Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina platensis Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Digestate
2.2. Adsorbent Treatment
2.3. Cyanobacterium Cultivation Assays
2.4. Analytical Procedures
2.4.1. Microalgal Growth
2.4.2. Adsorbent Characterization
2.4.3. Digestate Composition
2.4.4. Adsorption Performance
2.5. Statistical Analysis
3. Results and Discussion
3.1. Adsorption Tests with Activated Carbon
3.2. S. platensis Cultivation and Growth Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Méthanisation et Biogaz. Available online: https://atee.fr/energies-renouvelables/club-biogaz/methanisation-et-biogaz (accessed on 3 November 2022).
- Technical Analysis of the 2018 and 2021 ICCT Reports on the Role of Biomethane as a Renewable Energy Source. European Biogas Association. Available online: https://www.europeanbiogas.eu/technical-analysis-of-the-2018-and-2021-icct-reports-on-the-role-of-biomethane-as-a-renewable-energy-source/ (accessed on 3 November 2022).
- Ayre, J.M.; Moheimani, N.R.; Borowitzka, M.A. Growth of Microalgae on Undiluted Anaerobic Digestate of Piggery Effluent with High Ammonium Concentrations. Algal Res. 2017, 24, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-Based Wastewater Treatment for Nutrients Recovery: A Review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef] [PubMed]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A New Nutrient Source—Review. Biogas 2012, 14, 295–310. [Google Scholar] [CrossRef]
- Xia, A.; Murphy, J.D. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends Biotechnol. 2016, 34, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrère, H. New Opportunities for Agricultural Digestate Valorization: Current Situation and Perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and Wastewater Treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.B.; Costanza-Robinson, M.S.; Spatafora, G.A. Neochloris Oleoabundans Grown on Anaerobically Digested Dairy Manure for Concomitant Nutrient Removal and Biodiesel Feedstock Production. Biomass Bioenergy 2011, 35, 40–49. [Google Scholar] [CrossRef]
- Hanifzadeh, M.; Sarrafzadeh, M.-H.; Nabati, Z.; Tavakoli, O.; Feyzizarnagh, H. Technical, Economic and Energy Assessment of an Alternative Strategy for Mass Production of Biomass and Lipid from Microalgae. J. Environ. Chem. Eng. 2018, 6, 866–873. [Google Scholar] [CrossRef]
- Yang, W.; Li, S.; Qv, M.; Dai, D.; Liu, D.; Wang, W.; Tang, C.; Zhu, L. Microalgal Cultivation for the Upgraded Biogas by Removing CO2, Coupled with the Treatment of Slurry from Anaerobic Digestion: A Review. Bioresour. Technol. 2022, 364, 128118. [Google Scholar] [CrossRef]
- Hultberg, M.; Lind, O.; Birgersson, G.; Asp, H. Use of the Effluent from Biogas Production for Cultivation of Spirulina. Bioprocess Biosyst. Eng. 2017, 40, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Cicci, A.; Bravi, M. Production of the Freshwater Microalgae Scenedesmus Dimorphus and Arthrospira Platensis by Using Cattle Digestate. Chem. Eng. Trans. 2014, 38, 85–90. [Google Scholar] [CrossRef]
- Massa, M.; Buono, S.; Langellotti, A.L.; Castaldo, L.; Martello, A.; Paduano, A.; Sacchi, R.; Fogliano, V. Evaluation of Anaerobic Digestates from Different Feedstocks as Growth Media for Tetradesmus Obliquus, Botryococcus Braunii, Phaeodactylum Tricornutum and Arthrospira Maxima. New Biotechnol. 2017, 36, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Matos, Â.P.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Anaerobic Digestate Abattoir Effluent (ADAE), a Suitable Source of Nutrients for Arthrospira Platensis Cultivation. Algal Res. 2021, 54, 102216. [Google Scholar] [CrossRef]
- Markou, G.; Diamantis, A.; Arapoglou, D.; Mitrogiannis, D.; González-Fernández, C.; Unc, A. Growing Spirulina (Arthrospira Platensis) in Seawater Supplemented with Digestate: Trade-Offs between Increased Salinity, Nutrient and Light Availability. Biochem. Eng. J. 2021, 165, 107815. [Google Scholar] [CrossRef]
- Kanchanatip, E.; Su, B.-R.; Tulaphol, S.; Den, W.; Grisdanurak, N.; Kuo, C.-C. Fouling Characterization and Control for Harvesting Microalgae Arthrospira (Spirulina) Maxima Using a Submerged, Disc-Type Ultrafiltration Membrane. Bioresour. Technol. 2016, 209, 23–30. [Google Scholar] [CrossRef]
- Barros, A.I.; Gonçalves, A.L.; Simões, M.; Pires, J.C.M. Harvesting Techniques Applied to Microalgae: A Review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef] [Green Version]
- Soni, R.A.; Sudhakar, K.; Rana, R.S. Spirulina–From Growth to Nutritional Product: A Review. Trends Food Sci. Technol. 2017, 69, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Ragusa, I.; Nardone, G.N.; Zanatta, S.; Bertin, W.; Amadio, E. Spirulina for Skin Care: A Bright Blue Future. Cosmetics 2021, 8, 7. [Google Scholar] [CrossRef]
- Sumprasit, N.; Wagle, N.; Glanpracha, N.; Annachhatre, A.P. Biodiesel and Biogas Recovery from Spirulina Platensis. Int. Biodeterior. Biodegrad. 2017, 119, 196–204. [Google Scholar] [CrossRef]
- Chong, C.C.; Cheng, Y.W.; Ishak, S.; Lam, M.K.; Lim, J.W.; Tan, I.S.; Show, P.L.; Lee, K.T. Anaerobic Digestate as a Low-Cost Nutrient Source for Sustainable Microalgae Cultivation: A Way Forward through Waste Valorization Approach. Sci. Total Environ. 2022, 803, 150070. [Google Scholar] [CrossRef] [PubMed]
- Barzee, T.J.; Yothers, C.; Edalati, A.; Rude, K.; Chio, A.; El Mashad, H.M.; Franz, A.; Zhang, R. Pilot Microalgae Cultivation Using Food Waste Digestate with Minimal Resource Inputs. Bioresour. Technol. Rep. 2022, 19, 101200. [Google Scholar] [CrossRef]
- Rude, K.; Yothers, C.; Barzee, T.J.; Kutney, S.; Zhang, R.; Franz, A. Growth Potential of Microalgae on Ammonia-Rich Anaerobic Digester Effluent for Wastewater Remediation. Algal Res. 2022, 62, 102613. [Google Scholar] [CrossRef]
- Marazzi, F.; Sambusiti, C.; Monlau, F.; Cecere, S.E.; Scaglione, D.; Barakat, A.; Mezzanotte, V.; Ficara, E. A Novel Option for Reducing the Optical Density of Liquid Digestate to Achieve a More Productive Microalgal Culturing. Algal Res. 2017, 24, 19–28. [Google Scholar] [CrossRef]
- Attene, L.; Deiana, A.; Carucci, A.; De Gioannis, G.; Asunis, F.; Ledda, C. Efficient Nitrogen Recovery from Agro-Energy Effluents for Cyanobacteria Cultivation (Spirulina). Sustainability 2023, 15, 675. [Google Scholar] [CrossRef]
- Park, J.; Jin, H.-F.; Lim, B.-R.; Park, K.-Y.; Lee, K. Ammonia Removal from Anaerobic Digestion Effluent of Livestock Waste Using Green Alga scenedesmus sp. Bioresour. Technol. 2010, 101, 8649–8657. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, R.; Mousavi, S.E.; Goyette, B.; Adhikary, S. Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts. Bioengineering 2021, 8, 57. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Latrille, E.; Steyer, J.-P. Anaerobic Digestate as Substrate for Microalgae Culture: The Role of Ammonium Concentration on the Microalgae Productivity. Bioresour. Technol. 2014, 152, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Castañeda, M.E.; Medina, D.I. Use of Surfactant-Modified Zeolites and Clays for the Removal of Heavy Metals from Water. Water 2017, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Alshameri, A.; He, H.; Xin, C.; Zhu, J.; Xinghu, W.; Zhu, R.; Wang, H. Understanding the Role of Natural Clay Minerals as Effective Adsorbents and Alternative Source of Rare Earth Elements: Adsorption Operative Parameters. Hydrometallurgy 2019, 185, 149–161. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and Modification of Biochar Materials and Their Application in Soil Remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Wasewar, K.L.; Kansal, S.K. Chapter 10–Low-Cost Adsorbents for Removal of Inorganic Impurities from Wastewater. Inorg. Pollut. Water 2020, 173–203. [Google Scholar] [CrossRef]
- Moyo, M.; Chikazaza, L.; Nyamunda, B.C.; Guyo, U. Adsorption Batch Studies on the Removal of Pb(II) Using Maize Tassel Based Activated Carbon. J. Chem. 2013, 2013, e508934. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Guo, Y.; Qin, Y.; Li, Y.-Y. Nutrient Recovery Technologies Integrated with Energy Recovery by Waste Biomass Anaerobic Digestion. Bioresour. Technol. 2018, 269, 520–531. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Blainski, A.; Lopes, G.C.; de Mello, J.C.P. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium brasiliense, L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagemann, N.; Schmidt, H.P.; Kägi, R.; Böhler, M.; Sigmund, G.; Maccagnan, A.; McArdell, C.S.; Bucheli, T.D. Wood-Based Activated Biochar to Eliminate Organic Micropollutants from Biologically Treated Wastewater. Sci. Total Environ. 2020, 730, 138417. [Google Scholar] [CrossRef]
- Lütke, S.F.; Igansi, A.V.; Pegoraro, L.; Dotto, G.L.; Pinto, L.A.A.; Cadaval, T.R.S. Preparation of Activated Carbon from Black Wattle Bark Waste and Its Application for Phenol Adsorption. J. Environ. Chem. Eng. 2019, 7, 103396. [Google Scholar] [CrossRef]
- Kumar, P.; Sudha, S.; Chand, S.; Srivastava, V.C. Phosphate Removal from Aqueous Solution Using Coir-Pith Activated Carbon. Sep. Sci. Technol. 2010, 45, 1463–1470. [Google Scholar] [CrossRef]
- Parsy, A.; Guyoneaud, R.; Lot, M.-C.; Baldoni-Andrey, P.; Périé, F.; Sambusiti, C. Impact of Salinities, Metals and Organic Compounds Found in Saline Oil & Gas Produced Water on Microalgae and Cyanobacteria. Ecotoxicol. Environ. Saf. 2022, 234, 113351. [Google Scholar] [CrossRef] [PubMed]
- Mattson, J.A.; Mark, H.B.; Malbin, M.D.; Weber, W.J.; Crittenden, J.C. Surface Chemistry of Active Carbon: Specific Adsorption of Phenols. J. Colloid Interface Sci. 1969, 31, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Almanassra, I.W.; Kochkodan, V.; Mckay, G.; Atieh, M.A.; Al-Ansari, T. Review of Phosphate Removal from Water by Carbonaceous Sorbents. J. Environ. Manag. 2021, 287, 112245. [Google Scholar] [CrossRef]
- Jiang, L.; Pei, H.; Hu, W.; Ji, Y.; Han, L.; Ma, G. The Feasibility of Using Complex Wastewater from a Monosodium Glutamate Factory to Cultivate Spirulina Subsalsa and Accumulate Biochemical Composition. Bioresour. Technol. 2015, 180, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Ogbonna, J.C.; Yoshizawa, H.; Tanaka, H. Treatment of High Strength Organic Wastewater by a Mixed Culture of Photosynthetic Microorganisms. J. Appl. Phycol. 2000, 12, 277–284. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Zhai, J.; Wei, H.; Wang, Q. Effect of Ammonium Nitrogen on Microalgal Growth, Biochemical Composition and Photosynthetic Performance in Mixotrophic Cultivation. Bioresour. Technol. 2019, 273, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Japar, A.S.; Takriff, M.S.; Mohd Yasin, N.H. Microalgae Acclimatization in Industrial Wastewater and Its Effect on Growth and Primary Metabolite Composition. Algal Res. 2021, 53, 102163. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
pH | 8.5 ± 0.0 |
Conductivity (mS/cm) | 22.97 ± 0.6 |
COD (mg/L) | 8650 ± 265 |
NH4-N (mg/L) | 4405 ± 79 |
PO4-P (mg/L) | 869 ± 5 |
Total phenol (mg/L) | 1054 ± 43 |
Parameters | Values |
---|---|
Physical properties | |
pH | 10.77 ± 0.03 |
Particle size (µm) | <300 |
N2—specific surface (m2/g) | 894.6 ± 2.0 |
N2—total pore volume (cm3/g) CO2—specific surface (m2/g) CO2—micropore volume (cm3/g) | 0.358 495.5 ± 8.5 0.081 |
Chemical properties (wt. %) | |
C | 94.490 |
O | 2.587 |
Mg | 0.086 |
Al | 0.882 |
Si | 0.693 |
P | 0.018 |
S | 0.415 |
Cl | 0.046 |
K | 0.052 |
Ca | 0.198 |
Fe | 0.262 |
Zn | 0.002 |
Sr | 0.007 |
Na | 0.197 |
AC Concentration (g/L) | OD 450 nm | OD Reduction (%) |
---|---|---|
0 | 3.5 ± 0.0 | - |
5 | 3.3 ± 0.1 | 5.3 ± 2.7 c |
10 | 3.2 ± 0.1 | 10.2 ± 2.1 c |
25 | 2.3 ± 0.2 | 35.3 ± 6.6 b |
50 | 1.8 ± 0.1 | 48.9 ± 4.0 a |
100 | 2.0 ± 0.2 | 44.4 ± 5.2 ab |
Raw Digestate | Treated Digestate with 50 g/L of AC | |||||||
---|---|---|---|---|---|---|---|---|
Parameters | RD | RD20 | RD40 | RD60 | TD | TD20 | TD40 | TD60 |
COD (mg/L) | 8650 | 433 | 216 | 144 | 3917 | 196 | 98 | 65 |
PO4-P (mg/L) | 869 | 43 | 22 | 14 | 434 | 22 | 11 | 7 |
NH4-N (mg/L) | 4405 | 221 | 110 | 74 | 4220 | 211 | 106 | 71 |
Total phenols (mg/L) | 1054 | 53 | 26 | 18 | 161 | 8 | 4 | 3 |
Controls | Raw Digestate | Treated Digestate with 50 g/L of AC | ||||||
---|---|---|---|---|---|---|---|---|
Parameters | BG11 | Water | RD20 | RD40 | RD60 | TD20 | TD40 | TD60 |
Biomass concentration * (g/L) | 1.36 ± 0.13 a | 0.38 ± 0.02 e | 0.62 ± 0.02 d | 0.86 ± 0.07 bc | 0.93 ± 0.04 b | 0.66 ± 0.15 cd | 0.92 ± 0.02 b | 0.91 ± 0.03 b |
Biomass productivity (mg/L/d) | 115 ± 9 a | 17 ± 0 d | 36 ± 1 cd | 63 ± 8 b | 71 ± 4 b | 40 ± 1c | 68 ± 0 b | 66 ± 1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Quintero, Á.; Leca, M.-A.; Bennici, S.; Limousy, L.; Monlau, F.; Beigbeder, J.-B. Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina platensis Cultivation. Sustainability 2023, 15, 4571. https://doi.org/10.3390/su15054571
Sánchez-Quintero Á, Leca M-A, Bennici S, Limousy L, Monlau F, Beigbeder J-B. Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina platensis Cultivation. Sustainability. 2023; 15(5):4571. https://doi.org/10.3390/su15054571
Chicago/Turabian StyleSánchez-Quintero, Ángela, Marie-Ange Leca, Simona Bennici, Lionel Limousy, Florian Monlau, and Jean-Baptiste Beigbeder. 2023. "Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina platensis Cultivation" Sustainability 15, no. 5: 4571. https://doi.org/10.3390/su15054571
APA StyleSánchez-Quintero, Á., Leca, M. -A., Bennici, S., Limousy, L., Monlau, F., & Beigbeder, J. -B. (2023). Treatment and Valorization of Agro-Industrial Anaerobic Digestate Using Activated Carbon Followed by Spirulina platensis Cultivation. Sustainability, 15(5), 4571. https://doi.org/10.3390/su15054571