
Citation: Al-Amri, N.S.; Ewea, H.A.;

Elfeki, A.M. Stochastic Rational

Method for Estimation of Flood Peak

Uncertainty in Arid Basins:

Comparison between Monte Carlo

and First Order Second Moment

Methods with a Case Study in

Southwest Saudi Arabia.

Sustainability 2023, 15, 4719.

https://doi.org/10.3390/su15064719

Academic Editor: Andrzej Walega

Received: 14 January 2023

Revised: 4 March 2023

Accepted: 6 March 2023

Published: 7 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Stochastic Rational Method for Estimation of Flood Peak
Uncertainty in Arid Basins: Comparison between Monte Carlo
and First Order Second Moment Methods with a Case Study in
Southwest Saudi Arabia
Nassir S. Al-Amri 1, Hatem A. Ewea 1 and Amro M. Elfeki 1,2,*

1 Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment & Arid
Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia

2 Irrigation and Hydraulics Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
* Correspondence: aelfeki@kau.edu.sa or elfeki_amr@yahoo.co.uk

Abstract: The flood peak is commonly estimated using the rational method for the design of hydraulic
structures. The method is mainly used in a deterministic context. However, there is often uncertainty
in flood predictions, which should be incorporated in the design of mitigation schemes. This research
proposes a methodology to cope with uncertainty in the rational method via the application of a
stochastic framework. Data from 158 storms, recorded in the period 1984–1987 in 19 subbasins in the
southwestern part of Saudi Arabia, were used to implement the proposed methodology. A tri-variate
log-normal probability density function was used to model the joint relationship between the rational
method parameters. The model considered the parameters as random variables. The uncertainty in
the rainstorms was represented by intensity or depth; the uncertainty in basin delineation (due to
the use of different digital elevation model resolution) was represented by the basin area; and the
uncertainty in the land use/land cover was represented by the runoff coefficient. The Monte Carlo
method was used to generate realizations of the peak flow and runoff volume with 95% and 99%
confidence levels from the input parameters. Although the correlation between the parameters was
weak, the model was capable of simulating the rational model parameters and estimating the peak
flow and runoff volume relatively well, and the generated realizations fell within the confidence
levels, except for a few marginal cases. The model can be used to generate peak flows and the
associated confidence limits in ungauged basins from the statistics of the input parameters using the
equations developed in this study.

Keywords: rational method; Monte Carlo method; uncertainty quantification; tri-variate distribution;
first-order-second-moment method

1. Introduction

Climate change in the Kingdom of Saudi Arabia (KSA) has been reflected in terms
of the frequency and severity of flooding [1]. These changes have resulted in massive
floods that have caused a great loss of property and human lives despite the improved
infrastructure, the installed forecasting systems, and new urban planning and management.
The magnitude of recent floods has impacted the society and led to an urgent need to
address flood hazards using an integrated approach. On the other hand, extensive, rapid,
and intense development is currently underway in the KSA as a result of Version 2030.
New major cities and expansion areas have been and are being developed in flood-prone
areas. As a result, the government has mandated flood studies as a requirement for all
construction projects, regardless of size.

In addition, Saudi Arabia is located in arid areas. It is well-known that arid areas
suffer from variable rainfall and losses, a decline in vegetation, and a high rate of erosion.
Zero flows prevail in stream networks most days of the year [2,3]. Infrequent flooding
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usually occurs as a result of high-intensity storms in a smaller portion of the watershed.
The variability of flooding varies greatly from year to year and from site to site.

Moreover, there is a lack of high-quality runoff data and broad-based flood estimation
methods in these regions [4,5]. Therefore, the use of simple design methods has become
necessary for estimating floods, as the use of design methods that require a large amount
of data is not feasible and impractical [6,7]. Many studies have used the rational method
because of its simplicity and reliance on a few data.

The rational formula dates back to the 1850s [8]. Because of its simplicity and limited
data requirements, the method is still widely applied in estimating the peak runoff dis-
charge of a small watershed responding to a storm [9]. The rational method (RM) is the
most commonly used technique to determine the maximum runoff volumes for the design
of urban drainage infrastructure [10]. The method was developed under the assumption
that rainfall intensity is uniformly distributed in time and space, and so are the losses or
infiltration losses. The traditional rational method is generally used, provided that the
duration of the precipitation storm, D, is equal to or greater than the concentration–time, tc,
to obtain the design peak discharge with design frequency [11].

The literature review shows that there are large number of studies that have investi-
gated this method. Titmarsh et al. [12] studied the values of the main parameter of two
simple flood estimation models, the runoff coefficient in the rational method and the curve
number in the Soil Conservation Service (SCS) method. Both parameters were derived
from 105 small agricultural catchments in Australia. The results show that the values
from the conventional manual differed from the derived values as the former yielded
inaccurate estimates of runoff volume and flood peaks. In addition, the average recurrence
interval and method of estimating the design rainfall period were found to have a greater
influence on the derived values than the land use and soil type. Chin [13] used the rational
method based on intensity–duration–frequency (IDF) curves to assess the hypothesis that
the maximum peak runoff discharge occurs as the duration of constant rainfall intensity is
equal to the concentration time. Their results showed that the peak runoff discharge was
underestimated when the constant rainfall intensity was estimated by a duration equal to
the concentration time.

In applying the traditional rational method, only the peak runoff discharge (Qp) is
obtained. However, in many cases, not only is the Qp needed, but the volume and the
runoff hydrograph for design are also required. Therefore, many modifications have been
made to the rational method to produce runoff hydrographs such as revisiting the rational
method for flood estimation in the Saudi Arabian environment to investigate the validity of
applying the method in large catchments in arid regions [14]. The authors in [14] extended
the method to capture not only Qp, but also the runoff volume. A total of 160 storms
recorded during the period 1984–1987 were analyzed in 19 sub-catchments ranging in size
from 170 to 4930 km2 in southwestern Saudi Arabia. It was found that the rational method
is not only limited to estimating the peak flows for small catchments (less than 5 km2), as
mentioned in the literature, but also provides very good matches with the observations of
peak discharges and volumes for larger catchments.

Dhakal et al. [15] applied the modified RM method to 90 catchments in Texas. It was
found that the method could be applied to catchments that exceeded the classical limit of a
few hundred acres. The method also obtained results not far from other unit hydrograph
methods. However, the application of the RM, in a deterministic sense, needs the prerequi-
sites of great experience and engineering judgment when applying this simple method.

Young, et al. [16] investigated the dependence of the runoff coefficient, C, on the
recurrence interval. The C values for 72 gauged rural Kansas catchments with areas in the
range between 0.45 and 76.6 km2 were tested using the common frequency approach. They
showed a dependence of C on the recurrence interval, however, there was no dependence
on the drainage area, indicating that the method can be used for much larger catchments.
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There is substantial uncertainty in the results of the rational method, which is due
to inherent uncertainties in the estimation of the input parameters [17], therefore, in this
research, we targeted this point.

The general objective of this study was to quantify the uncertainty that exists in the
modeling of hydrological basins while applying the simplest hydrological model, namely,
the rational method. The more specific objectives are: (1) to formulate the rational method
in a stochastic context rather than in the traditional deterministic one using the tri-variate
log-normal distribution of the rational method parameters (rainfall intensity or rainfall
depth, basin area, and runoff coefficient); (2) to apply the Monte Carlo (MC) method to
quantify the uncertainty in the rational method (i.e., estimation of the variance of the peak
flow and volume as a function of the variance of the rational method parameters); and (3) to
compare the results of the MC method with the analytical method based on the first-order
second-moment (FOSM) for the rational method developed by the authors in [14]. The main
novelty of this work resides in the quantification of uncertainty on flood peaks by means
of a Monte Carlo procedure in general, and the application in arid regions in particular.
To the best of the authors’ knowledge, this is the first attempt to consider the stochastic
approach of the rational method with a tri-variate joint probability density function.

The results of this research can be used to generate peak flows and volumes and their
uncertainties in ungauged basins in the Saudi arid environment using the formulas that are
developed in this research.

2. Study Area

Kottek et al. [18] classified the climate in Saudi Arabia as an arid environment. It is
characterized by very high temperatures in summer (>45 ◦C) and moderate temperatures
in winter (>25 ◦C). In most arid and semi-arid regions, rainfall is usually infrequent
and uneven, both spatially and temporally [19]. Therefore, prolonged rainfall–runoff
measurements are not inaccessible in most regions. Nevertheless, in 1983, the Ministry of
Environment, Water, and Agriculture (MEWA) in Riyadh, in cooperation with the company
Dames and Moore, selected five representative basins in southwestern Saudi Arabia to
collect extensive hydrologic data. Most hydrologic parameters such as precipitation, runoff,
groundwater, and climate and soil properties were measured. Our interest in this paper
was restricted to the rainfall–runoff data. Saudi Arabian company Dames and Moore [20]
installed hydrologic stations to measure the precipitation and resulting surface runoff
in five main basins including their sub-basins. The locations of the five representative
watersheds and sub-watersheds are shown in Figure 1. The areas of the major basins ranged
from 2277 to 4944 km2. Subbasin areas ranged from 2206.1 km2 in the Habawnah Basin
to 106.7 km2 in the Liyyah Basin. Three of these large basins drain into the Red Sea to the
west: the Al-Lith, Yiba, and Liyyah Basins. However, the rest drain eastward toward the
Empty Quarter or Rub al Khali, namely, the Habawnah and Tabalah Basins. Between 1984
and 1987, numerous rain gauges (100 gauge) and extensive water level recorders (19 units)
were installed at these basins.

Figure 2 shows a sample of rainfall and runoff events in the study area. Most of the
data regarding the basins such as basin areas, recorded events period, and date of recorded
events, number of records, and peak discharge (Qp) can be found in Ewea et al. [21,22].
The figure shows the features of the hydrographs in this arid basin. It has a steep limb rise
to the peak and a sudden drop with a recession limb that is also steep but can sometimes
have a long tail. These features are due to the high transmission losses in the ephemeral
streams, which have been indicated by some studies [23,24] as well as the water losses in
the fractured rocks in the mountainous area in the upstream region of the basins [25].
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Figure 1. Map of the basins and their subbasins at the runoff stations. Middle image is Saudi Arabia
and the geographic locations of the basins, going clockwise starting from the top right image: Tabalah,
Habawnah, Liyyah, Yiba, and Al-Lith Basins.

Geologically, the Asir Cliff is part of the Arabian Shield. They are Precambrian rocks
that are volcanic and metamorphic [26]. These rocks are characterized by their rigidity and
resistance to erosion and absorb rainwater. The slope of the Asir Cliff is steep toward the
west (Red Sea) and gradually descends toward the east (Rub al Khali). Such topography
likely has a significant influence on the precipitation patterns. Wheater et al. [27] assert that
annual rainfall in this area is closely related to elevation.

Examination of the rainfall data in the KSA shows that rainfall occurs in most months
of the year, but with varying intensity and frequency. However, three main periods showed
the highest intensity and frequency of occurrence. In winter (November/December), then
in spring (April/May), and in autumn (September). Most storms are characterized by the
features of convective storms: short duration, great depth, and a high degree of spatial
variability. Analysis of the precipitation data shows that most thunderstorms are localized
and consistent with the characteristics of thunderstorms noted by Eagleson et al. [28]. Most
rainstorms lasted 1 h or less according to Wheater et al. [27,29]. In some cases, the duration
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of the rain increased to more than an hour and occasionally ranged from 1 to 3 h. However,
in most cases, it did not exceed 4 h, except in rare cases. In Wadi Habawnah, heavier rainfall
sometimes occurs (once or twice a year).
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Figure 2. Sample data of the rainfall and runoff events in the studied basins. (Top left) Hyetograph
and hydrograph of the storm on 15 May 1984 for station B 413; (top right) hyetograph and hydrograph
of the storm on 26 January 1985 for station J 417; (bottom left) hyetograph and hydrograph of the
storm on 7 April 1986 for station N 407; (bottom right) hyetograph and hydrograph of the storm on
9 May 1987 for station SA 425.

Figure 3 shows the data of the storms in the basins during the recorded period.
Figure 3A is the total rainfall depth of each event in mm. Figure 3B shows the average
rainfall intensity over the storm duration in mm/h. Figure 3C shows the peak discharge
in m3/s, and Figure 3D shows the runoff volume in million m3. It is worth mentioning
that an extreme event that produced a peak flood of 3219.65 m3/s in the Yiba Basin was
omitted from the graph to visualize other data and considered as an outlier so that it did not
influence the analysis. Although only 4 years of data are available for the five representative
basins, a dataset of 158 was collected.
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Figure 3. Data of the storms in the basins in the recorded period: (A) rainfall depth in mm,
(B) average rainfall intensity over the storm duration in mm/h, (C) peak discharge in m3/s, and
(D) runoff volume in m3. Note: An extreme value of 3219.65 m3/s in the Yiba Basin was omitted
from the graph to visualize other data. Note that the units of the parameters in the figure is different
from the units in Table 1. This is because in the figure, they are used to present the values in the
traditional way, however, in the table, they are used for the computations since they are going to
transfer to logarithms.

Table 1. Summary statistics of the observed parameters of the rational method from the storms. Note
that the units of the parameters in the table is different from the units in Figure 3.

Parameter Mean SD CV Mean [ln()] SD [ln()] CV [ln()]

Area (m2) 1.23 × 109 9.58 × 108 0.78 20.64 0.80 0.04
Runoff Coefficient, C 0.07 0.07 0.99 −3.18 1.09 −0.35
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Table 1. Cont.

Parameter Mean SD CV Mean [ln()] SD [ln()] CV [ln()]

Rainfall depth, R (m) 0.0150 0.0150 2.55 −4.54 0.85 0.37
Average rainfall intensity, I (m/s) 1.05 × 10−6 1.2 × 10−6 1.22 −14.15 0.83 −0.06

Peak discharge, Qp (m3/s) 84.08 117.08 2.65 3.79 1.16 0.32
Runoff volume, V (m3) 8.04 × 105 1.92 × 106 2.08 12.92 1.20 0.10

ρ(lnC, lni)= 0.12
ρ(lni, lnA)= −0.46
ρ(lnC, lnA)= −0.30
ρ(lnC, lnR)= −0.10
ρ(lnR, lnA)= −0.29

Note: ln() means the logarithm of the parameter, and ρ(-, -) means the correlation coefficient.

Table 1 shows the summary statistics of the observed data of the storms required for
the rational method calculations. The statistics were made in the units given in the table to
be used directly in the rational method equation so that it produced the peak flow in m3/s
and the runoff volume in m3, so there was no need for unit conversion.

Since in the current methodology, the correlation coefficient (CC) between the parame-
ters is required, the CC was estimated and presented in Table 1. The CC indicates weak
negative correlations (CC < −0.5) for all parameters, except between the runoff coefficient
and the rainfall intensity, which showed a weak positive correlation. The low correlation
may be an indication of the small amount of data that we always face in arid regions.
Figure 4 shows the observed relationship between the logarithms of the parameters in the
rational method equation (i.e., basin area, rainfall intensity, runoff coefficient, and total
storm rainfall depth). These correlations were used later in the analysis.
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Figure 4. The observed relationship between the logarithms of the parameters in the rational method.
(Top left) Relationship between Ln (C) and Ln (i); (top right) is the relationship between Ln (A) and
Ln (i); (middle) relationship between Ln (A) and Ln (C); (bottom right) is the relationship between
Ln (R) and Ln (C), and (bottom right) is the relationship between Ln (A) and Ln (R).
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3. Methodology
3.1. Rational Method

The rational method formula [30] reads:

Q = CiA (1)

where

• A = the basin area;
• C = the runoff coefficient;
• i = the intensity of the rainfall; and
• Q = the peak flood.

Al-Amri et al. [14] derived a formula for the runoff volume, V, from the peak flow of
the rational method. The volume can be estimated as:

V = CRA (2)

He proved that the lognormal distribution is the best to fit the variability in the rational
method parameters, therefore, taking the logarithms of the equation reads:

ln (Q) = ln(C) + ln(i) + ln(A) (3)

Consequently, the runoff volume reads:

ln (V) = ln(C) + ln(R) + ln(A) (4)

The following analysis will use the logarithm transformation of the parameters and in
the end, the anti-logarithm was used to transform back to the original parameters.

3.2. Joint Probability Distribution of the Rational Method Parameters

In the current study, we considered the logarithm of the parameters of the rational
method as a multi-variate normal distribution since it has been proven by Al-Amri et al. [14]
that the marginal distribution of the parameters follows a lognormal distribution.

The p-variate probability density function is given by Mood and Graybill [31]:

f (X) =
1

(2π)p/2|Σ|1/2 exp
[
−1

2
(X− µ)T |Σ|−1(X− µ)

]
(5)

where

• X = the p-vector of variables;
• µ = the vector of the mean of the variables;
• Σ = the covariance matrix of the variables;
• p = the number of variables; and
• T = transpose operation of the matrix.

In the case of tri-variate distribution (ln(A), ln(C), and ln(i)) for the rational method
of the peak flow or (ln(A), ln(C), and ln(R)) for the rational method of the runoff volume,
we can use the following notations: X1 for ln(A), X2 for ln(C), and X3 for ln(i) or ln(R),
depending on which equation (Equation (1) or (2)) is under study.

Therefore, we shall have:

X =

X1
X2
X3

, µ =

µ1
µ2
µ3

, Σ =

σ2
11 σ2

12 σ2
13

σ2
21 σ2

22 σ2
23

σ2
31 σ2

32 σ2
33

 (6)

where
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• µj = the mean of the variable Xj and j = 1, 2, and 3;
• σ2

jj = the variance of the variable Xj;
• σ2

jk = the covariance between variables Xj and Xk where k = 1, 2, and 3.

The correlation coefficient between variables Xj and Xk is defined as:

ρjk =
σ2

jk√
σ2

jjσ
2
kk

(7)

For the tri-variate system, as in the current study, there are three correlation coefficients:
ρ12 = ρ23, ρ13 = ρ31, and ρ23 = ρ32.

3.3. Uncertainty Quantification

Two uncertainty quantification methods were implemented, namely: the first-order
second-moment (FOSM) and Monte Carlo Simulation (MC).

The FOSM is based on Taylor series expansion, which is truncated at the second-
order term. The variance of the output variable is related to the standard deviation of the
uncertain input parameters.

The FOSM was applied by Al-Amri et al. [14] to the rational method formulas for both
the peak flow and runoff volume and produced the following relationships:

σ2
ln Q = σ2

ln C + σ2
ln i + σ2

ln A + 2
(

σ2
ln C ln i + σ2

ln C ln A + σ2
ln A ln i

)
(8)

where

• σ2
ln Q = variance of the logarithms of the peak discharge;

• σ2
ln C = variance of the logarithms of the runoff coefficient;

• σ2
ln i = variance of the logarithms of the rainfall intensity;

• σ2
ln A = variance of the logarithms of the area;

• σ2
ln C ln i = covariance of the logarithms of runoff coefficient and the logarithms of the

rainfall intensity;
• σ2

ln C ln A = covariance of the logarithms of runoff coefficient and the logarithms of the
area; and

• σ2
ln A ln i = covariance of the logarithms of the area and the logarithms of the rainfall

intensity.

Additionally, the variance for the volume is expressed as:

σ2
ln V = σ2

ln C + σ2
ln R + σ2

ln A + 2
(

σ2
ln C ln R + σ2

ln C ln A + σ2
ln A ln R

)
(9)

• σ2
ln V = variance of the logarithms of the runoff volume;

• σ2
ln R = variance of the logarithms of the rainfall depth;

• σ2
ln C ln R = covariance of the logarithms of runoff coefficient and the logarithms of the

rainfall depth; and
• σ2

ln A ln R = covariance of the logarithms of the area and the logarithms of the rainfall
depth.

It can be noticed from Equations (6) and (7) that the variance in the logarithm of the
discharge or the logarithm of the volume is the sum of the variance of the logarithms of the
parameters C, i, R, and A and their covariances.

The probabilistic MC method is based on many random experiments. Concerning
the chosen distribution, the uncertain parameters are randomized and for each realized
parameter of the inputs (the rainfall intensity or depth, the basin area, and the runoff
coefficient), the corresponding output variables (the peak discharge and the volume) are
estimated; therefore, a set of output variables are generated. The ensemble mean, the
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ensemble standard deviation of the realized input parameters and the generated output
variables can be estimated. Additionally, a complete statistical analysis of the model results
is performed (such as the distribution percentiles, and upper and lower uncertainty bounds
at 95% and 99% confidence). The number of experiments must be sufficiently large to
ensure reliable results (1000 realizations are obtained).

The generation process follows the steps below [31]:
The first step is the generation of the realization of the basin area from the normal

distribution, N (µ, σ), of the logarithm of the basin area from the formula:

ln(A) = X1 = N(µ1, σ11) (10)

The second step is the generation of the realization of the runoff coefficient from the
normal distribution of the logarithm of the runoff coefficient from the formula:

ln(C) = X2 = N(µ2 + a, bσ22) (11)

where a and b are given by:

a = ρ12
σ11

σ22
(X1 − µ1) (12)

b =
√
(1− ρ12) (13)

The third step is the generation of the realization of the rainfall intensity or rainfall
depth from the normal distribution of the logarithm of the rainfall intensity or rainfall
depth from the formula:

ln(i) = X3 = N(µ3 + c, dσ33) (14)

where c and d are given by:

c =
ρ23 − ρ12ρ13

(1− ρ2
12)

σ33

σ22
(X2 − µ2) +

ρ13 − ρ12ρ23

(1− ρ2
12)

σ33

σ11
(X1 − µ1) (15)

d =

√√√√1− ρ2
23
− (ρ23 − ρ12ρ13)

2

(1− ρ2
12)

(16)

Therefore, the generation of the peak flow and the runoff volumes are estimated by
the anti-logarithms for the peak flow as:

Q = exp[ln(C) + ln(i) + ln(A)] (17)

and for the runoff volume:

V = exp[ln(C) + ln(R) + ln(A)] (18)

Since we obtained 1000 realizations in the MC simulations, the mean, variance, and
percentiles of the generated realizations in the log transformation are related to the original
mean, M, variance, Var, and percentiles, Xp by:

M = exp
[

µ +
σ2

2

]
(19)

Var =
[
exp(σ2)− 1

]
exp

[
2µ + σ2

]
(20)

Xp = exp
[
µ +
√

2σer f−1(2p− 1)
]

(21)

where er f−1 is the inverse of the error function and p is the percentile (0.01, 0.02, . . . ,
and 0.99).
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3.4. Uncertainty Analysis

The uncertainty analysis was performed based on the probabilistic forecast technique
described in the previous section. The generated realizations of the input and the predicted
outputs were plotted with the data to test the consistency of the model. Data visualization
as scatterplots offers the possibility to show the distribution of all random experiments to
examine the behavior of the model. Additionally, quantile plots of the data and the gener-
ated realizations with the line of perfect fit showed the goodness-of-fit of the distributions
of both the data and the realizations.

4. Results and Discussion

The following sections show the results of the study represented in some graphs, a
summary table, and discussion of the outcomes.

4.1. Comparison between the Data and the Generated Realizations of the Rational Method
Input Parameters

Figure 5 shows both the data of the parameters of the rational method and the cor-
responding realizations generated by the Monte Carlo method. Figure 5A is the basin
area, Figure 5B is the runoff coefficient, Figure 5C is the rainfall intensity, and Figure 5D
is the runoff depth. It should be mentioned that the generated realizations are not a time
series; these were projected for each basin for the same event. This was meant to show the
variability and it is assumed that the variability was the same over all the basins since we
had a limited number of events. Additionally, the confidence interval for each parameter
was plotted at both 95% and 99%. The stochastic model represents the variability reasonably
well, since both the data and the generated realizations fell within the confidence limits.
Even though there were some extreme data outside the confidence limits, a similar observa-
tion was noticed with the simulation, which confirms the statistical similarity between the
data and the simulation.

4.2. Comparison between the Data and the Generated Realizations of the Rational Method
Output Variables

Figure 6 shows a comparison between the data and the simulation of the output
variables of the rational method. Figure 6A shows the peak discharge. The runoff volume
is presented in Figure 6B. The confidence intervals for both the peak flow and runoff
volume are also presented at the 95% and 99% confidence levels. The results show that the
simulations fell within the 95% and 99% confidence levels for both Qp and V. Only limited
simulations were outside the limits. This was expected since the generation process can
produce some extreme events that go out of bounds. However, the majority were within
the bounds.

4.3. Comparison between the Correlation of the Parameters in the Rational Method and the
Generated Realizations

Figure 7 shows a comparison between the correlation of the parameters of the rational
method, in a log-transformation format, and the generated realizations. The blue dots are
the data, and the orange dots are the generated realizations. It can be seen that both the
data and simulations were pretty close to each other. Additionally, the trending lines for
both data (black line) and the realizations (green line) coincided with each other with some
marginal deviations and slightly different inclinations, which was due to the randomness
in the generated realizations. However, they provided reasonably good results.

4.4. Comparison between Probability Distributions of the Peak Flow, Runoff Volumes, and
the Realizations

Figure 8 (top) shows a comparison between the probability distribution of the peak
flow data, the theoretical log-normal distribution, and the probability distribution of the
MC realizations generated by three estimation methods of rainfall intensity, namely: (1) the
average intensity of the storms (i.e., the total rainfall divided by the rainfall duration);
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(2) the maximum intensity within the storm; and (3) the intensity calculated by the total
rainfall of the storm divided by the time of concentration [32]:

tc =
L0.09

S0.11 (22)

where tc is in hours; L is the length of the channel from headwater to the outlet in km; and
S is the average watershed slope.
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(Top) Peak flow, (bottom) runoff volume. The top image shows the comparison for the peak flow
with a different estimation of intensity (average intensity of the storm, maximum intensity of the
storm, and intensity calculated by the time of concentration of the basin based on [32]).

The results show that the probability distribution of the peak flow data and the theo-
retical log-normal distribution matched well. This was confirmed by the earlier study of
Al-Amri et al. [14]. The probability distribution of the MC realizations generated by the
time of concentration estimated by Albishi et al. [32] also matched very well with both the
data and the theoretical log-normal distribution, however, the probability distribution of
the MC realizations generated by the maximum intensity within the storm showed an over-
estimation of the probability distribution and in contrast, the MC realizations generated by
the average intensity showed an underestimation of the probability distribution. Therefore,
the use of the equation of the time of concentration estimated by Albishi et al. [32] is good
for simulating the peak flow in the rational methods in ungauged basins in the Saudi
arid environment.

Figure 8 (bottom) shows a comparison between the probability distribution of the
data of the runoff volume and the theoretical log-normal distribution and the probability
distribution of the MC realizations of the runoff volume. Both the data and the MC
realizations matched well with the theoretical distribution, which means that log-normal
distribution can be used to generate runoff volumes in ungauged basins.
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4.5. Comparison between the Quantiles of the Data and the Realizations

Figure 9 shows the quantile plots between the rational method parameters (C, i, A,
and R), peak flow, runoff volume, and the corresponding generated realizations. The figure
shows the quantiles of the data (on the y-axis) and the realizations (on the x-axis). Addi-
tionally, a line of perfect model fit (1:1) is presented. The figure showed good agreement
between the data and the realizations for the parameters. However, one may note that some
very extreme values in the realizations may occur. This is due to the tail of the long-normal
distribution, since a value of a very low probability of occurrence (i.e., at the tail of the
distribution) may be realized in the generation process, leading to what is sometimes called
an “outlier”. However, the majority of the data fell on line 1:1. This gives confidence to the
model, and therefore, the model can be used for predictions of ungauged basins that have
similar characteristics to these basins.
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4.6. Comparison between Statistics of the Data and the Statistics of FOSM and MC

Table 2 shows a comparison between the statistics of the data and the statistics of the
FOSM and MC simulations. The table shows that the FOSM and the MC based on the
average intensity underestimated the mean peak flow by 14 m3/s and 9 m3/s, respectively,
however, the MC based on the time of concentration (tc) estimated by Albishi et al. [32]
and the maximum intensity of the storm overestimated the mean peak flow in the data
by 34 m3/s and 37 m3/s, respectively. This indicates that the use of the MC method is
better than the use of FOSM for the estimation of the mean peak flow since FOSM is a
linearized approach and MC is a generalized one. However, for the standard deviation (SD)
of the peak flow, both FOSM and MC at various intensities overestimated the SD of the
peak flow in the data. The lowest overestimation was obtained by FOSM, and the highest
overestimation was obtained by MC based on the intensity estimated by the maximum
intensity. Regarding the coefficient of variation (CV), the MC with intensity based on [32]
had a CV = 1.6, which was closest to the CV in the data (CV = 1.4), indicating that the
generated values were in good agreement with the data, although the mean of the MC
overestimated the data. This was also confirmed by Figure 8 (top), where the distribution
of data almost coincided with the distribution based on intensity. This led to the conclusion
that the estimation of the time of concentration in these wadis by Albishi et al. [32] is
appropriate for peak flow estimation. This result confirms the earlier study by Al-Amri
et al. (2022) [14]. The CV of FOSM was 2.2, which provides the highest overestimation
among the MC with different intensities. Therefore, it is preferable to use MC rather than
FOSM. The FOSM can only produce a quick overview of the uncertainty before performing
MC simulations.

Table 2. Comparison between the statistics of the data and statistics of the FOSM and MC.

Item Data FOSM
MC (Intensity Based on
tc Calculated by Albishi

et al. Equation (22))

MC (Based on Max
Intensity within

the Storm)

MC (Based on
Average Intensity)

Mean Q (m3/s) 84.1 59.3 118.5 120.8 75.1
SD (Q) (m3/s) 117.1 133.2 186.2 203.8 137.2

CV (Q) 1.4 2.2 1.6 1.7 1.8

Mean V (m3) 804,009.0 409,373.5 NA NA 974,432.4
SD (V) (m3) 1,920,805.4 843,894.8 NA NA 1,837,235.7

CV (V) 2.4 2.1 NA NA 1.9

Note: SD (-) is the standard deviation, and CV (-) is the coefficient of variation.

Regarding the runoff volume, the FOSM still provided an underestimation of both
the mean and SD, however, the MC method proved values in almost the same range of
the data. However, the CV of the FOSM (2.1) was relatively close to the CV of the data
(2.4), while for MC, the CV was 1.9, which was slightly lower than the FOSM. This means
that both the FOSM and MC methods provide the same order of magnitude of the CV of
the data. Therefore, both of them provide an acceptable estimation from a practical point
of view.

5. Summary and Conclusions

In this paper, we analyzed the rational method equation in a stochastic context in
which the input parameters of the method (basin area, runoff coefficient, rainfall intensity,
and rainfall depth) were treated as stochastic variables described by a joint probability
distribution (tri-variate log-normal distribution) defined by the mean, variance of the input
parameters, and the covariance between the input parameters or their correlation coefficient.
The MC method was used to generate realizations of the input parameters, and the output
variables (peak flow and runoff volume) were estimated by the rational method equations.
Statistical analysis was performed between the data and the generated realizations, and the
following conclusions were drawn from the study:
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• The correlation coefficient between the rational method parameters (C, A, i, and R)
was relatively weak; it also showed a negative correlation except between C and i. The
correlation coefficient between A and i was the strongest (0.46), while that between C
and R was the weakest.

• Although the correlation between the parameters was weak, the model was capable
of simulating the rational model parameters and estimating the Qp and V reasonably
well. The reason is that the relations for the generation process do not depend only on
the correlations, but also depend on the mean and variance of the parameters.

• The log-normal distribution fit both the data and the generated peak flow well using
the rainfall intensity generated from the time of concentration equation developed by
some researchers in the literature. Furthermore, the log-normal distribution fit both the
data and the generated runoff volumes well. Therefore, the log-normal distribution
can be used as a model for the generation of the peak flow and runoff volume in
ungagged basins.

• The use of the FOSM method underestimates the data in comparison with the MC
method. Therefore, we recommend using the MC method with an intensity calcu-
lated with the tc equation [32], since the CV = 1.6, which was the closest to the data
(CV = 1.4). However, in terms of runoff volume, FOSM and MC provided a CV = 2.1
and 1.9, respectively, which were in the order of magnitude of the CV of the data
(2.4). Therefore, both methods provide an acceptable estimation from a practical point
of view.

• The generated realizations fell within the confidence levels, except for a few marginal
cases, which are expected due to the long tail of the log-normal distribution, and
consequently, an extreme event may occur.

• The model can be used to generate peak flows and the associated confidence limits in
ungagged basins from the statistics of the rainfall, basin area, and runoff coefficient
based on the equations developed in this study.
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