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Abstract: Microbial-induced mineralization is a process in which metal ions in the environment are
processed by microorganisms, forming deposits of crystals with cementing and void-filling functions.
Cementing crystals can fix metal ions, reduce permeability, improve soil strength, and play a positive
role in soil remediation and pollution control. This paper first introduces the principle of microbial-
induced mineralization and analyzes its mechanism of action in the treatment of soil organic and
inorganic pollutants. Then, the mineralization principle of different types of mineralized bacteria in
soil (fungal metabolism involving organic acid complexation and metabolic urease catalysis, sulfur
oxidation by sulfur-oxidizing bacteria, dissimilatory sulfate reduction by sulfate-reducing bacteria,
ammonification by ammoniating bacteria, reverse digestion by denitrifying bacteria, urease catalysis
by urease-producing bacteria, acetic acid fermentation by methanogenic bacteria, and H2/CO2

reduction) is elaborated, the influencing factors in the treatment of soil pollutants by mineralization
technology in practical application are analyzed, and the current status of mineralization treatment for
different types of pollutants is summarized. Finally, the future prospects of soil pollutant treatment
are outlined to promote research into microbial-induced mineralization technology for the treatment
of soil pollutants.

Keywords: microbial-induced mineralization; MICP; soil improvement; pollution prevention; miner-
alizing bacteria

1. Introduction

Soil pollutants mainly include inorganic substances (salt; alkali; acid; F and Cl;
heavy metals such as Hg, Cd, Cr, As, Pb, Ni, Zn, and Cu; and radioactive elements
such as Cs and Sr) and organic substances (organic pesticides, petroleum, phenols, cyanide,
benzo(a)pyrene, organic deterrents, pathogenic microorganisms and parasitic eggs, etc.) [1].
From April 2005 to December 2013, the Ministry of Environmental Protection and the
Ministry of Land and Resources jointly conducted a survey on soil pollution in China. The
results showed that the total soil pollution in China was mainly non-organic pollution,
followed by organic pollution, and the proportion of other pollution was relatively small.
Soil pollution is more prominent in abandoned industrial land, and the main pollutants in
different types of industrial land and surrounding areas are different, mainly zinc, mercury,
lead, chromium, arsenic, and polycyclic aromatic hydrocarbons [2]. Most heavy metal pol-
lutants in soil not only distribute and accumulate at the pollution sources but also diffuse to
the surrounding areas to different degrees [3,4]; living in areas where heavy metals exceed
the standard for a long time will cause gene mutation and even carcinogenesis. At the

Sustainability 2023, 15, 4858. https://doi.org/10.3390/su15064858 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15064858
https://doi.org/10.3390/su15064858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-8125-8518
https://doi.org/10.3390/su15064858
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15064858?type=check_update&version=1


Sustainability 2023, 15, 4858 2 of 17

same time, metal pollutants, unlike ordinary pollutants, can be degraded and accumulate
in soil, crops, and the human body through circulation, posing a great threat to human
health [3,5]. In industrial and agricultural production, due to the use of non-standard
treatments and accidents in oil exploitation and transportation, up to 36 million hm2 of
farmland is polluted by pesticides, petroleum hydrocarbons, and polycyclic aromatic hy-
drocarbons [6]. These organic pollutants quickly become difficult to remove from the soil
after diffusion, migration, adsorption, and desorption, resulting in their distribution and
continuous accumulation in soil at different depths [7–10]. As with inorganic heavy metal
pollution, organic pollutants also have strong carcinogenicity, especially polycyclic aromatic
hydrocarbons. Due to their lipid solubility, they can migrate, metabolize, and accumulate
in plants and seriously endanger health through the food chain [11]. Microbial-induced
mineralization can fix heavy metal ions by microbial action [12,13]. At the same time, mi-
crobial mineralization technology can also significantly reduce soil permeability, and some
studies have pointed out that the permeability coefficient after mineralization can reach
the order of 1 × 10−7 cm/s [14,15], which has a great effect on the control of the diffusion
and migration of organic and inorganic pollutants and treatment of soil pollutants [14].
At present, the treatment of soil pollutants mainly includes immobilization/stabilization
technology, ectopic elution technology, permeable reaction wall technology, etc. Although
these technologies can achieve the purpose of soil pollutant control to a certain extent, they
also have major drawbacks, requiring high resource consumption, destroying the original
ecology, and easily producing secondary pollution [16–18]. Microbial-induced mineraliza-
tion technology can effectively fix and store inorganic heavy metal pollutants; the resulting
minerals have a strong control effect on the migration and diffusion of inorganic substances,
do not easily produce secondary pollution, have strong stability, have great application
prospects for the treatment of soil pollutant engineering, and are low cost. Therefore, this
paper summarizes the mineralization of a variety of soil mineralization microorganisms
and the influencing factors and research status, proposes the feasibility and effectiveness of
mineralizing microorganisms in the treatment of soil organic and inorganic pollutants, and
finally puts forward the prospect of its future development.

2. Mechanism of Microbial Mineralization to Control Pollutants

Microbial-induced mineralization involves a series of biological metabolic and chem-
ical reactions. The basic principle of microbial-induced mineralization is that urea is
decomposed by microorganisms capable of producing urease to produce CO3

2− and NH4+,
resulting in an increase in local environmental pH [19,20]; it reacts with divalent metal ions
in the surrounding environment to form carbonate precipitation [21]. Microorganisms play
a very important role in the mineralization process; it not only secretes urease to decom-
pose urea but the microbial cell itself is also a kind of colloidal substance with a negative
charge (−COOH, −OH, C=O) [22,23], and divalent metal ions in the solution environment
can be aggregated in the surrounding environment of cells through adsorption and elec-
trostatic attraction (Figure 1a) [24], supersaturation of the local area, and the formation
of carbonate precipitated crystal nuclei. With the continuous decomposition of urea by
urease, CO3

2− and divalent metal ions around microorganisms constantly react to form
calcite precipitation. During the reactions, bivalent and other-valence heavy metal ions are
encapsulated, leading to consolidation and co-precipitation; this results in the formation of
stable structures of heavy metals containing carbonate mineral precipitates, eliminating
heavy metal pollutants in the soil, as shown in Figure 1b [22,25–29]. The generated mineral
precipitates block pores in porous media, greatly reducing their permeability [14], reducing
the diffusion and migration of organic pollutants in the porous media, and effectively
controlling the levels of organic pollutants in the soil [30,31]. The main biochemical reac-
tions in microbial mineralization technology can be expressed by simplifying the following
equation (taking Ca2+ as an example) [32]:

CO(NH 2)2+3H2O→ 2NH+
4 +HCO−3 +OH− (1)
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HCO−3 +H2O + OH− → CO2−
3 +2H2O (2)

Ca2++Cell→ Cell−Ca2+ (3)

Cell−Ca2++CO2−
3 → Cell−CaCO3 (4)
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Figure 1. Microbial mineralization [22]. (a) is the direct encapsulation of metal ions during microbial
mineralization, (b) is the formation of other carbonates coprecipitated with calcium carbonate.

3. Soil Mineralization Microorganisms

Microbial mineralization is everywhere. It is a common phenomenon in nature: fungi,
algae, sulfur-oxidizing bacteria, sulfate-reducing bacteria, ammonifying bacteria, denitrify-
ing bacteria, iron-oxidizing bacteria, and urease bacteria have the mineralization ability;
from shell, bone, and teeth to limestone caves, the known forms of biological mineralization
include more than 60 kinds of minerals. They are formed by microorganisms through
direct or indirect mineralization through photosynthesis, sulfur oxidation, sulfate reduc-
tion, ammonification, nitrate reduction, iron oxidation, urea decomposition, etc. [33–35]. In
addition to cyanobacteria and other algae and iron-oxidizing bacteria, the mineralization
process mainly occurs in water environments; other microbial mineralization processes
occur in the soil. The microbial decomposition of urea and calcium carbonate precipitation
caused by urease bacteria are the most studied [12,36,37].

3.1. Fungi

Fungi have a wide variety of applications, and up to a million species of fungi have
been found, which play an important role in agriculture, forestry, animal husbandry,
medicine, and other aspects [38–40]. For microbial-induced mineralization techniques,
although most of the current attention has been focused on bacteria-induced biomineraliza-
tion, fungi are also involved in this process. Fungi produce organic acids, such as oxalic
acid, and contribute to the formation of various metal complexes, such as metal-oxalate,
while some urease-positive fungi also have the effect of producing urease to decompose
urea and produce carbonate [41,42]; moreover, fungi have higher biomass and metal toler-
ance, which can be used as the best potential candidate for microbial mineralization of soil
heavy metals [43].

3.2. Sulfur-Oxidizing Bacteria

The current research on sulfur-oxidizing bacteria (SOB) mainly focuses on autotrophic
bacteria. However, the heterotrophic type has a faster growth rate and stronger anti-
interference ability than the autotrophic type and is widely distributed and abundant in
nature. For example, the existence of heterotrophic sulfur-oxidizing bacteria has been found
in mining areas, lakes, soils, oceans, and other environments [44,45]. Sulfur atoms have six
electrons(e−) in their outermost shell, which can bond in many ways to form elemental
or multiple valence values, such as −2, 0, +2, +4, and +6. SOB can completely oxidize the
low-priced, reduced sulfide or elemental sulfur to sulfate (SO4

2−) and then form metal
salts with divalent metal ions in the environment and realize metal recovery through the
leaching process [45–48]. At present, the research on sulfur-oxidizing bacteria is mainly
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focused on the treatment of wastewater and waste gas, and the treatment of heavy metal
pollutants in soil is less studied [49–51].

3.3. Sulfate-Reducing Bacteria

Sulfate-reducing bacteria (SRB) are a kind of anaerobic heterotrophic bacteria with
strong vitality, which are widely distributed worldwide. This is especially true in anoxic
land and water environments, such as soil, seawater, underground pipelines of river
water, and extreme anaerobic environments rich in organic matter and sulfate, such as oil
and gas reservoirs, rivers and lakes, and marsh mud. At present, there are hundreds of
known sulfate-reducing bacteria [52]. SRB in an anaerobic environment can take organic
matter as an electron donor, absorb extracellular SO4

2-dissimilar sulfate, and reduce it to
generate H2S and exclude extracellular mineralization [53]; at the same time, HCO3

− is
produced, H2S is a weak acid, and degassing leads to an increase in pH, eventually leading
to carbonate precipitation [54–56]. If H2S is not released as a gas, it reacts with heavy metal
ions to form an insoluble metal sulfide precipitate [57,58]. Meanwhile, chlorinated organic
compounds, mono-aromatic compounds, polycyclic aromatic hydrocarbons, and alkanes
can also be used as SRB electron donors [59]. The process is shown in Figure 2. It has a
certain potential to treat organic pollutants as well as heavy metal pollutants. At present,
its application is mainly in the treatment of heavy metal pollution, and the treatment effect
is remarkable [60–64].

2(CH2O)+SO2−
4 → H2S + 2HCO−3 +CO2+H2O (5)

H2S + M2+ → 2H++MS (6)

CO2−
3 +Ca2+ → CaCO3 (7)
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3.4. Ammonifying Bacteria

Ammonifying bacteria, as facultative anaerobic bacteria, are widely distributed in
soil and water systems [66]. As an important part of the nitrogen cycle, excreta produced
by humans and animals on land and water, as well as decomposing animal and plant
carcasses, are transformed into NH3 by ammoniating bacteria, and CO2 is also produced in
environments in which O2 is involved [67,68]. NH3 hydrolysis increases the environmental
pH and induces the formation of carbonate, which reacts with divalent cations in the
environment to form carbonate precipitates [55]. At present, there are few studies on
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ammonifying bacteria, few studies focus on environmental nitrogen cycling [69,70], and
research on microbial mineralization is limited.

RCHNH2COOH + O2 → RCOOH + CO2+NH3 (8)

RCHNH2COOH + H2O→ RCHOHCOOH + NH3 (9)

3.5. Denitrifying Bacteria

Denitrifying bacteria are equally widespread in nature and are abundant in soil, ma-
nure, and sewage. When soil oxygen is insufficient, nitrate is used as an electron acceptor
through reduction to reduce various products, such as nitrite, ammonia, nitrogen, etc., and
produces CO2, while improving the environmental pH [71]. In alkaline environments, CO3

2-

generated from CO2 reacts with divalent metal ions to form carbonate precipitation [72–74].
This mineralization process has the potential to degrade organic matter and has the advan-
tages of high efficiency and economy. However, the current research on denitrification is
mainly focused on denitrification, and the research on its mineralization is limited [75–78].

CH3COO−+2.6H++1.6NO−3 → 2CO2+0.8N2+2.8H2O (10)

CO2+H2O↔ HCO−3 +H+ (11)

Ca2++HCO−3 +OH−= CaCO3+H2O (12)

3.6. Urease Bacteria

The mineralization and removal of heavy metal contamination by urease-producing
bacteria are the most widely studied and mature technologies. Urease-producing bacteria,
including Bacillus, Sporobacteria, Enterobacteria, and Pseudomonas, are widely present
in various soil environments [79–82]; in the process of metabolism, urease is secreted to
accelerate the hydrolysis of urea, increase the environmental pH, and produce CO3

2− to
form carbonate precipitation [29,83,84]. This process is shown in Figure 3 [85,86]. Urea-
hydrolyzation-induced mineralization by urease bacteria has many advantages compared
with other mineralization pathways, such as having a simple mechanism, low cost, and the
ability to produce a large amount of carbonate precipitation in a very short time as well as
green environmental protection. Therefore, urease bacteria are widely used in the field of
induced mineralization [32].
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The isolation, screening, and application of urease-producing bacteria have been
studied systematically by many scholars. Most scholars use urea as a medium to coat a
diluted soil suspension, separate it, and then determine its urease production ability. The
16S RNA gene is used to identify it and determine the species of bacteria.

N. Jalilvand et al. isolated four urease-producing bacteria from calcareous soils in
Iranian mines and studied them by buying Sporosarcina pasteurii PTCC1645 (DSM33). It
was found that, among these isolates, Stenotrophomonas rhizophila (A323) and Variovorax
boronicumulans (C113) produced the highest amounts of carbonate minerals of heavy metals.
S. pasteurii had the highest removal rate of Pb, Cd, and Zn, with a removal rate of about
95% [79]. Eshetu Mekonnen et al. screened three strains (Bacillus paramycoides, Citrobacter
sedlakii, and Enterobacter bugandensis) with high urease production abilities from Ethiopian
soil with a wide range of growth conditions (pH (4.0–10.0), NaCl (0.25–5%), and tempera-
ture (20–40 ◦C)) [87]. Fatemeh Elmi et al. screened a new multiextremophile, Bhargavaea
cecembensis, from soil samples in desert areas of Iran. This strain can grow at a temperature
of 50 ◦C, pH of 9–11, and NaCl of 20–25% w/v [88]. Ignatius Ren KaiPhang et al. isolated
five strains of Bacillus urease from an acidic peat environment, which could produce urease
at a low pH [89].

Many of the above studies have concluded that strains of different genera screened in
different environments are quite different, so the use of selected bacteria in the bioremedia-
tion of contaminated sites may be more effective. Although there have been many studies
on these bacteria, more systematic strain-application parameters have not been obtained in
many studies, so there remains much room for further research.

3.7. Methanogens

Most methane on Earth comes from methanogenesis by microorganisms, which are
widely distributed in marine freshwater sediments, paddy soil, the animal gastrointesti-
nal tract, and geological and geothermal environments [90,91]. There are three ways of
methanogenesis, and methane in nature mainly comes from acetic acid fermentation and
H2/CO2 reduction pathways, which simultaneously react with an increase in pH [92,93].
Carbonate precipitation can be formed in this environment [94,95]. At present, there are
many studies on the mechanistic mineralization of methanogens, and the mineralization
ability of methanogens is unquestionable [96,97], but its application in the treatment of
heavy metals has not yet occurred, which is a huge development prospect.

CO2 + 4H2 → CH4+2H2O (13)

CH3COOH→ CH4+CO2 (14)

Ca2+ + 4H2+2HCO−3 → CaCO3+CH4 + 3H2O (15)

4. Influencing Factors of Mineralization in Soil

The process of microbial-induced mineralization is affected by a variety of factors,
and the effects of microbial mineralization under different factors vary greatly, thus greatly
affecting the efficiency of soil pollutant control. Therefore, considering the relatively
controllable factors such as the concentration and composition of the reaction solution, tem-
perature, properties of cementing medium, and injection method in practical engineering
application, it is of great help to realize effective treatment in its application.

4.1. Reaction Solution Concentration and Composition

In the microbe-induced mineralization, the reaction solutions are mainly bacterial
liquid and cementation liquid, and microorganisms play two roles in the formation of
crystals. First, the microbial body acts as a nucleation site during crystal formation and
simultaneously decomposes urea in solution, releasing a large amount of HCO3

−, CO3
2−,

and OH− [98]. Second, the EPS matrix and other organic matter secreted by bacteria and
some negative ion groups can attract Ca2+ to act as the nucleation site of crystals [99];
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they also regulate the type and morphology of calcium carbonate crystals [100–103]. The
concentration and composition of the cement are mainly reflected in the microscopic crystal
type, appearance, size, and crystal distribution in the cement [102,104–106]; macroscopically,
it is mainly reflected in the amount of calcium carbonate, compressive shear strength, and
permeability [107,108].

Rowshanbakht studied the effect of bacterial concentration on the size of calcium
carbonate crystals. He observed that the average crystal size increased with the increase
in bacterial concentration, and the strength of mineralized soil also increased [109]. When
Okwadha was diluted with deionized water with bacterial concentrations of 106, 107, and
108 CFU/mL to induce calcium carbonate deposition, it was found that the urea decom-
position rate and calcium carbonate precipitation amount were positively correlated with
the concentration of the bacterial solution, and when the urea and calcium ion concen-
tration reached a certain level, the concentration of the bacterial solution was the main
factor determining the amount of urea decomposition and calcium carbonate production.
These two different test results indicate that the activity and calcium carbonate production
rate of the bacterial solution will be affected by the culture batch, but the activity of the
bacterial solution obtained by the dilution of the same batch has a great correlation with
the concentration [110]. LM Lee used 0.25 M, 0.5 M, and 1 M bacterial concentrations of
cementing fluid to solidify silty residual soil. The experimental results showed that the
experimental shear strength was stronger with the increase in bacterial concentration and
began to decrease when the concentration was higher than 1 M [111]. Ng used Bacillus
giant to cement sand soil and found that calcium carbonate was mostly deposited on the in-
tergranular contact points of sand particles at concentrations of 0.50 mol/L and 0.25 mol/L
cementing fluid, and the deposition of calcium carbonate at a 0.50 mol/L concentration
was more and more compact than that at a 0.25 mol/L concentration [112].

Han-Jiang used Sporosarcina pasteurii to cement Ottawa sand with different concen-
trations (0.25–3 M) of cementing fluid. The experimental results showed that with the
increase in concentration, the structural strength of the sample increased first and then
decreased, and the cement effect of 1 M cementing fluid concentration was the best [113].
Zhang used Sporosarcina pasteurii (American Type Culture Collection, ATCC 11859) to
cement 200–380 µm industrial sand in calcium chloride, calcium acetate, and calcium ni-
trate cementation solution with three different calcium source concentrations of 0.5 mol/L
and found that the unconfined compressive strength of the sample cemented by calcium
acetate cementation solution was 1.4 times that of the sample cemented by calcium chloride
and calcium nitrate cementation solution, and the void scale distribution of the sample
was more uniform [114]. Harun AKO G UZ et al. treated sand with 0.75 M calcium
chloride, calcium nitrate, and calcium acetate as a carbon source for Viridibacillus arenosi
K64 (GenBank ID:KR873397). It was found that the permeability of sand soil decreased by
80.8%, 23%, and 90.4% after the treatment of calcium chloride, calcium nitrate, and calcium
acetate, respectively. The treatment effect of calcium acetate was the best to reduce the
permeability [115].

4.2. Temperature

Temperature change has a great influence on the growth and reproduction of microor-
ganisms and the activity of urease in functional metabolism, which changes the yield of
calcium carbonate, deposition rate, crystal type, crystal morphology, particle size, and
cementation mode of calcium carbonate between soil particles and has a direct influence
on the treatment of pollutants induced by microbial mineralization.

Keykha injected the same amount of A. baburai fluid at pH 9 and temperatures of
30 ◦C, 40 ◦C, and 50 ◦C to cement the silty sand column and measure the unconfined
compressive strength. It was found that the strength of the consolidated sand column was
the highest at 40 ◦C [116]. Wang and Yuze conducted microscopic studies on carbonate
precipitation induced by microorganisms at temperatures ranging from 4 ◦C to 50 ◦C and
found that different types of calcium carbonate precipitate produced different sizes and
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quantities of precipitates by changing the temperature. A low temperature (4 ◦C) did not
reduce the bacterial activity but reduced the bacterial growth and attachment rates, limiting
the final amount of cementation. High temperature (50 ◦C) conditions significantly reduced
the bacterial activity for a short period of time, while repeated injections of bacteria before
every second injection of cement increased the final amount of cement [117]. Liang Cheng
found in his investigation of the influence of physics and the environment on the MICP
effect that the amount of CaCO3 precipitated at 50 ◦C is three times that of 25 ◦C, and the
crystal size produced at higher temperature is relatively small (2–5 µm), while the crystal
size at lower temperatures is relatively large (15–20 µm) [118]. However, the results of
Jie Peng et al.’s study on MICP soil improvement by temperature showed that the final
precipitation amount of CaCO3 in aqueous solution and sand column at 10 ◦C was 92%
and 37% higher than that at 30 ◦C [119]; this directly contrasts what the previous authors
concluded. The reason may be that the relationship between the microbial metabolic
efficiency and enzyme activity and temperature is diametrically opposite, and the control of
experimental parameters is also different. The specific reason and the treatment efficiency
of temperature in soil pollution need to be verified.

4.3. Properties of Cementing Medium

Using different mineralization media for microbial mineralization has important
effects on the treatment of soil pollutants; different mineralization media possess distinct
properties, differing in composition, porosity, and organic matter. The distribution of
pollutants in media is not the same, and they thus differ in mineralization efficiency and
permeability; the form of media has a strong influence on the ability to control pollutants
in the soil.

Yufeng Gao used MICP to study the seepage of irrigation channels and reservoirs
built on a sandy soil surface; it was found that the seepage rate of treated soil samples
was reduced by up to 379 times and the permeability resistance was significantly higher
than that of untreated soil [120]. Shima Atashgahi used B. pasteurii and B. megaterium
megacanthus to improve the properties of loess and found that the soil permeability coeffi-
cient could reach the order of 1 × 10−7 after continuous MICP treatment for 7 days [120].
Hideaki Yasuhara, in a carbonate cemented sand permeability test on 300 g Toyoura sand,
found that the modified sample permeability was reduced by more than an order of mag-
nitude [121]. Nader Hataf and Alireza Baharifard treated the soil of Shiraz landfill by
B. sphaericus mineralization, and the experimental results showed that the soil permeability
of the mineralization treatment was reduced from 3.9 × 10−5 cm/s to 6.81 × 10−7 cm/s at
the maximum, forming an impermeable barrier that provided effective prevention of waste
leachate infiltration [122].

4.4. Injection Pattern

The effect of the injection pattern on the ability of soil microbial mineralization to
process pollutants is notable. In field injection, due to the nature of the soil in different
locations, bacteria liquid may spread unevenly, with different liquid diffusion ranges;
different injection methods can also affect the formation of mineral compounds, so the
injection pattern has a direct impact on the mineralization processing effect.

At present, there are three mainstream injection methods: the first is the infiltration
method, which is slow drip irrigation to the sample; the second is the grouting method,
in which a grouting pipe is inserted into the sample; the third is the stirring method,
in which the sample and bacteria liquid and cement liquid stirring thoroughly contact.
The penetration mode is uneven, and the dominant seepage channel is easily generated,
which means that some areas are not affected [123]. The grouting mode is distributed
from the center to the periphery, and it is easy to form biological blockage around the
injection point [124]. The stirring method has better uniformity than other methods [125],
but mechanical mixing disturbs the soil and may be unusable in some cases. T. Hamed
Khodadadi treated the soil using both soaking and injection methods and found that the
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injection method was more effective in obtaining rhomboids. These results also suggest
that mineralogical factors should be considered when determining the appropriate method
for MICP treatment of soil in the laboratory so that the obtained samples can represent
the in situ mechanical behavior of MICP-treated soil [126]. Jisheng Zhang et al. used a
low-pH, single-phase method to analyze and discuss the effects of two different bacterial
grouting strategies: multiple injection of low-concentration bacteria and single injection of
bacteria. The results showed that the amount of CaCO3 produced by multiple injection of
low-concentration bacteria was three times that of a single high-concentration bacteria, and
extending the grouting period would make the distribution of CaCO3 more uniform [127].
Liang Cheng carried out the cementation curing experiment by single-phase injection of a
low-pH mixed solution (bacteria and cementing solution). In this method, the lag stage of
the biological cementation is controlled by the pH value, and the distribution of CaCO3 is
more uniform [128]. Kuan Zhang et al. proposed a new single-phase cementing method
by adjusting the pH of bacterial liquid mixed with cementing fluid. When the pH of the
bacterial liquid was adjusted to 5.0 and the cementing fluid was 1 M, the “window period”
for precipitation generation was delayed by 1.5 h, which greatly improved the influence
depth and uniformity of MICP [120].

5. Status of Research on the Microbial Mineralization Control of Inorganic and
Organic Pollutants in Soil

Inorganic pollutants and organic pollutants pose a serious threat to soil environments,
and microbial mineralization remediation is a very important method for solving this
problem [129]. The microbial mineralization of inorganic heavy metal pollutants can fix
them in mineralized products [86]; this is green and safe, does not produce secondary
pollutants, and has been studied by many scholars, showing remarkable effects [130,131].
Few studies have been conducted on the microbial mineralization of organic pollutants,
but the minerals produced by microorganisms can effectively plug pores and reduce
permeability [132], and the diffusion of organic pollutants can be effectively controlled
through microbial mineralization [133]. It also provides sufficient time and safety for other
methods (such as biodegradation [134–136]) to be used to remove organic pollutants [137].
To date, there has been little research on this, but many scholars’ research results for
reducing permeability show that it has good application prospects. The process is shown
in Figure 4.
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5.1. Inorganic Contaminant

Marwa Eltarahony repaired Pb2+ and Hg2+ by CaCO3 precipitation induced by Proteus
mirabilis 10 B under aerobic and anaerobic nitrate utilization. The results showed that the
removal rates of Pb2+ and Hg2+ under aerobic and anaerobic conditions reached 95.2%
and 91.1% and 92% and 88.3%, respectively, after treatment in aerobic (144 and 168 h) and
anaerobic (168 and 186 h) conditions [130]. Nasrin Ghorbanzadeh used Bacillus Pasteurelli
to hydrolyze urea to remove Cd from sand and clay. The results showed that the initial
concentration of Cd at 10, 20, 40, and 50 mg/kg−1 decreased by 85.9%, 61.1%, 74.3%,
80.3%, and 89.3%, respectively, after 7 days of treatment [138]. XinyiQian used the fungus
Penicillium chrysogenum CS1 to mineralize soils contaminated with Cr(VI) and Pb. After the
treatment, the percentage of exchangeable Cr(VI) decreased from 41.60% to 1.95%, while the
exchangeable Pb decreased from 41.27% to 2.19% [42]. Varenyam Achal used Sporosarcina
ginsengisoli CR5 to repair the soil contaminated with As(III). The results showed that the
exchangeable As(III) in the soil decreased from 25.85 mg/kg to only 0.88 mg/kg after treat-
ment [139]. Wilson Mwandira used a microbial-induced calcium carbonate precipitation
technique in combination with the bacterium Paracarulobacter sp for lead bioremediation.
The results showed that 1036 mg/L Pb2+ was removed by co-precipitation of calcium
carbonate and lead [140]. XuejiaoZhu used Bacillus cereus NS4 to repair soil highly con-
taminated by nickel. After microbial carbonate precipitation, the soluble exchangeable
nickel concentration decreased from 898 mg/kg to 38 mg/kg, and the removal rate reached
95.8% [131]. Nasrin Jalilvand isolated four strains of bacteria with urease-producing metal
tolerance from contaminated soil and carried out mineralization-removal experiments of
the heavy metals zinc (Zn), lead (Pb), and cadmium (Cd). The results showed that after
72 h of treatment, S. pesteurii had the best removal effect, eliminating 98.71% of Pb, 97.15%
of Cd, and 94.83% of Zn [79]. Varenyam Achal isolated a local calcification strain from the
soil of the Urumqi mining area and repaired the copper-contaminated soil by MICP. In total,
95% of the copper in the contaminated soil was removed, and FTIR analysis showed that it
produced two different forms of calcium carbonate: calcite and artifact [141]. The potential
of MICP to repair strontium in aquifer quartz sand was evaluated in experiments, and the
results showed that the strain removed 80% of the Sr in the soluble exchange fraction of
aquifer quartz sand. At the same time, X-ray diffraction detected calcite, spherical aragonite,
aragonite, and strontium carbonite (SrCO3) in the precipitation [142].

5.2. Organic Contaminant

Mallavarapu Megharaj et al. noted various problems in the practical application of
various methods to treat organic pollutants and showed the importance of reducing diffu-
sion [143]. At the same time, although biodegradation is safe and effective, it takes a long
time and a single strain cannot degrade all organic pollutants [144], so it is very important
to treat organic matter and control the diffusion of pollutants. FengPan, in a study of the
transport and transformation model of petroleum pollutants in the soil of the Loess Plateau,
pointed out that a decrease in void space was an important factor leading to a decrease
in saturated water conductivity of soil, and concluded that when Ks = 10.54 cm/day was
reduced to Ks = 3.03 cm/day of uncompacted soil, the soil pollution was significantly
reduced [133]. According to the national standard, the hydraulic conductivity of landfill
liner compacted clay should be less than 1 × 10−7 cm/s, and the thickness should be
more than 2 m [145]; using the equation to calculate the national standard generation,
it is concluded that the time for the contaminant to pass through the anti-permeability
system is at least 55 years [137]. J.CHU mineralized the sand surface to form a calcium
carbonate cement layer, and it was found that the permeability of sand decreased from
10−4 m/s to 10−7 m/s when 2.1 kg of calcium carbonate was precipitated on the surface of
sand per square meter [132], and the permeability drastically decreased. Viktor Stabnikov
used dead bacteria with urease activity to decompose urea and produce calcium carbonate
precipitation to seal the soil. The results showed that the hydraulic conductivity of the
treated sand decreased from 5.2 × 10−4 to 7.7 × 10−9 m/s [15]. Jian Chu et al. conducted
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MICP studies on Bacillus isolated from tropical beach sand, and the permeability of sand
was reduced to 1.6 × 10−10 m/s after six consecutive treatments [146]. KimVan Tittelboom
often treats cracks in concrete through MICP and has found that the highest permeability
coefficient is close to 1 × 10−12 m/s after biological treatment and coupling with other
methods [147].

6. Conclusion Outlook

Soil pollution is closely related to human health, so it is necessary to adopt scientific,
safe environmental protection and the long-term and stable remediation of soil pollution. As
a safe, environmentally friendly, long-term, and stable technology, microbial mineralization
technology has been applied in various fields, and many studies have been conducted on
the treatment of soil pollutants. Based on this paper, it can be concluded that microbial
mineralization can mineralize and seal the vast majority of heavy metal pollutants in the
soil, and the removal rate can reach more than 90% or even higher. For organic matter
in the soil, from much research data, we can conclude that the hydraulic conductivity
coefficient of the treated sand can reach up to 1.6 × 10–10 m/s, which can effectively control
the diffusion and migration of organic matter. Although it can be concluded from the
research results that microbial mineralization can effectively control organic and inorganic
pollutants in soil, there are various factors affecting its treatment effect in practice. Based on
the research in this paper, the following research prospects are proposed for the treatment
of soil pollution by microbial mineralization:

(1) Further research should be carried out on the mineralization mechanisms of various
types of mineralized bacteria and the screening of new bacteria (such as salt-resistant
bacteria, high-temperature-resistant bacteria, pH-resistant bacteria, etc.) to identify the
mineralization processes of different types of bacteria and treat targeted pollutants.

(2) Currently, more research has been carried out on soil inorganic contaminant treat-
ment than organic pollutants and treatments to control them. Organic pollutants are diffi-
cult to degrade and have long treatment periods. Microbial mineralization can greatly re-
duce soil permeability and prevent the diffusion of pollutants; coupled with other soil treat-
ment methods, it can eliminate organic pollutants, implying great application prospects.

(3) At present, research on controllable mineralization is mostly confined to the lab-
oratory, and its engineering applications are few. Research on the influencing factors of
controllable mineralization under engineering application, such as the addition of chi-
tosan and silk fibroin protein, should be expanded, and practical engineering application
research should be carried out to transform controllable mineralization into a green and
efficient technology.
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