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Abstract: To protect the electromagnetic environment and understand its current state in a timely
manner, monitoring the electromagnetic environment has great practical significance, while massive
amounts of data are generated. It is crucial to utilize data mining technology to extract valuable
information from these massive amounts of data for effective spectrum management. Traditional
spectrum prediction methods do not integrate the prior information of spectrum resource occupancy,
so that the prediction of the channel state of a single frequency point is of limited significance.
To address these issues, the paper describes a dynamic threshold algorithm which mines bottom
noise and spectrum resource occupancy from massive electromagnetic environment data. Moreover,
the paper describes a joint time-frequency spectrum resource prediction algorithm based on the
time-frequency block residual LSTM (TFBRL) network, which utilizes hourly time closeness, daily
period, and annual trend as prior knowledge of spectrum resources. The TFBRL network comprises
three main parts: (1) a residual convolution network with a squeeze-and-excitation (SE) attention
mechanism, (2) a long short term memory (LSTM) model with memory ability to capture sequence
latent information, and (3) a feature fusion module based on a matrix to combine time closeness, daily
period, and annual trend feature components. Experimental results demonstrate that the TFBRL
network outperforms the baseline networks, improving by 31.37%, 16.00% and 13.06% compared
with the best baseline for MSE, RMSE and MAE, respectively. Thus, the TFBRL network has good
risk prediction performance and lays the foundation for subsequent frequency scheduling.

Keywords: big data mining; spectrum prediction; TFBRL network; deep learning

1. Introduction

Human civilization has progressed scientifically and technologically in recent years,
and the development process of computer technology has also accelerated, including auto-
matic modulation classification technology [1–4] in the field of communication, federated
learning technology for information privacy and security [5], complex electromagnetic
environment portrait technology [6], ADS-B (Automatic dependent surveillance-broadcast)
target recognition technology [7], information countermeasure attack and defense technol-
ogy [8,9], complex electromagnetic environment visualization technology [10] and transfer
learning technology [11], etc. These computer science research results in turn further drive
the progress of human society and technology [12]. In this process, big data records im-
portant information of various industries, which provides important information for risk
assessment and prediction as well as power allocation [13].

Big data mining technology based on mathematical, physical, and artificial intel-
ligence models has a significant impact in many areas. For instance, [14] developed a
three-parameter correlation model considering the chemical characteristics of a sample
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and the experimental operating circumstances to forecast the mass heat capacity for bio-
materials. The authors of [15] explored the interplay between interparticle attraction and
hydrodynamic stresses to elucidate the physical foundations of colloidal gel rheology.
In [16], the author used different features of the approximate signal and extracted compo-
nent information of the signal to perform flow classification and voidage prediction, which
greatly strengthens system performance prediction in the industrial sector.

In the monitoring process of the complex electromagnetic environment, with the
increase of monitoring time, massive amounts of electromagnetic environment big data can
be collected and stored [17]. The value carried by electromagnetic environment big data
information is sparse, and big data mining technology is needed to convert big data into
big insights. Currently the research on electromagnetic environment big data is evolving,
and several new big data mining and analysis methods have been introduced to this
field, including machine learning methods, to improve on the disadvantages of traditional
methods, given the mining method’s ability to predict and attain more complex insights,
such as spectrum resources sustainable risk prediction.

The restricted spectrum resources are currently scarce and congested due to the quick
expansion of numerous devices that use different frequencies [18]. In the original static
spectrum allocation strategy, the main user occupying a specific frequency band to work
will cause a spectrum hole [19], that is, the waste and inefficiency of spectrum resources,
which will lead to an increase in the sustainable risk of spectrum resources. A schematic
diagram of spectrum holes is shown in Figure 1. If the occurrence of spectrum holes can
be sensed and the activities of secondary users can be scheduled to the places where the
spectrum holes are located, it is possible to increase the usage of spectrum resources, more
users can work in an orderly and efficient manner within a limited spectrum range, and
the spectrum resources sustainable risk will be reduced. Spectrum prediction technology
can effectively predict the sustainable risk of spectrum resources. Therefore, the study of
spectrum prediction technology is of great practical significance.

Figure 1. Schematic diagram of spectrum holes.

In the process of studying the complex electromagnetic environment, the big data of
the electromagnetic environment is first obtained through spectrum sensing [20], and then
the relevant information such as the bottom noise and spectrum occupancy of the elec-
tromagnetic environment is obtained through a big data mining algorithm [21], and then
stored in the spectrum state memory. Then, based on the historical data, a statistical re-
gression model or the machine learning model which has emerged in recent years is used
for learning and prediction. In this way, with the assistance of prediction information,
spectrum sensing can lock a smaller electromagnetic environment spectrum monitoring
range and achieve sustainable and efficient usage.

Currently, spectrum prediction technology is receiving growing research attention
because of these benefits. In [22], the authors deduced a set of theories to analyze the
predictability of real electromagnetic spectrum data, proving that the electromagnetic
spectrum is predictable, which provides support for the achievability of subsequent electro-
magnetic spectrum prediction techniques. In early spectrum prediction technology, the AR
(autoregressive) model [23], the SVR (support vector regression) model [24] and the hidden
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markov-based model [25] received extensive attention and application. However, these
classical models have certain limitations and are greatly affected by feature engineering.
The authors of [26] established a characteristic function to model wireless signal strength in
the mobile service band and realized low error prediction on real spectrum data.

With the rise of machine learning technology, MLP [27], RNN [28], and LSTM [29]
have been extensively used in the area of spectrum prediction and obtained high prediction
accuracy. Subsequently, the attention mechanism was applied to spectrum prediction and
it can assign different weights to different frequency points and different time slots [30],
achieving accurate spectrum prediction. The prediction of multi-frequency points has
a greater application value than the spectrum prediction of single frequency points [31].
To further improve the performance of spectrum prediction, ref. [32] fused an external
factor fusion module to the spectrum prediction network TF2AN to model the weather
and temperature characteristics of the spectrum. In [33], the rates of user blocking and
waiting probability were reduced, and the spectrum utilization rate of CB-STSSN was
enhanced. The MTF2N constructed in [34] merged the CNN network and the LSTM
network to achieve multi-channel and multi-slot spectrum prediction. To solve the problem
of multiple training parameters and slow convergence of the machine learning model,
the model-enabled autoregressive network [35] was proposed, and the model has both high
frequency spectral predictability and fast model convergence speed.The authors of [36]
constructed the electromagnetic spectrum graph neural network, which effectively reduced
the spectrum prediction error of the multi-site.

As shown in the summary of the literature review in Table 1, there are few spectrum
prediction technologies presented in the current literature which can simultaneously predict
time-frequency two-dimensional spectrum occupancy, and most of the existing research
directly analogizes the prediction of spectrum occupancy to the prediction of time series,
thus paying no attention to the time closeness, period, and trend of spectrum occupancy,
which make spectrum prediction lose a lot of prior information. Therefore, to overcome this
disadvantage, this paper focuses on a study of time-frequency two-dimensional spectrum
occupancy image prediction.

The following is a summary of this paper’s major contributions.

• To obtain the sustainable risk information of the electromagnetic environment spec-
trum, this paper presents a dynamic threshold extraction algorithm for the bottom
noise and occupancy of the electromagnetic environment spectrum. The dataset con-
structed in this paper integrates multiple features of electromagnetic environment
spectrum data, such as time closeness, period, and trend, and adopts a matrix-based
multi-feature fusion method to realize the mining of deep electromagnetic-spectrum-
related information from a long-term time domain scale.

• This paper presents a model called TFBRL for spectrum prediction, which combines
the characteristics of deep-level spectrum data mining of deep residual networks
and the time series memory characteristics of the LSTM network, fully mining the
image characteristics and time series characteristics of the electromagnetic spectrum.
At the same time, this paper integrates the SE attention mechanism, and the designed
network improves the accuracy of electromagnetic environment spectrum occupancy
prediction, which can provide reliable materials for electromagnetic environment
spectrum resource sustainability risk prediction.

• The real-world dataset from Turku is cleansed and analyzed comprehensively. This
paper studies the two-dimensional image prediction of multiscale electromagnetic
environment spectrum occupancy and builds spectrum occupancy image prediction
network models under 20 spectrum image sizes with spectrum occupancy image sizes
ranging from 4 to 44. To demonstrate TFBRL’s superiority compared to five baselines,
experiments are carried out. Then, the effectiveness of TFBRL is also verified on the
dataset under various conditions.

The remaining portions of the paper are structured as follows: The big data mining
method of the electromagnetic environment is introduced in Section 2, including the bottom
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noise mining and spectrum occupancy mining based on an adaptive threshold. Section 3
introduces the TFBRL network designed in this paper for spectrum resource sustainability
risk prediction, and introduces the generation of network input tensor data as well as
the network structure and principles. The experimental findings and analysis of big data
mining for the electromagnetic environment and risk projection for the sustainability of
spectrum resources are presented in Section 4. The paper is concluded in Section 5.

Table 1. Summary table for the literature review.

Literature Year Methodology Results

[23] 2008 Autoregressive (AR) model AR model can greatly reduce the frequency conflict
between users.

[24] 2009 Support vector regression (SVR) model SVR model works better than other non-linear meth-
ods.

[25] 2018 Hidden markov-based model
Compared with the spectrum prediction based on
local and hard fusion, the model effectively reduced
the spectrum prediction error.

[26] 2013 Statistical model The statistical model significantly improved the long-
term average achievable throughput.

[27] 2010 Multilayer perceptron (MLP) MLP can achieve good prediction performance with-
out prior knowledge.

[28] 2013 Recurrent neural network (RNN) The model had less error prediction probability in
spectrum occupancy state prediction.

[29] 2017 Long short term memory (LSTM) The LSTM network had great and robust predic-
tion performance.

[32] 2021 Temporal-frequency fusion attention network
(TF2AN)

This structure showed considerable effectiveness for
spectrum prediction with sufficient data.

[33] 2021 Cloud-based satellite and terrestrial spectrum shared
networks (CB-STSSN)

The rate of user blocking and waiting probability
were reduced, and the spectrum utilization rate of
CB-STSSN was enhanced.

[34] 2022 Multi-channel temporal-frequency fusion network
(MTF2N)

The MTF2N outperformed LSTM, Seq2seq, and GRU
networks in terms of accuracy in the long-term spec-
trum forecast.

[35] 2022 Model-enabled autoregressive network The model had both high frequency spectral pre-
dictability and fast model convergence speed.

[36] 2023 Graph convolution network The model effectively reduced the spectrum predic-
tion error of the multi-site.

This work 2023 Time-frequency block residual lstm (TFBRL)

The TFBRL network outperformed the baseline net-
works, with an average improvement of 31.37%,
16.00%, and 13.06% over the best baseline of MSE,
RMSE, and MAE, respectively.

2. Electromagnetic Environment Big Data Mining
2.1. System Model

Due to the growing scarcity of radio spectrum resources and the low efficiency of
the currently available spectrum resources, allocating spectrum resources dynamically in
accordance with real-time spectrum utilization to optimize spectrum utilization efficiency
has become a focus of research. Figure 2 shows the system for spectrum data mining
and prediction considered in the paper. In this complex electromagnetic environment
monitoring, firstly, various kinds of electromagnetic environment monitoring equipment
deployed in the real electromagnetic environment collect electromagnetic spectrum data,
and then the electromagnetic environment big data mining algorithm will be used to
analyze valuable information such as electromagnetic environment noise and spectrum
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occupancy. In order to predict the risk of frequency spectrum sustainability, this paper
designs a TFBRL network model to model and predict the electromagnetic spectrum
occupancy obtained by big data mining, which provides knowledge guidance for secondary
users to dynamically access the idle spectrum, so as to promote the sustainable utilization
and utilization rate of the electromagnetic spectrum.

Figure 2. System for spectrum data mining and prediction.

2.2. Mining of Electromagnetic Environmental Noise

When performing spectrum monitoring, it is assumed that the deployed spectrum
monitoring equipment can simultaneously obtain the spectrum monitoring data of adjacent
n frequency points at a certain time. During m monitoring timeslots, m × n power spectral
density values can be obtained, which can be expressed as Equation (1).

S = (S1,S2,S3,S4, . . . ,Sn),S ∈ Rm×n (1)

Here, m refers to the monitoring time, totaling m time slots; n is the amount of
frequency points. The power spectrum value vector obtained by channel number 1 in m
time slots is denoted by S1.

Before determining the channel occupancy state threshold St
i,j , electromagnetic envi-

ronment noise needs to be determined. For electromagnetic environment noise mining, this
paper uses a variety of signal processing algorithms to analyze and mine noise evolution
trends. The bottom noise mining process is shown in Figure 3.

Bottom noise data is one of the most important data in electromagnetic spectrum big
data mining. The channel with high bottom noise is not conducive to signal transmission,
while the channel with low bottom noise is conducive to signal transmission. The key
problem in the bottom noise mining of the electromagnetic environment is the selection of
a noise dynamic threshold. The dynamic threshold selection of bottom noise mainly serves
to divide the original data into threshold values. First, the data with signal and the data
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without signal can be separated. Data without signal are regarded as the original bottom
noise data, while data with signal are regarded as a mixture of bottom noise and signal.

Figure 3. Bottom noise mining in the electromagnetic environment.

In this paper, a calculation method based on adaptive dynamic thresholds is used to
mine the bottom noise data. Because the corresponding services of different frequency
bands are different, this paper calculates different dynamic noise thresholds for differ-
ent frequency points. Algorithm 1 introduces the calculation method for dynamic noise
thresholds in the electromagnetic environment in detail. The calculation formula for the
electromagnetic environment bottom noise threshold T is presented in Equation (2).

T =
1

nk

nk

∑
j=1

M(j) + (Fmax − Fmin) ∗ k2 (2)

where nk is the number of lines with k1 ratio in raw spectrum data lines, after sorting the
spectrum data. M(j) is the sum of the energy of the reserved lines, k2 is the weight of the
range of the energy data, and Fmax and Fmin represent the maximum and minimum energy.

Algorithm 1 Dynamic threshold value of bottom noise

Input: Frequency domain sample set S = (S1,S2,S3,S4, . . . ,Sn),S ∈ Rm×n, weight k1 and
k2.
Output: Dynamic threshold value of bottom noise T = (T1, T2, T3, T4, . . . , Tn), T ∈ R1×n

1: for S f

(
S f ∈ Rm×1, f ∈ [1 : n]

)
in Frequency domain sample set X do

2: Sort spectrum data Si,j in S f in ascending order;
3: Take the spectrum value Si,j of the bottom k1(k1 ∈ [0, 1]) after sorting, and record it

as set M;
4: Define a f = ∑nk

j=1
Mj
nk , nk = int(m× k1), j = 1, 2, 3, . . . , nk;

5: Calculate the range of the sample S f = max
(
Si,j
)
−min

(
Si,j
)
;

6: Dynamic threshold value of bottom noise is Ti = a f + k2 × S f .

7: return Dynamic threshold T = (T1, T2, T3, T4, . . . , Tn)

The data below the threshold are fitted as the bottom noise after determining the
dynamic noise threshold of the electromagnetic environment. The fitting model selected
in this paper is the Fourier series, which has good fitting effect and short fitting operation
time. Therefore, the unified expression of electromagnetic environmental noise based on
the Fourier series obtained in this paper is shown in Equation (3).

F(ρ) = C0 +
n

∑
j=1

ξ j ∗ cos(j ∗ ρ ∗ w) +
n

∑
j=1

ζ j ∗ sin(j ∗ ρ ∗ w) (3)

Here, C0, ξ j and ζ j are constant.
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2.3. Mining of Electromagnetic Environmental Spectrum Occupancy

The spectrum usage is measured by calculating the spectrum occupancy. After model-
ing the electromagnetic environment bottom noise, the bottom noise value of any time slot
and any frequency point can be determined. The dynamic threshold of spectrum occupancy
is the bottom noise value plus 3dB, which is shown in Equation (4)

St
i,j = Snt

i,j + 3dB (4)

where Snt
i,j denotes the electromagnetic environmental bottom noise and St

i,j denotes the
dynamic threshold of spectrum occupancy. Then according to the following formula,
discrete mapping can be performed.

xi,j =

{
1, when Si,j > St

i,j

0, when xi,j ≤ St
i,j

(5)

where Si,j refers to power spectral density value and xi,j represents the channel occu-
pancy state.

Then the spectrum occupancy SO is the ratio in Equation (6). Here, T0 is the duration
that the spectrum power spectral density value is higher than the spectrum occupancy state
threshold, and TT is the total monitoring duration.

SO =
T0

TT
(6)

3. Prediction of Spectrum Resource Sustainability Risk Based on TFBRL Network

The sustainability risk of spectrum resources is closely related to the spectrum occu-
pancy of current spectrum resources. For spectrum resources with high spectrum occu-
pancy, frequency planning will become more crowded, and interference or conflict between
different frequency using devices will easily occur, which will reduce the sustainability of
spectrum resources and increase the sustainability risk. On the contrary, for a frequency
band with low spectrum occupancy, frequency planning is less and is generally idle, so
the sustainability risk of spectrum resources is low. Therefore, spectrum occupancy can be
used as an important indicator to reflect the sustainability risk of spectrum resources.

In the second section, this paper reported data mining on the real electromagnetic
environment big data and obtained the mining information such as spectrum occupancy.
Here, the electromagnetic spectrum occupancy data obtained from the mining is processed
into a spectrum occupancy time-frequency block, which is composed of m time slots and
n frequency points. The acquisition diagram of each time-frequency block is shown in
Figure 4. Three multi-scale sliding windows are adopted to obtain the spectrum occupancy
image in the time and frequency domain, and multi-scale time-frequency block data are
constructed in the form of multidimensional tensors. In the process of multi-scale time-
frequency block construction, each time-frequency block tensor is composed of three
dimensions: one is the data of adjacent past time to simulate closeness, the other is the
data of the same period of the previous day to simulate period, and the third is the data
of the same time period of the previous year to simulate trend and to jointly predict time-
frequency spectrum occupancy image blocks. The generation steps of the time-frequency
block is displayed in Figure 4.

The TFBRL network is comprised of three important components modeling time-
frequency closeness, period and trend. The architecture of the TFBRL network is presented
in Figure 5.
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Figure 4. Construction process of time-frequency block data. TFblock: time-frequency block.

Figure 5. TFBRL architecture. Conv2d: Convolution; TFBRL: Time-frequency Block Resnet Lstm.

The main components of the network are convolutional residual network modules,
with the SE attention mechanism, long short memory network module and matrix based
fusion module. First, the convolutional neural network is introduced to extract latent
features in the three types of time-frequency block data, and then residual modules are
introduced to reduce the disappearance of features. Before being input into the LSTM
network, the two-dimensional time-frequency features obtained from mining are flattened
into one-dimensional features. The one-dimensional features use the memory character-
istics of the LSTM network for time series to mine the feature information of time series.
Finally, the matrix-based fusion module fuses various features from the three components
with a matrix of different weights. The three main modules of TFBRL are introduced in
the following.
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3.1. Convolutional Residual Network Module with SE Attention Mechanism

1. Convolution. The spectrum occupancy data of the electromagnetic environment
usually contains a large number of time slots and frequency point spectrum resource
information. There will be an influence of and correlation between different frequency
points and different time slots’ spectrum resource information. This hidden correla-
tion feature can be effectively extracted through a convolutional neural network. The
convolutional neural network has a strong ability to capture the information of adja-
cent time and frequency points in time-frequency blocks. Since the spectrum resource
information of different frequency points may have similar rules, this paper uses a
multi-layer convolutional neural network to capture the dependence of non-adjacent
frequency points. Suppose that the three time-frequency occupation image blocks
used to model time closeness, period and trend are Xi

c, Xi
p, Xi

t ∈ RC×H×W respectively.
The closeness tensor data will have the following formula (7) after convolution:

X(m)
c = ζ

(
W(m)

c ∗ X(i)
c + b(m)

c

)
(7)

where ∗ denotes the convolution; ζ is an activation function, e.g., the rectifier ζ(z) =
max(0, z); and W(m)

c and b(m)
c are learnable parameters.

2. Residual Unit. Although the activation function is applied, the very deep convolution
network will make the network training effect decline. To mine the spectrum resource
information of electromagnetic environment big data, a relatively deep network is
needed to capture the huge time-frequency dependency. Therefore, this work uses
a residual learning network in the model. In the TFBRL network, residual units are
stacked and a residual unit can be expressed through formula (8)

X(m+1)
c = X(m)

c + F
(

X(m)
c ; θ

(m)
c

)
(8)

where F is the residual function, and θ
(m)
c includes all learnable parameters in the mth

residual unit.
3. SE Attention Module. This paper introduces the squeeze-and-excitation (SE) attention

module, which aims to improve modeling ability by enabling the model to dynami-
cally modulate the weight of each channel, thereby recalibrating the features. Squeeze
and excitation are at the core of the SE attention mechanism. In Figure 6, the operation
of the first box is squeeze. Specifically, it keeps the number of channels of the input
feature unchanged, but interprets the size of the feature map of each channel as a set
of local descriptors, and its statistics can express the entire image. The calculation
process of squeeze is shown in Formula (9)

η = Fsq(ℵc) =
1

H ×W

H

∑
i=1

W

∑
j=1
ℵc(i, j) (9)

where ℵc(i, j) are the network’s characteristic values.
In Figure 6, The operation in the second box is excitation. The final output value
is mapped to the range of 0–1. The calculation process of excitation is shown in
Equation (10).

δ = Fex (η, W) = σ(g(η, W)) = σ(W2δ(W1η)) (10)

Here, the vector η obtained in the previous step is processed through two fully
connected layers, W1 and W2, to obtain the desired channel weight value δ. After the
two fully connected layers, different values in s represent the weight information
of different channels, giving different weights to channels. The final operation is to
multiply the calculated weight matrix and the input characteristic tensor, and assign
the weight to the input characteristic tensor.
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Figure 6. SE architecture. Squeeze: Global Information Embedding; Excitation: Adaptive Recalibration.

3.2. Long Short Term Memory Network Module

One variety of recurrent neural network is the LSTM (RNN). It works especially well
for processing and forecasting occurrences with significant time series delays. In contrast
to other RNNs, LSTM models use three gates and memory units to overcome gradient
disappearance (see Figure 7). The forget gates play a role in determining which information
from previous memory units to retain. The input gates make the determination of what
data from the current input should be added to the memory unit as important. The output
gates then regulate the model’s following concealed state.

Figure 7. LSTM architecture. (a) Forget gate; (b) Input gate; (c) Memory unit; (d) Output gate.

(1) Forget gate: This step decides which information to discard, and its computation
method is demonstrated in Equation (11).

S f t = fsigmod (κF · [vt−1, ϕt] + $F) (11)

Here, [vt−1, ϕt] is the splicing of the output of the previous moment and the input of
this moment. S f t is the output of the forgetting gate.

(2) Input gate: This gate plays a crucial role in determining the extent to which new
information should be incorporated.

Sit = fsigmod (κI · [vt−1, ϕt] + $I) (12)

(3) Memory unit:
Smt = tanh(κM · [vt−1, ϕt] + $M) (13)
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Smt = S f t ∗ Smt−1 + Sit ∗ Smt (14)

In the formula, the ∗ sign is used in multiplication operations between every element.
The status of the cells in LSTM is changed from Smt−1 to Smt.

(4) Output gate:
Sot = fsigmod

(
κg · [vt−1, ϕt] + $g

)
(15)

Ψt = Sot ∗ tanh(Smt) (16)

Here, the result of the LSTM model is represented by Ψt .

3.3. Matrix-Based Fusion Module

After the above operations, time-frequency image features and time series features
were extracted from closeness, period, and trend spectrum data. Next, features in the
three types of input data need to be fused. In this paper, we chose matrix-based fusion,
and assign different components to different weight matrices. Finally, the fused results
will be used to predict the two-dimensional spectrum occupancy image through the tanh
activation function.

4. Experiments and Results
4.1. Dataset Introduction

The dataset selected is the complex electromagnetic environment monitoring dataset
of 5GXCAST [37] in the real environment of Turku [38], Finland. We selected 2017 and
2018 data for electromagnetic environment big data mining and spectrum sustainability
risk prediction.

The measurement frequency band range, electromagnetic environment monitoring
spectrum resolution, and time slot interval information of the original dataset are shown
in Table 2.

Table 2. Raw measurement parameters of the dataset.

Band Number Freq. Range Resolution Bandwidth Scan Interval (s)

1 30–130 MHz 78.125 kHz 10
2 130–800 MHz 39.0625 kHz 3
3 650–1200 MHz 39.0625 kHz 3
4 1200–3000 MHz 39.0625 kHz 3
5 3000–6000 MHz 78.125 kHz 3

In order to simplify the experiment, this paper mainly conducts big data mining and
spectrum prediction for the spectrum with a frequency range of 2400–2700 MHz.

Before data mining of electromagnetic environment big data, to provide high-quality
mining data raw elements, the electromagnetic environment data must be preprocessed.
The data preprocessing steps are as follows.

• Missing and abnormal data handling: As there are no data missing in the original elec-
tromagnetic spectrum data, there is no need to complete the missing electromagnetic
spectrum data. For the abnormal data values that seriously deviate from the overall
data, this paper uses the average power spectral density value of the surrounding
3× 3 area around it to replace it;

• Raw data downsampling: The original electromagnetic spectrum data has a very fine
resolution, which makes the data values sparse, computation heavy and mining inef-
ficient. On the other hand, since the original spectrum data is easy to mix with the
electromagnetic environment noise during acquisition, the data with the original time
domain resolution of 3 s are averaged every 20 time slots to remove equipment noise
to a certain extent. The analyzed data have a 1 min time domain resolution as a result.
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The processed data have a frequency precision of 976.5625 kHz because the power
spectral densities of 25 nearby frequency points are averaged in the frequency domain.

4.2. Big Data Mining Results
4.2.1. Bottom Noise Mining Results

For this section, the 2400–2700 MHz spectrum data of one week in 2018 are selected
as the experimental dataset. This frequency range includes the ISM (Industrial, Scientific,
and Medical) service frequency band and the fixed communication frequency band, so
there are obvious differences in the energy of different frequency points. The energy of
occupied frequency points is much higher than that of idle frequency points.

Figure 8 (exported from MATLAB R2020b software) is a three-dimensional display
of the original power spectral density data collected in this frequency band. The energy
values in the 2400–2500 MHz and 2600–2700 MHz bands are high since this band is an ISM
service band and fixed communication band, and the service is busy. The energy values in
the 2500–2600 MHz band are low, because there is no fixed communication service in this
band, and the frequency points are idle. Figure 9 (exported from MATLAB software) is a
three-dimensional image of the electromagnetic environment bottom noise extracted by
the adaptive threshold algorithm. The comparison between the two figures shows that the
bottom noise mining algorithm designed by this paper can separate the signal from the
bottom noise to a certain extent in the high-energy area while retaining the energy data in
the low-energy area.

Figure 8. Spectrum energy in 2400–2700 MHz.

Figure 9. Bottom noise in 2400–2700 MHz.
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4.2.2. Mining Results of Electromagnetic Environment Spectrum Occupancy

For this part, the 2500–2600 MHz spectrum data of eight days in 2017 and 2018 is
selected as the experimental dataset. This frequency band range includes the ISM service
frequency band and fixed communication frequency band. The evolution trend analysis of
its spectrum occupancy shows a daily periodicity. Figure 10 (created in MATLAB software)
shows the evolution of spectrum occupancy over eight days.

Figure 10. Spectrum occupancy evolution at 2500–2600 MHz over eight monitoring days in 2017
and 2018.

In Figure 10, the red area represents high spectrum occupancy and spectrum resource
congestion, which means that the risk of spectrum resource sustainability is high; the blue
area represents low spectrum occupancy and idle spectrum resources, which means that
the sustainability risk of spectrum resources is low. The comparison of spectrum occupancy
between 2017 and 2018 shows that, as time goes by, spectrum resources become crowded
and busy due to the increase of frequency equipment. From the eight-day spectrum
occupancy evolution in 2018, it can be seen that the red and blue spectrum occupancies
intersect, that is, the busy and idle spectrum resources intersect, which is similar to the
law of human activities. If robust and efficient prediction of spectrum occupancy can be
achieved, spectrum resources can be reasonably scheduled to reduce the risk of spectrum
resource sustainability.

4.3. Prediction of Spectrum Resource Sustainability Risk Based on TFBRL Network
Experiment Results
4.3.1. Hyper-Parameters and Evaluation Indicators

The dataset was split into two non-overlapping parts, including training and test data,
with a ratio of 7:3, in order to train the TFBRL model created in this article. The size of
all convolution cores is 3 × 3. There are three residual convolution network units stacked,
and the number of memory units of the LSTM network varies with the predicted time-
frequency block size. The predicted multi-scale time-frequency occupancy image block size
was set as L ∈ {4, 6, 8, ..., 44}, with a total of 20 spectrum image sizes. The batchsize was set
to be 32 and epoch to 50.

In the evaluation process,the predicted time-frequency occupancy image block is
compared with the real time-frequency occupancy image block. The TFBRL model is
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evaluated using three commonly used regression task metrics, including MSE (mean
square error), RMSE (root mean square error), and MAE (mean absolute error).

4.3.2. Comparison with Baselines

In this section, the prediction performance is presented compared to the LSTM,
the Seq2seq, the Resnet(Residual network), the RNN, the CNN-LSTM and the TFBRL model.

• LSTM: The LSTM network used for modeling sequential data consists of two LSTM
layers with hidden units, 32 and 16, respectively.

• Seq2seq: The Seq2seq network chooses a layer of the RNN network for its encoding
layer and decoding layer, respectively. The RNN network has 32 hidden units.

• Resnet: The Resnet network with residual blocks using jump connection is easy to
optimize, and can alleviate the problem of gradient disappearance.

• RNN: A layer of RNN network with short-term memory ability is used. The number
of hidden units in the RNN network is 32.

• CNN-LSTM: The CNN-LSTM network not only has the feature extraction ability of
CNN networks, but also has the long-term memory characteristics of the LSTM net-
work. The model has three layers of two-dimensional convolutional neural networks
with a 3 ∗ 3 convolution kernel.

4.3.3. Experimental Results

This software architecture for the experiment consists of Pytorch, a Python program
created with Pycharm 2022.1.2 software. The Adam training algorithm was used to build the
model on the GeForce RTX 3090 GPU from Nvidia. In order to be fair, six network models
were the subject of several experiments in this paper. The experimental results are displayed
in Tables 3 and 4, with the average of the results retained. Further, Figures 11–13 display
how the predicted picture size affected the TFBRL network’s and the baseline networks’
prediction performance. To measure the network model’s prediction performance from
various angles, three distinct evaluation indicators were used.

Table 3. The baselines and the designed model’s average prediction error.

Network MSE RMSE MAE

RNN 0.30286 0.51829 0.42873
LSTM 0.33994 0.53536 0.45775

CNNLSTM 0.31717 0.52560 0.44731
Seq2seq 0.30583 0.52100 0.43084
Resnet 0.24220 0.46202 0.38154
TFBRL 0.16623 0.38808 0.33172

Table 4. Average predicted performance improvement percentage.

Network Increase Percentage of MSE Increase Percentage of RMSE Increase Percentage of MAE

RNN 45.11% 25.12% 22.63%
LSTM 51.10% 27.51% 27.53%

CNNLSTM 47.59% 26.17% 25.84%
Seq2seq 45.65% 25.51% 23.01%
Resnet 31.37% 16.00% 13.06%
TFBRL 0.00% 0.00% 0.00%

Table 3 shows a comparison of the prediction performance between the TFBRL model
and the baseline networks. The error value in the table is the average of the prediction
error of time-frequency image blocks at various scales. Apparently, the TFBRL designed
in this paper has the best prediction performance with the minimum prediction error
value. Table 4 shows the average improvement percentage of TFBRL network prediction
performance. The table shows that the TFBRL outperforms baseline networks to different
degrees, and Table 4 shows average improvements on MSE, RMSE, and MAE of 31.37%,
16.00%, and 13.06%, respectively, over the best baseline.
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Figure 11. MSE vs. Length of predict step.

Figure 12. RMSE vs. Length of predict step.

Figure 13. MAE vs. Length of predict step.

Figures 11–13 show the MSE RMSE and MAE values of network prediction errors of the
TFBRL network and other baseline networks under different prediction steps. The different
prediction steps represent the size of multiscale time-frequency occupancy image blocks.

Overall, the predictive performance of the network degrades as the block size of
the predicted time-frequency image increases. By comparing the prediction performance
of different networks, it can be found that the prediction performance of networks with
residual structure is relatively more robust. This demonstrates that the residual struc-
ture can reduce the transmission of network spectral characteristics between network
layers, lower the transmission of network spectral characteristics between network levels,
and enhance prediction performance. The TFBRL network prediction developed in this
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article is more precise and stable when compared to the prediction performance of other
baseline networks.

4.3.4. Analysis of Parameter Sensitivity

The TFBRL is superior to the traditional shallow single network model since it incor-
porates the residual module and the memory characteristics of the LSTM network. We then
compare the TFBRL model and its variations, which are indicated as follows, using the
MSE, RMSE, and MAE metrics:

• TFBRL: Model described in this paper;
• TFBRL-rSE: The TFBRL network without SE attention.

Figures 14–16 show the MSE RMSE and MAE values of network prediction errors of
TFBRL and TFBRL without SE attention. The figures clearly show that the evaluation values
of the three prediction error indicators indicate superior performance of the model designed
in this paper compared to its variants. Although the performances of the TFBRL model
and TFBRL model without attention mechanism fluctuate under different prediction steps,
in general, the TFBRL model has lower prediction error and better prediction performance.

Figure 14. MSE vs. Length of predict step for the TFBRL and the TFBRL-rSE.

Figure 15. RMSE vs. Length of predict step for the TFBRL and the TFBRL-rSE.
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Figure 16. MAE vs. Length of predict step for the TFBRL and the TFBRL-rSE.

5. Discussion and Conclusions

A dynamic threshold algorithm was proposed in this paper to mine bottom noise
and spectrum resource occupancy of electromagnetic environment big data. Compared
with the traditional, manually defined fixed threshold, the dynamic threshold algorithm
avoided the subjectivity inherent in manually selected thresholds.

A novel spectrum resources sustainable risk prediction algorithm based on the TFBRL
network was presented in this paper. The proposed algorithm utilized the hourly time
closeness, daily period, and annual trend as prior knowledge of spectrum resources for
spectrum resource sustainability risk prediction. The TFBRL combines the feature extraction
ability of a convolutional residual network and the time series analysis ability of an LSTM
network, and fuses the channel attention mechanism to improve prediction performance.
The simulation results for multiscale spectrum occupancy image prediction indicate that
the proposed algorithm outperforms the baseline network model, showing an average
improvement of 31.37%, 16.00%, and 13.06% over the best baseline model for the MSE,
RMSE, and MAE metrics, respectively. Therefore, the TFBRL network is more suitable for
two-dimensional spectrum occupancy image prediction.

In subsequent research, we can rely on the mining and prediction ability described
here to guide specific frequency use behavior and spectrum management strategies, so as to
enhance the sustainable development ability of spectrum resources and achieve reasonable
allocation and scheduling of spectrum resources.
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Abbreviations
The following abbreviations are used in this manuscript:

TFBRL Time-frequency block residual lstm
SE Squeeze-and-excitation
AR Autoregressive
SVR Support vector regression
MLP Multilayer perceptron
RNN Recurrent neural network
TF2AN Temporal-frequency fusion attention network
CB-STSSN Coud-based satellite and terrestrial spectrum shared networks
MTF2N Multi-channel temporal-frequency fusion network
PU Primary spectrum user
SU Secondary spectrum user
IIT Illinois Institute of Technology
ISM Industrial, Scientific, and Medical
Seq2seq Sequence-to-sequence
Resnet Residual network
CNN-LSTM Convolutional neural network-Long short-term memory
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