Positive Matrix Factorization as Source Apportionment of Paddy Soil Heavy Metals in Black Shale Areas in Western Zhejiang Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Chemical Analysis and Quality Control
2.3. Positive Matrix Factorization
2.4. Statistical Analysis
3. Results and Discussion
3.1. Spatial Distribution of Heavy Metals in Soils
3.2. Source Apportionment of Heavy Metals
3.2.1. Correlation Analysis
3.2.2. PMF Model Analysis
3.3. Influence of Black Shale on the Distribution of Heavy Metals
4. Conclusions
- Based on the correlation analysis and the PMF model, five sources were apportioned. Cd largely originated from mining, As mostly stemmed from agricultural activities, and Hg was mainly influenced by industrial emissions. In addition, Pb, Zn, and Cu were primarily affected by the mixture of traffic emissions and natural sources, while Cr and Ni were controlled by natural sources.
- The relative contributions of natural sources, traffic emissions, industrial emissions, agricultural activities, and mining were 39.66%, 32.85%, 9.23%, 9.17% and 9.10%, respectively. Most pollution was contributed by anthropogenic activities, such as mining and the construction of roads and bridges, superimposed on the black shale series.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MEP. National soil pollution investigation bulletin. Minist. Environ. Prot. China 2014. [Google Scholar]
- Chen, N.C.; Zheng, Y.J.; He, X.F.; Li, X.F.; Zhang, X.X. Analysis of the report on the national general survey of soil contamination. J. Agro-Environ. Sci. 2017, 36, 1689–1692. [Google Scholar]
- Wang, Y.J.; Liu, C.; Zhou, D.M.; Chen, H.M. A critical view on the status quo of the farmland soil environmental quality in China: Discussion and suggestion of relevant issues on report on the national general survey of soil contamination. J. Agro-Environ. Sci. 2014, 33, 1465–1473. [Google Scholar]
- Wang, Z.Z.; Zhang, Y.M.; Deng, J.F.; Li, Z.W. Enrichment and toxicity effect of heavy metals in soil ecosystem. J. Appl. Ecol. 2006, 17, 1948–1952. [Google Scholar]
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 11–50. [Google Scholar]
- Wei, L.L.; Wang, K.; Noguera, D.R.; Jiang, J.Q.; Oyserman, B.; Zhao, N.B.; Zhao, Q.L.; Cui, F.Y. Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combination. Chemosphere 2016, 165, 100–109. [Google Scholar] [CrossRef]
- Zhang, J.R.; Li, H.Z.; Zhou, Y.Z.; Dou, L.; Cai, L.M.; Mo, L.P.; You, J. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ. Pollut. 2018, 235, 710–719. [Google Scholar] [CrossRef]
- Zhang, F.G.; Cheng, X.M.; Ma, H.H.; Sun, B.B.; Peng, M. Discussion on the scientific construction of ecological risk evaluation method for high background area of soil heavy metals. J. Zhejiang Univ. Agric. Life Sci. 2022, 48, 57–67. [Google Scholar]
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E: Supplemental Guidance for Dermal Risk Assessment); United States Environmental Protection Agency: Washington, DC, USA, 2004.
- Dong, L.R.; Hu, W.Y.; Huang, B.; Liu, G.; Qu, M.K.; Kuang, R.X. Source appointment of heavy metals in suburban farmland soils based on positive matrix factorization. China Environ. Sci. 2015, 35, 2103–2111. [Google Scholar]
- Blifford, I.H.; Meeker, G.O. A factor analysis model of large scale pollution. Atmos. Environ. 1967, 1, 147–157. [Google Scholar] [CrossRef]
- Wang, Y.T.; Guo, G.H.; Zhang, D.G.; Lei, M. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis. Environ. Pollut. 2021, 276, 116666. [Google Scholar] [CrossRef]
- Qu, M.K.; Li, W.D.; Zhang, C.R.; Huang, B.; Hu, W.Y. Source apportionment of soil heavy metal Cd based on the combination of receptor model and geostatistics. China Environ. Sci. 2013, 33, 854–860. [Google Scholar]
- Huang, Y.; Deng, M.H.; Wu, S.F.; Jan, J.P.G.; Li, T.Q.; Yang, X.E.; He, Z.L. A modified receptor model for source apportionment of heavy metal pollution in soil. J. Hazard. Mater. 2018, 354, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.; Fujita, E.M.; Wilson, W.E. Receptor modeling application framework for particle source apportionment. Chemosphere 2002, 49, 1093–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.L.; Zhi, Y.Y.; Yang, L.P.; Shi, J.C.; Zeng, L.Z.; Wu, L.S. Positive matrix factorization as source apportionment of soil lead and cadmium around a battery plant (Changxing County, China). Environ. Sci. Pollut. Res. 2014, 21, 7698–7707. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Teng, Y.G.; Wu, J.; Jiang, J.Y.; Huang, Y. Source Apportionment of Soil Heavy Metal in the Middle and Upper Reaches of Le’an River based on PMF Model and Geostatistics. Res. Environ. Sci. 2019, 32, 984–992. [Google Scholar]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Teng, Y.G.; Li, J.; Wu, J.; Wang, J.S. Source apportionment of trace metals in river sediments: A comparison of three methods. Environ. Pollut. 2016, 211, 28–37. [Google Scholar] [CrossRef]
- Tapper, U.; Paatero, P. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar]
- Chai, L.; Wang, X.; Ma, L.; Cheng, Z.X.; Su, L.M.; Wang, Y.H. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models. China Environ. Sci. 2020, 40, 3919–3929. [Google Scholar]
- Zhang, X.W.; Wei, S.; Sun, Q.Q.; Wadood, S.A.; Guo, B.L. Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicol. Environ. Saf. 2018, 159, 354–362. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wu, J.; Wang, J.S. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Wang, L.; Xu, C.X.; Ji, J.F.; Wang, S.M. The influence of pH on the release behavior of heavy metal elements Cd and Pb in the sediments of the lower reaches of the Yangtze River. Geol. Bull. China. 2012, 31, 594–600. [Google Scholar]
- Yu, R.L.; Ji, J.F.; Yuan, X.Y.; Song, Y.X.; Wang, C. Accumulation and translocation of heavy metals in the canola (Brassica napus L.)-soil system in Yangtze River Delta, China. Plant Soil. 2012, 353, 33–45. [Google Scholar] [CrossRef]
- Cheng, H.X.; Yang, Z.F.; Xi, X.H.; Zhao, C.D.; Wu, X.M.; Zhuang, G.M.; Liu, Y.H.; Chen, G.G. A research framework for source tracking and quantitative assessment of the Cd anomalies along the Yangtze River Basin. Earth Sci. Front. 2005, 12, 261–272. [Google Scholar]
- Ni, S.Q.; Ju, Y.W.; Hou, Q.L.; Wang, S.J.; Liu, Q.; Wu, Y.D.; Xiao, L.L. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process. Prog. Nat. Sci. 2009, 19, 1133–1139. [Google Scholar] [CrossRef]
- Hou, D.Y.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Kováčik, J.; Dudáš, M.; Hedbavny, J.; Mártonfi, P. Dandelion Taraxacum linearisquameum does not reflect soil metal content in urban localities. Environ. Pollut. 2016, 218, 160–167. [Google Scholar] [CrossRef]
- Le, S.K.; Duan, Y.M. Determination of Heavy Metal Elements in Soil by ICP-MS. Chin. J. Inorg. Anal. Chem. 2015, 5, 16–19. [Google Scholar]
- Sun, C.Y.; Dong, L.M.; He, Y.T.; Yang, L.H.; Zheng, C.J. Elimination of Interferences in ICP-MS Determination of Sc, Ga, Ge, In, Cd and T1 in Geological Samples. Phys. Test. Chem. Anal. Part B 2016, 52, 1026–1030. [Google Scholar]
- Gao, W. Determination of copper, lead, zinc, cobalt and nickel in ore by flame atomic absorption spectrophotometry. World Nonferr. Metals 2019, 171–172. [Google Scholar]
- Razmimanesh, F.; Sodeifian, G.; Sajadian, S.A. An investigation into Sunitinib malate nanoparticle production by US-RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution. J. Supercrit. Fluids 2021, 170, 105163. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ardestani, N.S.; Sajadian, S.A. Extraction of seed oil from Diospyros lotus optimized using response surface methodology. J. For. Res. 2018, 30, 709–719. [Google Scholar] [CrossRef]
- US EPA. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; United States Environmental Protection Agency: Washington, DC, USA, 2014.
- Wang, Q.H.; Dong, Y.X.; Zheng, W.; Zhou, G.H. Soll geochemical baseline values and environmental background values in Zhejiang, China. Geol. Bull. China 2007, 26, 590–597. [Google Scholar]
- Wilding, L.P. Spatial Variability: Its Documentation, Accomodation and Implication to Soil Surveys; Spatial Variations; PUDOC: Wageningen, The Netherlands, 1985. [Google Scholar]
- Chen, M.; Pan, Y.X.; Huang, Y.X.; Wang, X.T.; Zhang, R.D. Spatial distribution and sources of heavy metals in soil of a typical lead-zinc mining area, Yangshuo. Environ. Sci. 2022, 43, 4545–4555. [Google Scholar]
- Lu, X.Z.; Wei, Y.C.; Huang, C.L.; Gu, A.Q.; Hu, X.F. Characteristics of heavy metal pollution in soil in typical black shale area in the lower reaches of the Yangtze River. Environ. Ecol. 2020, 2, 29–38. [Google Scholar]
- Song, M.Y. Research on Supergenic Geochemistry and Environmental Effects of Selenium and Heavy Metals in the Lower Cambrian Black Series of Western Zhejiang Province, China. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2009. [Google Scholar]
- Zhao, W.F.; Song, Y.X.; Guan, D.X.; Ma, Q.; Guo, C.; Wen, Y.B.; Ji, J.F. Pollution status and bioavailability of heavy metals in soils of a typical black shale area. J. Agro-Environ. Sci. 2018, 37, 1332–1341. [Google Scholar]
- Yang, Z.X.; Peng, B.; Xu, J.Z.; Fang, X.H.; Zeng, D.Z.; Xiao, Y.; Xie, W.C. Regularity of Element Mobility in the Weathering of Lower Cambrian Black Shales in Western Hunan Province, China. Bull. Mineral. Petrol. Geochem. 2017, 36, 984–994. [Google Scholar]
- Yu, C.X.; Peng, B.; Tang, X.Y.; Xie, S.R.; Wu, F.C.; Yin, C.Y.; Yang, G.; Tu, X.L. The black shale and relative heavy metal contamination of soils derived from the black shale. Bull. Mineral. Petrol. Geochem. 2008, 27, 137–145. [Google Scholar]
- Huang, J.; Liu, Z.B.; Xie, Y.H.; Ji, X.H. Progress of form and bioavailability of Cadmium in soil. Hunan. Agric. Sci. 2013, 56–61. [Google Scholar] [CrossRef]
- Perkins, R.B.; Mason, C.E. The relative mobility of trace elements from short-term weathering of a black shale. Appl. Geochem. 2015, 56, 67–79. [Google Scholar] [CrossRef]
- Liao, X.; Chigira, M.; Matsushi, Y.; Wu, X.Y. Investigation of water–rock interactions in Cambrian black shale via a flow-through experiment. Appl. Geochem. 2014, 51, 65–78. [Google Scholar] [CrossRef]
- Zhang, J.L.; Qu, M.K.; Chen, J.; Yang, L.F.; Zhao, Y.C.; Huang, B. Meta-analysis of the effects of metal mining on soil heavy metal concentrations in southwest China. Environ. Sci. 2021, 42, 4414–4421. [Google Scholar]
- Chen, X.J.; Wang, G.R.; Huo, J.T.; Ding, H.; Zhu, Y.; Luo, H.; Li, B.; Huang, Y.D. Speciation and distribution characteristics of mercury in the atmosphere in the suburbs of Shanghai. Environ. Pollut. Control. 2022, 44, 1196–1201. [Google Scholar]
- Wu, X.Y.; Zheng, Y.F.; Lin, K.S. Chinese atmospheric mercury pollution status. China Environ. Sci. 2015, 35, 2623–2635. [Google Scholar]
- Zhu, X.L.; Xue, B.Q.; Li, X.; Wang, J.Q.; Shang, X.Q.; Chen, C.; Geng, P.Y.; Kou, Z.J.; Ma, X.J. Sources apportionment of heavy metals in farmland soil around lead-zinc tailings reservoir based on PMF model. J. Northwest Univ. Nat. Sci. Ed. 2021, 51, 43–53. [Google Scholar]
- Cai, L.M.; Xu, Z.C.; Bao, P.; He, M.; Dou, L.; Chen, L.G.; Zhou, Y.Z.; Zhu, Y.G. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J. Geochem. Explor. 2015, 148, 189–195. [Google Scholar] [CrossRef]
- Liang, J.; Hua, S.S.; Zeng, G.M.; Yuan, Y.J.; Lai, X.; Li, X.D.; Li, F.; Wu, H.P.; Huang, L.; Yu, X. Application of weight method based on canonical correspondence analysis for assessment of Anatidae habitat suitability: A case study in East Dongting Lake, Middle China. Ecol. Eng. 2015, 77, 119–126. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Xiang, R.J.; Liu, Z.; Wan, Y.; Zhong, Z.Y.; You, X.Y.; Qi, Y. Content and morphology characteristics of heavy metals in phosphate fertilizers in Hunan province. Nonferrous Met. Sci. Eng. 2016, 7, 125–130. [Google Scholar]
- Wang, X.; Jia, Y.F. Contamination and Remediation of Arsenic in Soil. Environ. Sci. Technol. 2007, 30, 107–110. [Google Scholar]
- Han, P.P.; Xie, J.; Wang, J.; Qiang, X.Y.; Ai, L.; Shi, Z.H. Source apportionment of heavy metals in farmland soil from new submerged area in Danjiangkou Reservoir. China Environ. Sci. 2016, 36, 2437–2443. [Google Scholar]
- Shen, M.H.; Dong, W.J.; Wang, M.L.; Yang, S.; Yang, T.F.; Tang, L.F.; Ren, H.; Wu, P.P.; Sun, L.F.; Wang, S.H.; et al. Pollution characteristics of heavy metals in road dust and its relationship with road levels: Taking Beijing and Zhengzhou as examples. Environ. Chem. 2018, 37, 942–951. [Google Scholar]
- Hu, M.J.; Li, C.Y.; Li, N.N.; Ji, T.Q.; Zheng, D.Y. Using the matter-element extension model to assess heavy metal pollution in topsoil in parks in the main district park of Lanzhou City. Chin. J. Environ. Sci. 2021, 42, 2457–2468. [Google Scholar]
- Liu, P.; Wu, Q.M.; Wang, X.K.; Hu, W.Y.; Liu, X.Y.; Tian, K.; Fan, Y.N.; Xie, E.Z.; Zhao, Y.C.; Huang, B.; et al. Spatiotemporal variation and sources of soil heavy metals along the lower reaches of Yangtze River, China. Chemosphere 2022, 291, 132768. [Google Scholar] [CrossRef]
- Srishti, J.; Sudhir Kumar, S.; Nikki, C.; Renu, M.; Mohit, S.; Ashima, S.; Tuhin Kumar, M.; Anshu, G.; Naresh Chandra, G.; Chhemendra, S. Chemical characteristics and source apportionment of PM using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ. Sci. Pollut. Res. 2017, 24, 14637–14656. [Google Scholar]
- Lin, Y.C.; Zhang, Y.L.; Song, W.H.; Yang, X.Y.; Fan, M.Y. Specific sources of health risks caused by size-resolved PM-bound metals in a typical coal-burning city of northern China during the winter haze event. Sci. Total Environ. 2020, 734, 138651. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, L.J.; Li, H.H.; Lin, J.Q.; Yang, Z.B.; Yang, Y.X.; Xu, X.X.; Xian, J.R.; Shao, J.R.; Zhu, X.M. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci. Total Environ. 2018, 619, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Chon, H.T.; Kim, J.S.; Kim, K.W.; Moon, H.S. Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Environ. Geochem. Health 1998, 20, 135–147. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Xiao, T.F.; Perkins, R.B.; Zhu, J.M.; Zhu, Z.J.; Xiong, Y.; Ning, Z.P. Geogenic Cadmium pollution and potential health risks, with emphasis on black shale. J. Geochem. Explor. 2017, 176, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.X.; Peng, B.; Tang, X.Y.; Xie, S.R.; Yang, G.; Yin, C.Y.; Tu, X.L.; Liu, Q.; Yang, K.S. Geochemical characteristics of soils derived from the lower-cambrian black shales distributed in central HuNan, China. Environ. Acta Pedol. Sin. 2009, 46, 557–570. [Google Scholar]
- Peng, B.; Wu, F.C.; Xiao, M.L.; Xie, S.R.; Lv, H.Z.; Dai, Y.N. The resource functions and environment effects of black shales. Bull. Mineral. Petrol. Geochem. 2005, 24, 153–158. [Google Scholar]
- Xiao, B.; Liu, S.G.; Ran, B.; Li, Z.W. Geochemistry and sedimentology of the Upper Ordovician–lower Silurian black shale in the northern margin of the Upper Yangtze Platform, South China: Implications for depositional controls on organic-matter accumulation. Aust. J. Earth Sci. 2019, 67, 129–150. [Google Scholar] [CrossRef]
Heavy Metal | Cd | As | Pb | Cr | Hg | Cu | Zn | Ni | pH |
---|---|---|---|---|---|---|---|---|---|
Min (mg kg−1) | 0.09 | 1.20 | 16.73 | 13.20 | 0.02 | 5.30 | 45.60 | 5.35 | 4.43 |
Max (mg kg−1) | 8.88 | 50.40 | 86.80 | 114.00 | 0.70 | 95.80 | 510.50 | 83.50 | 8.24 |
Mean (mg kg−1) | 0.53 | 9.62 | 34.46 | 55.02 | 0.14 | 27.39 | 105.02 | 25.27 | |
Standard deviation (mg kg−1) | 0.78 | 6.95 | 8.42 | 20.52 | 0.08 | 11.09 | 44.57 | 11.43 | |
Coefficient of variation (%) | 146.91 | 72.20 | 24.43 | 37.29 | 56.52 | 40.47 | 42.44 | 45.23 | |
Geochemical baseline | 0.19 | 6.76 | 31.56 | 60.69 | 0.11 | 25.57 | 93.88 | 24.14 | |
Background values in China (mg kg−1) | 0.097 | 11.2 | 26.00 | 61.00 | 0.065 | 22.60 | 74.20 | 26.90 | |
Skewness | 5.16 | 2.28 | 1.80 | −0.19 | 2.49 | 1.96 | 3.75 | 0.82 | |
Kurtosis | 37.91 | 7.74 | 5.58 | −0.56 | 11.01 | 7.81 | 22.39 | 2.36 |
Heavy Metals | Cd | As | Pb | Cr | Hg | Cu | Zn | Ni |
---|---|---|---|---|---|---|---|---|
Cd | 1 | |||||||
As | 0.271 ** | 1 | ||||||
Pb | 0.437 ** | 0.194 ** | 1 | |||||
Cr | 0.056 | 0.322 ** | 0.006 | 1 | ||||
Hg | 0.066 | 0.073 | 0.240 ** | 0.114 * | 1 | |||
Cu | 0.449 ** | 0.395 ** | 0.455 ** | 0.495 ** | 0.125 ** | 1 | ||
Zn | 0.605 ** | 0.299 ** | 0.550 ** | 0.123 ** | 0.068 | 0.636 ** | 1 | |
Ni | 0.313 ** | 0.467 ** | 0.037 | 0.793 ** | 0.116 * | 0.579 ** | 0.393 ** | 1 |
Heavy Metal | R2 | Fitting Equation |
---|---|---|
Cd | 0.9771 | y = 0.94x + 0.03 |
As | 0.9998 | y = 1.01x − 0.02 |
Pb | 0.8015 | y = 0.92x + 2.39 |
Cr | 0.9174 | y = 0.98x + 0.45 |
Hg | 0.9877 | y = 0.93x + 0.01 |
Cu | 0.6952 | y = 0.57x + 10.21 |
Zn | 0.7238 | y = 0.58x + 39.63 |
Ni | 0.8416 | y = 0.77x + 4.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Lu, X.; Huang, C.; Sun, R.; Gu, A.; Pan, W.; He, L.; Bao, J.; Zou, R.; Fu, C.; et al. Positive Matrix Factorization as Source Apportionment of Paddy Soil Heavy Metals in Black Shale Areas in Western Zhejiang Province, China. Sustainability 2023, 15, 4547. https://doi.org/10.3390/su15054547
Xu C, Lu X, Huang C, Sun R, Gu A, Pan W, He L, Bao J, Zou R, Fu C, et al. Positive Matrix Factorization as Source Apportionment of Paddy Soil Heavy Metals in Black Shale Areas in Western Zhejiang Province, China. Sustainability. 2023; 15(5):4547. https://doi.org/10.3390/su15054547
Chicago/Turabian StyleXu, Changyan, Xinzhe Lu, Chunlei Huang, Rui Sun, Anqing Gu, Weifeng Pan, Li He, Jiayu Bao, Ruosong Zou, Cheng Fu, and et al. 2023. "Positive Matrix Factorization as Source Apportionment of Paddy Soil Heavy Metals in Black Shale Areas in Western Zhejiang Province, China" Sustainability 15, no. 5: 4547. https://doi.org/10.3390/su15054547
APA StyleXu, C., Lu, X., Huang, C., Sun, R., Gu, A., Pan, W., He, L., Bao, J., Zou, R., Fu, C., & Cai, Z. (2023). Positive Matrix Factorization as Source Apportionment of Paddy Soil Heavy Metals in Black Shale Areas in Western Zhejiang Province, China. Sustainability, 15(5), 4547. https://doi.org/10.3390/su15054547