0.000 | 55 | 431 | 75 | 564 | 13,100 | 310 | 16 |
SS13 | 0.000 | 98 | 366 | 48 | 450 | 12,356 | 311 | 10 |
SS14 | 0.000 | 77 | 421 | 150 | 708 | 11,999 | 245 | 19 |
SS15 | 0.000 | 63 | 290 | 65 | 1333 | 10,500 | 268 | 20 |
SS16 | 0.000 | 45 | 263 | 49 | 645 | 12,421 | 312 | 11 |
SS17 | 0.000 | 32 | 560 | 45 | 1589 | 13,803 | 282 | 19 |
SS18 | 0.000 | 120 | 245 | 32 | 194 | 10,510 | 265 | 20 |
SS19 | 0.000 | 34 | 453 | 30 | 196 | 11,746 | 301 | 18 |
SS20 | 0.000 | 76 | 378 | 33 | 260 | 12,748 | 274 | 13 |
SS21 | 0.000 | 51 | 296 | 30 | 185 | 13,800 | 304 | 17 |
SS22 | 0.000 | 100 | 515 | 90 | 1600 | 12,830 | 315 | 19 |
SS23 | 0.000 | 97 | 400 | 160 | 1001 | 13,801 | 290 | 20 |
SS24 | 0.0000 | 82 | 356 | 157 | 985 | 12,350 | 315 | 18 |
WHO QS | 4–85 | 35 | 100 | 84–420 | 300–7500 | 20 | - | 50 |
Sample | Cd (mg/kg) | Co (mg/kg) | Cu (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | Ni (mg/kg) |
---|---|---|---|---|---|---|---|---|
DS1 | 0.000 | 20 | 120 | 30 | 5540 | 23,830 | 130 | 10 |
DS2 | 0.000 | 97 | 174 | 55 | 765 | 1960 | 200 | 12 |
DS3 | 0.000 | 40 | 410 | 70 | 490 | 1432 | 190 | 10 |
DS4 | 0.000 | 61 | 308 | 43 | 2016 | 17,890 | 162 | 19 |
DS5 | 0.000 | 740 | 2120 | 60 | 290 | 3505 | 600 | 20 |
DS6 | 10.000 | 100 | 870 | 90 | 2530 | 22,740 | 300 | 10 |
DS7 | 0.000 | 610 | 1350 | 320 | 2150 | 35,170 | 350 | 10 |
DS8 | 0.000 | 45 | 902 | 67 | 800 | 6565 | 665 | 18 |
DS9 | 0.000 | 30 | 150 | 40 | 180 | 11,810 | 170 | 10 |
DS10 | 0.000 | 300 | 590 | 60 | 300 | 12,110 | 880 | 20 |
DS11 | 0.000 | 233 | 780 | 89 | 900 | 17,623 | 708 | 17 |
DS12 | 0.000 | 174 | 610 | 71 | 500 | 1501 | 541 | 15 |
DS13 | 0.000 | 121 | 510 | 55 | 699 | 1300 | 690 | 18 |
DS14 | 0.000 | 315 | 450 | 74 | 3508 | 32,874 | 610 | 16 |
DS15 | 0.000 | 28 | 569 | 62 | 2120 | 1660 | 765 | 13 |
DS16 | 0.000 | 86 | 800 | 54 | 1789 | 20,235 | 860 | 14 |
DS17 | 0.000 | 60 | 1302 | 92 | 2212 | 15,562 | 800 | 16 |
DS18 | 0.000 | 115 | 150 | 260 | 300 | 1854 | 855 | 20 |
DS19 | 0.000 | 700 | 405 | 88 | 2021 | 33,102 | 554 | 15 |
DS20 | 0.000 | 562 | 178 | 78 | 1456 | 29,468 | 402 | 13 |
DS21 | 0.000 | 74 | 2100 | 100 | 2003 | 21,401 | 350 | 19 |
DS22 | 0.000 | 602 | 1017 | 90 | 1500 | 4520 | 750 | 16 |
DS23 | 0.000 | 17 | 613 | 65 | 745 | 1698 | 576 | 16 |
DS24 | 0.000 | 19 | 511 | 57 | 787 | 1657 | 561 | 17 |
WHO QS | 4 | 35 | 100 | 84 | 300 | 20 | - | 50 |
Sample Number | Cd (mg/kg) | Co (mg/kg) | Cu (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | Mn (mg/kg) | Ni (mg/kg) |
---|---|---|---|---|---|---|---|
2 | 0.5 | 10.1 | 30.6 | 0.0 | 12.6 | 4.2 | 4.1 |
8 | 0.4 | 9.4 | 93.8 | 0.6 | 80.1 | 11.0 | 1.6 |
10 | 0.6 | 5.7 | 135.2 | 0.0 | 49.8 | 8.70 | 3.7 |
13 | 0.8 | 7.3 | 150.7 | 0.8 | 50.3 | 10.6 | 1.9 |
21 | 0.9 | 3.5 | 75.6 | 0.0 | 72.6 | 13.4 | 2.8 |
WHO SDT | 0.05 | 0.05 | 100 | 0.1 | 100 | 0.20 | 0.20 |
Sample | Cd (mg/kg) | Co (mg/kg) | Cu (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | Mn (mg/kg) | Ni (mg/kg) |
---|---|---|---|---|---|---|---|
4 | 0.2 | 2.3 | 95.1 | 0.8 | 20.8 | 7.0 | 5.6 |
10 | 0.8 | 6.2 | 86.2 | 0.7 | 12.5 | 7.0 | 3.4 |
12 | 0.9 | 5.8 | 73.4 | 5.7 | 2.8 | 0.5 | 19.9 |
16 | 0.5 | 3.4 | 71.0 | 0.3 | 22.2 | 6.1 | 1.3 |
22 | 0.6 | 4.4 | 45.7 | 0.4 | 25.6 | 6.9 | 1.1 |
WHO SDT | 0.05 | 0.05 | 100 | 0.1 | 100 | 0.20 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadiki, B.; Ilunga, F.; Shengo, M. Dispersal Mechanisms of Trace Metal Elements in the Environment: The Case of Mineral Wastes Stored in Tshamilemba District of the City of Lubumbashi, DR Congo. Sustainability 2023, 15, 4476. https://doi.org/10.3390/su15054476
Sadiki B, Ilunga F, Shengo M. Dispersal Mechanisms of Trace Metal Elements in the Environment: The Case of Mineral Wastes Stored in Tshamilemba District of the City of Lubumbashi, DR Congo. Sustainability. 2023; 15(5):4476. https://doi.org/10.3390/su15054476
Chicago/Turabian StyleSadiki, Ben, Fabien Ilunga, and Michel Shengo. 2023. "Dispersal Mechanisms of Trace Metal Elements in the Environment: The Case of Mineral Wastes Stored in Tshamilemba District of the City of Lubumbashi, DR Congo" Sustainability 15, no. 5: 4476. https://doi.org/10.3390/su15054476
APA StyleSadiki, B., Ilunga, F., & Shengo, M. (2023). Dispersal Mechanisms of Trace Metal Elements in the Environment: The Case of Mineral Wastes Stored in Tshamilemba District of the City of Lubumbashi, DR Congo. Sustainability, 15(5), 4476. https://doi.org/10.3390/su15054476