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Abstract: A detailed nonlinear finite element model was established based on completed experiments
to investigate the behavior of a blind-bolted T-stub composite joint that connects a composite beam
to a concrete-filled square tube column. This was accomplished by comparing the experimental
results and the finite element simulation results using the hysteresis curve, failure mode, plastic
deformation and strain development of the T-stub to ensure the reliability and accuracy of the finite
element model. A parametric study was carried out on the base model to expand the library of test
data. It was observed from the comparison that the proposed nonlinear FE model predicted the
behavior of the composite joint. The wall thickness of the column and reinforcement ratio had a
significant influence on the ultimate bending moment of the composite joint and the performance
of the composite joint was mainly controlled by the reinforcement ratio when the concrete slab was
under a positive bending moment. The flange of the T-stub, the web of the T-stub and the axial
compression ratio had little effect on the performance of the composite joint.

Keywords: blind bolt; concrete-filled steel tubular column; T-stub; composite joint; finite element analysis

1. Introduction

The damage investigation of the Beiling earthquake in the United States in 1994 and
the Kobe earthquake in Japan in 1995 showed that the welded rigid joints of the steel-frame
beams and columns were seriously damaged, while semi-rigid joints formed by bolted
connections were relatively rare. This led researchers to re-recognize beam–column con-
nection joints and to conduct a large amount of research on semi-rigid joints composed of
connectors (such as end plates, T-shaped steel, angle steel, etc.) and bolts. For instance,
J. Lee [1] carried out monotonic loading tests on square steel tubular columns connected
by one-sided bolted T-shaped steel, established a three-dimensional finite element model,
compared the test results with the finite element simulation results and evaluated the
joints in accordance with European specifications. This shows that this type of node is a
semi-rigid connection. Furthermore, Wang Jingfeng [2] carried out four full-scale model
tests of concrete-filled steel tubular columns with single-sided bolted end-plate connections,
established a reliable finite element model and studied the influence of multiple factors
on the moment-bearing capacity and rotational stiffness of composite joints by changing
parameters. H. T. Thai [3] studied the performance of single-sided bolted end-plate connec-
tions between concrete-filled steel tubular columns and steel–concrete composite beams
through finite element software and studied the performance of joints with shear studs and
the reinforcement ratio by changing the parameters.

At present, there are three problems in the research on most semi-rigid joints. First,
steel columns are mostly H-shaped and the research on steel columns with closed sections,
such as square steel-tube columns, is less developed. When faced with steel columns with
closed sections, such as square steel-tube columns [4], it is necessary to weld or install hand

Sustainability 2023, 15, 4790. https://doi.org/10.3390/su15064790 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15064790
https://doi.org/10.3390/su15064790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0000-2744-9826
https://doi.org/10.3390/su15064790
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15064790?type=check_update&version=1


Sustainability 2023, 15, 4790 2 of 18

holes on the column wall, which greatly reduces the construction efficiency. Furthermore,
the welding quality is difficult to ensure, as it is affected by many factors and the seismic
performance of the joints is uneven [5]. In recent years, the defects caused by welding
have been overcome with the development of unilateral high-strength bolts [1]. Blind high-
strength bolts only need to be installed from one side, which is convenient for construction
and solves the problem that ordinary high-strength bolts are difficult to apply to closed
sections, such as square steel-pipe columns. A second problem is that, in the selection of
connectors, domestic and foreign scholars seem to prefer to use end-plate connections [6]
and the research on the use of T-shaped steel as the connector is relatively undeveloped.
Finally, most of the tests did not consider the combined effect of concrete floor slabs. As the
main load-bearing member, the reinforcement in the slab has a great impact on the seismic
performance of the joint [3].

In order to expand the test database on semi-rigid joints with the use of T-shaped steel
as the connector and launch the corresponding design standards, this paper establishes
a refined three-dimensional finite element model of single-sided bolted T-shaped steel
connection square steel tubular columns and steel–concrete composite beam joints based
on completed tests and verifies the reliability and accuracy of the finite element simulation
results from multiple perspectives with the test results. Based on the parameters of the
basic model, the influence of the T-steel web, T-steel flange, square steel tubular column
wall, axial compression ratio and reinforcement ratio on the seismic performance of this
type of composite joint are analyzed.

2. Experimental Program
2.1. Test Specimens

The joint specimens in the test were selected from the edge column joints of the typical
eight-layer steel frame structure. The main design parameters are shown in Figure 1a. The
T-stub was used in the connector; the specific size of T-stub is shown in Figure 1b. In the
process of its assembly, the T-stub steel was connected with the square steel-tube column
through the ordinary 10.9 friction high-strength bolts, after which the beam was connected
with the T-stub steel through the nested single-sided bolts, the diameters of which were
16 mm. The steel tube column featured internal partition (all the stiffeners and internal
partitions in the specimen were 10 mm) and the diameter of the holes in the plate was
100 mm for the pouring of core concrete. The width of the concrete floor was 1000 mm, the
thickness of the concrete protective layer was 15 mm and the double-layer bidirectional
reinforcement is adopted. The HRB335, rebar measured 8 mm in diameter and 150 mm in
spacing. According to the partial shear design, the round-headed shear bolts, which had
diameters of 16 mm, heights of 85 mm and spacing of 150 mm, were arranged along the
center line of the beam. The material properties of steel are shown in Table 1. The measured
average compressive strength of concrete cube was 34.7 Mpa and the elastic modulus was
28,514 N/mm2.

Table 1. Material test results.

Component T mm fy MPa fu MPa E GPa A (%)

Column
web of beam

flange of beam

10 345 491 209 30
6 280 442 196 35
9 252 440 199 32

web of T-stub 9 271 447 227 35
flange of T-stub 14 268 447 197 33
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2.2. Loading Device and Loading System 
The schematic diagram of the test model and the loading site are shown in Figure 2 

and Figure 3, respectively. The bottom of the square steel-tube column of the specimen 

was connected with unidirectional hinge support; in turn, the hinge support was con-

nected to the rigid ground through anchor bolts. The top of the column and the end of the 

beam connected with the 2000-kilonewton hydraulic servo actuator and the 1000-ki-

lonewton hydraulic servo actuator, respectively. During the loading test, the hydraulic 

servo actuator, with a capacity of 2000 kN, was arranged to apply vertical load with an 

axial compression ratio of 0.25, which remained constant throughout the test. The hydrau-

lic servo actuator, with a capacity of 1000 kN, was used to apply the load to each beam 

end in the vertical direction. 

The loading system featured displacement control. Before the specimen yielded, one-

thousandth of the beam length, namely 1.65 mm, was taken for each stage and each stage 

was cycled once. When the component reached the yield strain, which was measured in 

the material test, the specimen was considered to yield and the displacement at this time 

was defined as yield displacement Δy. In order to prevent the rapid development of con-

crete cracks, the specimens were loaded at times of yielding displacement, i.e., 1Δy, 1.5Δy, 

2Δy⋯⋯. Each level was cycled three times. The hydraulic servo actuator protrusion was 

positive and the indentation was negative. When the load dropped to 85% of the ultimate 

load or the component failed, the test ended. 

Figure 1. Parameters of composite joint. (a) design parameters. (b) specific size of T-stub.

2.2. Loading Device and Loading System

The schematic diagram of the test model and the loading site are shown in Figures 2 and 3,
respectively. The bottom of the square steel-tube column of the specimen was connected
with unidirectional hinge support; in turn, the hinge support was connected to the rigid
ground through anchor bolts. The top of the column and the end of the beam connected
with the 2000-kilonewton hydraulic servo actuator and the 1000-kilonewton hydraulic
servo actuator, respectively. During the loading test, the hydraulic servo actuator, with a
capacity of 2000 kN, was arranged to apply vertical load with an axial compression ratio
of 0.25, which remained constant throughout the test. The hydraulic servo actuator, with a
capacity of 1000 kN, was used to apply the load to each beam end in the vertical direction.
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and Poisson’s ratio was 0.3. For all of the steels, we adopted von Mises’ yield criterion and 

Figure 2. Test model. Note. 1. Rigid foundation and reaction wall; 2. beam of reaction frame;
3. hydraulic servo actuator of 1000 kN capacity; 4. hydraulic servo actuator of 2000 kN capacity;
5. column of reaction frame; 6. unidirectional hinge support.



Sustainability 2023, 15, 4790 4 of 18

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 18 
 

2

 

Figure 2. Test model. Note. 1. Rigid foundation and reaction wall; 2. beam of reaction frame; 3. 

hydraulic servo actuator of 1000 kN capacity; 4. hydraulic servo actuator of 2000 kN capacity; 5. 

column of reaction frame; 6. unidirectional hinge support. 

actuators
actuators

specimen

Reaction 
wall

Beam

Unidirectional 
hinge support

N

S

W E

 

Figure 3. Loading site. 

3. Nonlinear Finite Element Model 

3.1. Material Modeling 
The double-line strengthening elastic–plastic model and two flow plastic models are 

mainly used in the material modeling of steel in finite element programming. Relevant 

studies [7,8] demonstrate that the two material models can reflect the actual situation of 

steel. For the steel used in this paper, we adopted the double-line strengthening elastic–

plastic model. In the test’s preparation stage, a section was cut from the same batch of 

steel for processing the test piece; the research institute was entrusted to carry out the 

material performance test and the material parameters of each component of the finite 

element were defined according to the material properties measured by the material per-

formance test. The elastic modulus of steel used for each component was 2.06 × 105 MPa 

and Poisson’s ratio was 0.3. For all of the steels, we adopted von Mises’ yield criterion and 

Figure 3. Loading site.

The loading system featured displacement control. Before the specimen yielded, one-
thousandth of the beam length, namely 1.65 mm, was taken for each stage and each stage
was cycled once. When the component reached the yield strain, which was measured
in the material test, the specimen was considered to yield and the displacement at this
time was defined as yield displacement ∆y. In order to prevent the rapid development
of concrete cracks, the specimens were loaded at times of yielding displacement, i.e., 1∆y,
1.5∆y, 2∆y· · · . Each level was cycled three times. The hydraulic servo actuator protrusion
was positive and the indentation was negative. When the load dropped to 85% of the
ultimate load or the component failed, the test ended.

3. Nonlinear Finite Element Model
3.1. Material Modeling

The double-line strengthening elastic–plastic model and two flow plastic models are
mainly used in the material modeling of steel in finite element programming. Relevant
studies [7,8] demonstrate that the two material models can reflect the actual situation of
steel. For the steel used in this paper, we adopted the double-line strengthening elastic–
plastic model. In the test’s preparation stage, a section was cut from the same batch of steel
for processing the test piece; the research institute was entrusted to carry out the material
performance test and the material parameters of each component of the finite element were
defined according to the material properties measured by the material performance test.
The elastic modulus of steel used for each component was 2.06 × 105 MPa and Poisson’s
ratio was 0.3. For all of the steels, we adopted von Mises’ yield criterion and an isotropic
hardening rule [9]. Figure 4 shows the stress–strain curves of each steel material.
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The smeared cracking model, brittle cracking model and damaged-plasticity model
are given in ABAQUS for concrete simulation. In this paper, the damaged-plasticity model
was used to simulate the concrete performance, which made it possible to input a multilin-
ear uniaxial compression stress–strain curve and provided a universal capability for the
analysis of concrete under monotonic or cyclic loading [9,10], based on a damage-plasticity
algorithm. The stiffness–recovery coefficients ωt = 0 and ωc = 0.25 were introduced, where
ωt and ωc control the stiffness recovery from pressing to pulling and from pulling to
pressing, respectively.

The concrete in the model featured the stress–strain relation curve shown in Figure 5,
according to the following formulae:

σ = (1 − dc)Ecε (1)

dc = 1 − ρcn
n − 1 + xn x ≤ 1 (2)

dc = 1 − ρc

αc(x − 1)2 + x
x > 1 (3)

ρc =
fc,r

Ecεc,r
(4)

n =
fc,r

Ecεc,r − fc,r
(5)

x =
ε

εc,r
(6)

where αc is the parameter value of the descending section of the stress–strain curve of con-
crete under uniaxial compression, which was taken according to Table C.2.4 in Appendix C
of the Code for Design of Concrete; fc,r is representative value of uniaxial compressive
strength of concrete, which can be taken as f according to actual structural analysis needs
fc , fck , fcm; εc,r—The corresponding peak compressive strain of concrete relevant to uni-
axial compressive strength, fc,r, is taken according to Table C.2.4 in Appendix C of Code
for Design of Concrete; dc is damage-evolution parameter of concrete under uniaxial com-
pression. This was calculated from Appendix C of the Concrete Design Code [11]. It should
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be noted that since the main objective of this paper is to study the seismic performance of
semi-rigid composite joints with the T-stub as connector, the core concrete in the steel tube
does not introduce the concrete stress–strain curve under triaxial compression. In addition,
since the age of concrete on the test day did not reach 28 days, the value given in Figure 5
is lower than the measured strength.
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3.2. Finite Element Type and Mesh

In order to obtain reliable results, the finite element model requires the selection of
appropriate element types. Except for the reinforcing bars, all components were modeled
by eight-node solid elements (C3D8R), which prevented shear locking [12] or modeling the
steel reinforcement; a two-node linear truss element (T3D2) was used.

The mesh design used the symmetry of the geometrical and mechanical properties of
the T-stub-and-bolts model. Many attempts have been made in mesh-convergence studies
to obtain a reasonable mesh that can obtain reliable results while reducing the computation
time. Based on the mesh-convergence studies, the bolt-mesh seed measured 5 mm, the
T-stub and shear-stud-mesh seed measured 7 mm and the rest of the components measured
35 mm. Appropriate mesh encryption was carried out for the contact parts. It should be
noted that in the subsequent parameter analysis, due to the change in the component size,
the mesh size was also fine-tuned to achieve better convergence. Figure 6 shows the overall
mesh division of the components and Figure 7 shows the mesh of each component. The
blind bolts and ordinary bolts were simplified and the nut, rod and head of the bolt were
modelled as only one part [12,13].
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3.3. Contact Interaction

There were complex contact and interaction relationships in the composite joints and
the results of the finite element analysis depended on the accurate modeling of the contact
between these components. There were two main types of contact in this composite joint.
The first was the contact between steel and concrete; the second was the contact between
steel and steel. Surface contacts were established on two matched surfaces to simulate the
contact between steel and concrete, using hard contact in the normal direction and the
friction formula “penalty” in the tangential direction, with a friction coefficient of 0.5. The
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contact between steel and steel was achieved by creating a general contact in the initial
analysis step. The friction coefficient is 0.3.

The column-top center, column-bottom center and beam-end section center were taken
as the control points, while the column-top plane, column-bottom plane and beam-end
I-shaped section were taken as the control surfaces. The interaction was established through
coupling, so as achieve the imposition of boundary conditions and loading.

For the components embedded in the concrete slab during the test, such as parts of the
T-stub, parts of the ordinary bolts and blind bolts, rebars and shear studs, these components
were taken as the embedded region, the concrete slab was taken as the host region and
the embedded region command was used to achieve the interaction between the above
components and the concrete slab. This technique eliminated the translational degrees of
freedom of the embedded nodes and made them correspond with those of the host element,
so as to achieve the perfect combination between the components and the surrounding
concrete [1,12,14–18].

3.4. Boundary Conditions and Load

In order to obtain better simulation results, the finite element model should adopt
the same boundary conditions and loading regime as the test. Corresponding boundary
conditions were applied to the top of the column, the bottom of the column and the end of
the beam, as shown in Figure 6.

The application of the load was divided into six analysis steps: (1) a small bolt load
(100 N) was applied to the bolt using the Bolt Load option in ABAQUS, so that each
contact relationship could be established smoothly; (2) the bolt load was applied to the
target value of 105 kN; (3) the preload of the bolt was changed to the fixed bolt length;
(4) the axial compression was applied to the target value of 514 kN; (5) according to the
yield displacement ∆y = 18.6 mm obtained on the test, the beam end was controlled by
displacement and the vertical load was applied on the each beam end.

4. Comparison
4.1. Comparison of Curves

The comparison of the moment–rotation skeleton curve under cyclic load between the
simulation results and the test results is shown in Figure 8. The moment–rotation hysteresis
curve is shown in Figure 9.
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As can be seen from the comparison figure, there are some differences between the
finite element simulation curve and the test curve, mainly in the following points:

(1) On the test, the curve of the specimen had an obvious descending section, but this
phenomenon was not simulated with the finite element method.

(2) In the skeleton curve comparison diagram, the ultimate bending moment values are
similar, but there are some differences when the positive and negative rotation are
between 15 mrad and 40 mrad. There were some initial imperfections in the concrete
slab on the test, but the concrete slab in the finite element was homogeneous; therefore,
the test’s bending moment value was lower than that of the finite element simulation
value under the same rotation.

(3) It can be seen that the initial rotational stiffness was different in the comparison of the
skeleton curves. In the finite element analysis, the size of the specimen was accurate,
the bolt and the screw hole were aligned strictly according to the central axis and the
initial imperfections of the components were ignored. Therefore, the initial rotational
stiffness in the finite element analysis was relatively large.

(4) It can be seen from the hysteresis curve comparison diagram that the curve was
relatively full in the positive direction, which was due to the fact that the effect of the
bolt slip was not well-simulated in the finite element simulation.

4.2. Comparison of Failure Mode

As shown in Figure 10, along with the fracture of T-stub web and flange and the concrete
drop from the concrete slab, the hysteresis curve showed an obvious downward section
and the test ended. In the finite element analysis, the maximum stress of the T-stub almost
reached the ultimate strength obtained in the material property test and the web presented
slight local buckling, which was similar to the experimental phenomenon. This shows that
the finite element simulation results reflect the failure mode of the specimen better.

4.3. Futher Comparison

Although the moment–rotation curve and failure mode of the test and the finite
element had a high degree of similarity, this was not sufficient to fully verify the accuracy
of the finite element model. The T-stub had obvious plastic deformation in the test. The
evaluation of the deformation of the T-stub and the stress change in the key measurement
points can be used to further verify the accuracy of the finite element model.
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The plastic deformation of the T-stub was mainly reflected in the pulling up of the
flange and the web buckling. The gap width between the flange and the wall of the column,
∆t, shown in Figure 10, was recorded during the test. In the finite element analysis, this
value was the difference between the displacement deformation of the corresponding point
of T-stub and the displacement deformation of the wall of the column. The relevant data
were extracted and compared with the data recorded during the test. The comparison
figure is shown in Figure 11, where the abscissa is the load level and the ordinate is ∆t [14].
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It can be seen from the figure that the gap width between the T-stub and the wall of the
column was large on the test. The reason for this is that the actual thickness of the T-stub
used in the test was less than 14 mm due to manufacturing errors and grinding during
processing, which led to greater plastic deformation.

It was inevitable that some strain gauges would be damaged due to the large deforma-
tion of the components in the process of the test. Therefore, the complete data measured at
the junction of the flange and the web of the T-stub (the measurement point YY3 shown in
Figure 1 were selected to compare with the strain development data of the corresponding
measurement points extracted through the finite element simulation results. The compari-
son figure is shown in Figure 12. Each stage was cycled three times after the specimen yield
on the test, while each stage was cycled once in the finite element analysis.
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There was almost no compressive strain in the middle and late stages of the test due to
the residual deformation of the T-shaped steel on the test. However, this situation was not
well-simulated in the finite element, resulting in a great difference in compressive-strain
area. In general, the results of the finite element analysis better reflect the development of
the strain on the test.

Table 2 shows the relevant indexes, their ratio on the test and the finite element
simulation. Apart from the negative initial rotational stiffness, the simulation results of
other indexes were similar.

In this section, it is shown that the finite element simulation results can better predict
the relevant seismic performance of this type of composite joint after ignoring the initial
imperfections and errors of size by evaluating the hysteresis curve, skeleton curve, failure
mode, plastic deformation of the T-stub and strain at key measurement points.
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Table 2. Comparison of indicator table.

Test Value Vt Finite Element Value Vf Ratio Vt/Vf

yield rotation (mrad) 31.18 33.83 0.92
yield moment (kN·M) 124.38 130.59 0.95

positive ultimate bending moment (kN·M) 144.39 141.81 1.02
positive initial rotational stiffness (kN·M/rad) 6323.88 6747.94 0.94
negative initial rotational stiffness (kN·M/rad) 6788.09 8268.25 0.82

total energy consumption (KJ) 20.08 26.00 0.77
equivalent damping coefficient 0.162 0.157 1.03

ductility coefficient 1.45 1.33 1.09

5. Parameter Study

According to the finite element simulation results in Section III, the seismic perfor-
mance of the semi-rigid composite joints with the use of the T-stub as the connector was
studied more widely and the test database was expanded by changing the relevant key
parameters in the base model. The main parameters to be changed are shown in Table 3,
according to which the reinforcement ratio could be changed by changing the diameters of
the rebar, which were 6 mm, 8 mm, 10 mm and 12 mm, respectively. The italics in the table
represent the basic parameters and the main calculation results are shown in Table 4.

Table 3. Parameter range table.

Parameter Types Parameters

web of T-stub (mm) 7 9 11 13
flange of T-stub (mm) 12 14 16 18

wall thickness of column (mm) 8 10 12 14
axial compression ratio 0.1 0.25 0.4 0.55
reinforcement ratio (%) 0.45 0.80 1.26 1.81

Table 4. Table of simulation results.

Yield Rotation
(mrad)

Yield Moment
(kN·M)

Positive Ultimate
Bending Moment

(kN·M)

Negative Ultimate
Bending Moment

(kN·M)

Positive Initial
Rotational
Stiffness

(kN·M/rad)

Negative Initial
Rotational
Stiffness

(kN·M/rad)

Total Energy
Consumption

(KJ)

Equivalent
Damping

Coefficient

Ductility
Coefficient ∆t (mm)

Base 33.83 130.59 136.64 141.1 6747.94 8268.25 26 0.157 1.33 7.15

FB7 32.68 118.28 132.51 126.75 6627.95 8159.15 25.24 0.159 1.38 5.54

FB11 34.63 136.51 139.81 147.79 6801.01 8396.85 25.86 0.154 1.30 7.51

FB13 34.6 140.81 144.14 151.06 6786.86 8351.28 26.63 0.153 1.30 7.36

YY12 34.42 129.7 127.56 138.98 6743.28 7973.69 25.62 0.163 1.31 8.49

YY16 32.68 129.76 142.06 141.69 6679.55 8443.75 26.89 0.159 1.38 6.65

YY18 33.04 130.51 143.41 144.22 6701 8597.01 26.44 0.154 1.36 5.48

ZB8 33.17 115.51 121.4 123.56 6516.128 8165.68 23.54 0.163 1.36 8.69

ZB12 34.85 146.44 148.27 156.67 7153.72 8790.48 28.57 0.160 1.29 6.46

ZB14 35.09 156.96 157.91 166.21 7587.34 9117.11 31 0.170 1.28 5.67

GJ6 32.47 118.13 134.76 129.54 6396.24 8061.32 26.3 0.168 1.39 7.16

GJ10 34.45 143.16 138 151.53 7153.08 8357.5 26.42 0.152 1.31 7.57

GJ12 / / / / 7655.9 8521.7 / / /

ZY1 33.54 130.7 136.21 140.53 6628.5 8268.69 25.73 0.159 1.34 7.32

ZY4 33.88 132.61 139.05 143.91 6680.46 8573.8 26.41 0.159 1.33 7.51

ZY55 34 131.56 135.18 141.81 6693.65 8240.14 26.12 0.159 1.33 7.52

Variations in the T-stub’s size have a great influence on its plastic development. There-
fore, the ∆t between the flange of the T-stub and the wall of the column mentioned in the
previous section were also compared as an index. In addition, the load corresponding
to the rotation of 0.045 rad is taken as the ultimate strength, since the FEM curve has no
descending section in the analysis [19].
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5.1. Web Thickness of T-Stub

As shown in Table 4, the thickness of the webs had little influence on the performance
of composite joints in the range where the web thickness of the T-stub is not less than
the flange thickness of the beam (9 mm) in this set of models. The yield’s bending mo-
ment and the positive and negative ultimate strength were significantly reduced when
the web thickness was 7 mm. These were 90.6%, 93.4% and 89.8% of those of the base
model, respectively.

The most obvious change was the local buckling degree in the web of the T-stub with
the change in web thickness. Local buckling can be clearly seen in Figure 13, while there
was no obvious local buckling in the web of the T-stub in FB11 and FB13. It is worth noting
that the material’s failure strength was reached in the part of the middle of the web when
the thickness of the web was 7 mm, indicating that the reduction in the web thickness may
have caused the fracture to occur there.
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Each index had a different degree of increase with the increase in web thickness.
In general, the overall performance of the composite point was the best when the web
thickness of the T-stub was 11 mm. Stiffeners can be selected to improve the performance
of T-stub steel [20–23].

5.2. Flange Thickness of T-Stub

It can be seen from Table 4 that the flange thickness of the T-stub had little influence
on the overall performance of the composite joints. The following differences were noted.

(1) The flange of the T-stub was one of the main components under negative loading.
The negative initial rotational stiffness was significantly increased with the increase in
flange thickness. These increases were of 3.7%, 5.9% and 7.8%, respectively, compared
with the YY12 model.

(2) The plastic deformation of the flange also differed in line with the increase in the
flange thickness of the T-stub. The value of ∆t was reduced by 15.8%, 21.7% and 35.5%,
respectively, compared with the YY12 model. Figure 14 shows the plastic deformation
of the T-stub in the different models.

(3) The negative ultimate bending moment of the YY12 model, which was 90.4% of that
of the base model, decreased greatly. The positive and negative ultimate bending
moments did not change greatly with the increase in thickness in the other models.
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Excessive flange thickness had a limited effect on the improvement in the overall
performance of the combined joints. According to the data of this group of models, the
optimal flange thickness of the T-stub was 16 mm.

5.3. Wall Thickness of Column

The web and flange of the square steel-tube column were carefully considered in the
component method. For the square steel-tube column with inner baffle, the compression
stiffness of the web can be considered as infinite.

Furthermore, it can be seen from the data in Table 4 that all the indexes except the
ductility coefficient and ∆t increased greatly with the increase in the wall thickness of the
column. Figure 15 shows the moment–rotation skeleton curve to more clearly reflect the
variation in each index with the wall thickness of the column. It can be seen from Figure 15
that the increase of positive and negative ultimate bending moments gradually decreases
with the increase in the wall thickness of column. Figure 16 shows the stress cloud diagram
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of the column in the models ZB8 and ZB14. It can be clearly seen that the stress near the
screw hole decreased greatly with the increase in thickness. The cylindrical surface covered
by the lower T-stub did not reach the yield stress. In Figure 16, the plumping up on the
cylindrical surface covered by the T-stub in the deformation diagram of the ZB8 model
was observed. This was not prominent in the other three models. The results show that
the plastic deformation of the column in the composite joints decreased greatly with the
increase in the wall thickness of the column, even though there was no plastic deformation
in ZB14. Figure 16 also shows that the beam in ZB14 had a relatively obvious plastic
deformation around the screw hole, which was not obvious in the other models.
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The total energy consumption of the composite joint increased in line with the increase
in the wall thickness of the column, but the ductility coefficient and ∆t decreased. In
general, the increase in the wall thickness of the column greatly increased the amount
of steel, resulting in the waste of materials, while the increase in each index was limited.
According to the simulation results, the 10-mm wall thickness of the column used on the
test can meet the demand.

5.4. Axial Compression Ratio

Regarding the range of the axial compression ratio in this study, the influence of the
axial compression ratio on the overall performance of the composite joints was almost
negligible. However, the performance of the composite joint with the axial compression
ratio in the range of 0.55~1 could not be observed. Nevertheless, according to the regularity
of the simulation results in this group, it can be predicted that each index will slowly
decrease with the increase in the axial compression ratio.

5.5. Reinforcement Ratio

In this group of models, the load at the beam end and the mesh deformation at
the joint were too large with the increase in the rebar diameter, which made the model
convergence more difficult. Therefore, the calculation of the GJ12 model was not completed.
Figure 17 shows the moment–rotation skeleton curves of the rebars with diameters of 6 mm,
8 mm and 10 mm. As can be seen from the figure, the rebar was one of the main stressed
members under positive loading; the positive initial stiffness and ultimate bending moment
capacity were greatly improved with the increase in the steel-bar diameter. However,
the change in the rebar diameter had little effect on the negative initial stiffness and
ultimate bending moment capacity because the concrete floor was the main compressive
component under negative loading and the rebar diameter had a relatively limited effect
on the overall performance.
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6. Conclusions

In order to expand the test database of composite joints with T-stub steel as the
connector and to formulate the design criteria, based on the completed tests, this paper
established a reliable finite element model of semi-rigid composite joints of square steel
tubular columns and steel–concrete composite beams connected by blind bolted T-stub
steel through the large finite element software, ABAQUS. Based on the limited research in
this paper, the following conclusions can be drawn:
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(1) It was shown that the finite element model proposed in this paper can better reflect
the real situation of specimens through the comparison of the hysteresis curve, failure
mode, strain growth and other aspects and can be used to analyze the performance of
these semi-rigid composite joints under cyclic load.

(2) The web thickness of the T-stub and the axial compression ratio have little influence
on the overall performance of the composite joints, but if the web thickness of the
T-stub is smaller than the flange thickness of the beam, the positive and negative
ultimate bending moments of the composite joint are significantly reduced. In our
study, it is possible that the failure occurred in the web of the T-stub. Stiffeners can be
selected to improve the performance of T-stub steel.

(3) The increase in the flange thickness of the T-stub can limit the development of plastic
deformation, which is referred to as ∆t in this paper. At the same time, the ulti-
mate bending moment and initial rotational stiffness can be significantly improved.
However, the improvement in YY18 is very limited compared with that in YY16.

(4) The positive initial rotation stiffness and the positive ultimate bending moment
capacity of the composite joints are mainly controlled by the reinforcement ratio. This
is because the concrete slab practically does not participate in the work under positive
loading and the rebar mainly provides resistance. The increase in the reinforcement
ratio leads to a small increase in the corresponding negative indexes.

(5) The increase in the wall thickness of the square steel-tube column has a great influence
on the overall performance of composite joints. The positive and negative initial
rotational stiffness, the positive and negative ultimate bending moment and energy
dissipation are greatly increased. However, the increase in amplitude is gradually
reduced and the ductility and ∆t are reduced.
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