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Abstract: This paper investigates the seismic rocking-overturning fragility of freestanding rigid
blocks subjected to one-sine acceleration pulses from a probabilistic perspective. An equivalent
single-degree-of-freedom (SDOF) model with a bespoke discrete damper is used to simulate the
responses of four blocks with varying geometries under excitation with various characteristics. The
simulation results are used to perform an overturning fragility analysis and evaluate the performance
of various intensity measures (IMs). An IM strip, referred to as a hybrid strip, can be observed in
the analysis, within which both safe rocking and overturning occur. For IM values outside of the
hybrid strip, there exists a clear distinction between these two states. In this study, we introduce the
hybrid ratio, a parameter that can estimate the size of the hybrid strip of different IMs. The hybrid
ratio is defined as the combination of two ratios of hybrid strip width and the two IM strip widths
corresponding to safe rocking and overturning, respectively. The effect of the different analysis
strip widths is also examined in the overturning fragility analysis. The results suggest that the IM
determined by excitation magnitude, frequency, and block geometry parameters demonstrates its
superiority compared with some well-known IMs by having the smallest hybrid ratio and coefficient
of variation, as well as good robustness of the overturning fragility curves against the change of the
analysis strip width.

Keywords: rigid blocks; overturning; fragility; rocking response; intensity measure; dispersion;
coefficient of variation

1. Introduction

Building contents damage, an important part of earthquake-induced damage, has been
attracting more and more interest from investigators since it was found that severe contents
damage usually causes more significant financial loss compared with structural damage [1].
In the field of earthquake engineering, unanchored building contents are typically idealized
as freestanding rigid blocks. During earthquake events, the motion of rigid blocks may
be dominated by complex modes (e.g., sliding, twisting, rocking). During these complex
motions, the blocks may impact each other or neighboring walls, and may even overturn.
Among the dominating modes, rocking and sliding have attracted the most concern from
investigators. Shenton [2] proposed an approach to distinguish different dominating modes
of unanchored rigid blocks. The research addressing the sliding response can be found
in the literature [3–10]. This study focuses on the rocking-overturning response of the
freestanding rigid block, characterized by a partial bottom uplift and changing rotation
center. The block can overturn when it undergoes a large enough rocking rotation.

As a pioneering work, the seminal framework proposed by Housner [11] for the
seismic response evaluation of freestanding rigid blocks has been followed by many in-
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vestigators, including experimental [12–20] and numerical efforts [21–33]. To predict the
occurrence of overturning, Ishiyama [34] proposed overturning criteria involving the over-
turning acceleration and velocity, which are the minimum peak acceleration and velocity of
the input excitation needed to overturn a rigid block, respectively. Kaneko and Hayashi [35]
rearranged Ishiyama’s equation [34] to obtain the overturning acceleration considering
the frequency of the input excitation. Then, Kaneko and Hayashi [36] proposed an equa-
tion to determine the relationship between the overturning ratio and the input excitation.
Kuo et al. [37] proposed seismic evaluation criteria for the clutter response of medicine
shelves via shake table tests. Similarly, Zhang and Makris [38] analyzed the condition of
overturning and derived an overturning acceleration spectrum, which has been widely
used in rocking-overturning research [39,40]. However, the above deterministic views
and methods to predict overturning seem to be inconsistent with reality, as the rocking
motion is an extremely complex dynamic process, and the rocking response is barely “non-
repeatable” [41–44]. Even minor adjustments of excitation or block geometry parameters
may lead to significant differences of the response. This can be primarily attributed to
the negative stiffness exhibited by the blocks [45] and the complex variability in energy
dissipation [46]. Following the probabilistic point of view [42], fragility analysis, a com-
monly utilized approach in earthquake engineering [47], has been employed by numerous
investigators [48–50] to evaluate the seismic performance of rigid blocks. This approach
involves assessing a conditional probability for a damage measure exceeding a certain
capacity limit state, given an IM value [51–53].

For assessing the rocking-overturning fragility, an incremental dynamic analysis
(IDA)-based assessment method for the blocks subjected to floor motions is proposed by
Liu et al. [54]. Nevertheless, rocking IDA curves generally differ from those of structural
systems due to the frequent appearance of resurrections, the highly weaving non-monotonic
behavior and the overall high variability [55], which presents new challenges to the applica-
tion of IDA-pertinent approaches. Besides the IDA-based method, the maximum likelihood
estimation (MLE) approach has been used to calculate the fragility function parameters for
which the assumed statistical distribution attains the highest likelihood of producing the
observed data [56]. Correspondingly, for a rocking-overturning fragility analysis, various
IMs, including univariate IMs [57,58] and bivariate ones [56], have been proposed. A novel
dimensionless IM, determined by the excitation magnitude, frequency, and block geometry
parameters, was presented by Liu et al. [59] for evaluating the seismic rocking fragility,
which demonstrates a closer correlation with the maximum rocking angle, thus achieve
less dispersion of the fragility functions.

This paper takes a probabilistic insight into the rocking-overturning responses and
evaluates the ability of a suite of IMs to describe the rocking-overturning response. The
likelihood of overturning due to rocking is expressed with a ‘categorical’ response variable.
In particular, a zero-valued (0) or one-valued (1) parameter suffices to describe overturning,
because the rocking block either overturns or not [56]. The simulation of the rocking
blocks is conducted using a reliable numerical model [60]. There exists a hybrid IM strip
within which both overturning and safe rocking occur. For IM values outside of the hybrid
strip, there exists a clear distinction between these two states. From the point of view of
the hybrid strip, the hybrid ratio is proposed in this paper to quantitively compare the
performance of various IMs in distinguishing the two states of safe rocking and overturning.
Simulated overturning probabilities, the percentages of overturning occurrence within the
specific IM value (strip), are used to generate fragility curves. In addition, the least squares
method is used to obtain the parameters of the fragility functions. A novel IM [59], used for
the first time in an overturning fragility analysis, receives the smallest hybrid ratio and the
smallest coefficient of variation compared with some well-known IMs. Finally, the effect of
different analysis strip widths is also examined, and the results show that the overturning
fragility curves have good robustness against the change of the analysis strip width.

The following is an outline of the remaining sections. Section 2 provides the equation
of motion for the rocking block and presents a discretely damped SDOF model, which is
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utilized to solve the rocking response. The experimental results are utilized to validate the
numerical model. Utilizing an overturning acceleration spectrum [38], Section 3 demon-
strates the rocking-overturning responses. In Section 4, an overturning fragility analysis
is conducted in terms of a suite of IMs. A novel IM first used in predicting overturning
successfully demonstrates its superiority by comparing it with some well-known ones. The
final section provides some concluding remarks. Appendix A contains the notations of the
variables utilized in the analysis.

2. Seismic Response of Rigid Blocks
2.1. Numerical Modeling

Consider a homogenous freestanding rectangular rigid block (Figure 1) that has the
dimensions 2b × 2h, mass m. The center-of-mass (CM) of such a block coincides with its
center-of-geometric. The block’s geometry can be fully described using two parameters:
the size parameter R =

√
b2 + h2 and the slenderness parameter, α = atan(b/h). Assume

that the coefficient of friction between the block and its rigid base is big enough so that
rocking (including overturning when the rocking angle is too large) is the only dominating
mode. Its rotational moment of inertia to the pivot point O or O’ is IO = 4

3 mR2. In the
simplest case, this system is SDOF.
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Figure 1. Rocking block geometry.

Assuming that there is no jump and, as a result, the rigid block remains at the same
position at the instant of impact, the equation of motion of an undamped freestanding
block in Figure 1 can be expressed by:

IO
..
θ −m

..
u0H(θ) + mgB(θ) = 0 (1)

where θ is the rotation angle,
..
u0 is the horizontal excitation and g is the gravity acceleration.

The line connecting the current pivot point and the CM can be decomposed into vertical
and horizontal components, i.e., H(θ) and B(θ), respectively (Equations (2) and (3)):

H(θ) = R· cos[α·sgn(θ)− θ] (2)

B(θ) = R· sin[α·sgn(θ)− θ] (3)

where sgn() is the sign function.
There is a threshold for the horizontal excitation acceleration

..
u0 to cause the block to

start rocking (Equation (4)). The restoring moment M can be uniquely determined by θ in
Equation (5).

..
u0 ≥ gb/h = g· tan α (4)

M = mgR sin[α·sgn(θ)− θ] (5)

To simulate the rocking responses, we adopt an equivalent lumped mass SDOF
model [61]. Figure 2 displays the equivalent representation of a rocking block (Figure 2a)
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as an SDOF oscillator (Figure 2b). The equation of motion for such an oscillator subjected
to a floor motion

..
u0 is given by,

IO
..
θ + fd

( .
θ
)
+ k(θ)·θ = −IO

..
u0 cos α

R
(6)

where IO = 4
3 mR2 is the moment of inertia, fd is the damping force and k is the tangent

stiffness of the rotational spring to model the restoring moment of the rocking block.
ICM = mR2

3 is the additional moment of inertia to achieve the total moment of inertia IO.

To approximate the energy dissipation during rocking, a discrete damping force fd

( .
θ
)

proposed by Liu et al. [60] is implemented in this SDOF model. In this discrete damping
model the viscous damping force fd = cD

.
θ has a limited application range of ±δα around

the original position θ = 0. Beyond this range, the damping force is set to 0. Therefore,
the energy dissipation during rocking occurs solely when the system traverses its original
position (Equation (7)):

fd

(
θ,

.
θ
)
=

{
cD

.
θ, |θ| ≤ δα

0, |θ| > δα
(7)

where cD is a nonconstant discrete viscous damping coefficient proportional to the angular
velocity

.
θ before each impact (Figure 3) expressed by Equation (8).

cD =
IO

2δα
(1− e)

∣∣∣ .
θ1

∣∣∣ (8)

where e is the restitution coefficient of the rocking block, which is defined as the ratio of
the angular velocity after the impact to that before the impact floor [62], i.e., e =

.
θ2/

.
θ1,

with
.
θ1 and

.
θ2 representing the angular velocity of the rocking block before and after the

impact. Under Housner’s assumptions [11], the rigid-body restitution coefficient eR can
be derived by the slenderness parameter α (Equation (9)). It is worth mentioning that the
restitution coefficient e in the real world is usually smaller than eR because of the localized
nonlinearity of the colliding materials. To better match the real-world energy dissipation,
the restitution coefficient in this study is assumed to be e = 0.95eR. The numerical simulation
was performed in OpenSees (Version 3.0.0) [63], a world-renowned finite element modeling
platform for earthquake engineering. Further implemental details can be found in our
former paper [60].

eR = 1− 1.5 sin2 α (9)
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Figure 2. (a) Rigid block and (b) equivalent SDOF model.
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Figure 3. Hysteresis of the SDOF model: (a) total resisting moment vs. rocking angle, (b) damping
force vs. rocking angle.

2.2. Experimental Verifications

The performance of the discrete damping model has been validated by a comparison
with the experimental results of Nasi [64–66]. Figure 4 displays six selected runs of rotation-
time history derived from the experiment and the simulation. The comparison shows
that this numerical model with discrete damping can correctly approximate the maximum
rocking angle and predict overturning [59,60].
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3. Overturning Acceleration Spectrum

The response results of the rigid rocking blocks are usually studied in terms of the
rocking spectrum. Zhang and Makris [38] presented a two-dimensional overturning
acceleration spectrum, with two axes of ωP/P, and PFA/gtanα. Here, ωP is the circular
frequency of the one-sine pulse acceleration excitation, P =

√
3g/4R is a block frequency

parameter proposed by Housner [11] and PFA is the peak floor acceleration. In this study,
the overturning acceleration spectrum proposed by Zhang and Makris [38] is simplified by
only dividing into the overturning and safe rocking zone. For the subsequent overturning
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fragility analysis, a set of data were generated based on the overturning acceleration
spectrum. We selected four models of sizes of typical furniture or equipment (Figure 5).
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By exposing each model to 100 one-sine pulse excitations of different PFA and ωP, we
derived simulated results for 400 uniformly distributed cases (Figure 6a). A boundary can
be observed between the overturning and safe area (Figure 6b), as Zhang and Makris [38]
concluded. The occurrence of overturning corresponds to ωP/P and PFA/gtanα, both
widely-used IMs. However, using either one of these methods alone is insufficient for an
overturning fragility analysis, highlighting the advantage of bivariate IMs [56]. Further-
more, this fact also consists of the motivation of this paper, which is that a good IM for
an overturning fragility analysis should include as much of the excitation characteristics
(e.g., PFA and ωP) and the block geometry information (e.g., R and α), as mentioned in our
former research [59].
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Figure 6. (a) Model distribution and (b) overturning spectrum.

It is worth noting that this study utilizes simple one-sine pulses as external excitations.
Unlike rocking structures, building contents are subject to floor motion rather than ground
motion. Previous work by D’Angela et al. [67] suggests that the input for freestanding
bodies should better fit floor motion, and floor motions usually exhibit a relatively reduced
record-to-record uncertainty. During earthquake events, the floor motion of a building
is filtered by the structural system, resulting in dominant frequency components [68,69]
(primarily related to the first natural frequency, or the first three natural frequencies).
Although simplified motions may not fully capture the complexities of realistic floor
motions under earthquake excitations, they do offer a foundation for understanding the
response of rigid blocks and serve as a starting point for more sophisticated analyses.
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4. Overturning Fragility Analysis

To determine the overturning fragility, one should first estimate the conditional proba-
bility Pf for the damage measure (DM) surpassing a pre-defined capacity limit state (LS),
given an IM value:

Pf = P(DM > LS|IM) (10)

To facilitates the calculation of conditional probability Pf, Dimitrakopoulos and
Paraskeva [56] have presented a probability tree diagram that takes into account the
peculiarities of the rocking responses (Figure 7). The probability Pf is calculated by combin-
ing two likelihoods, i.e., the rocking-overturning probability (Pro) and the probability of
DM surpassing LS without overturning (Pex). As the probability Pex during safe rocking
has been studied [59], this paper focuses on deriving the overturning probability Pro, and a
comparative study of a suite of IMs has been conducted on the performance of deriving the
overturning probability.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 17 
 

 

Figure 6. (a) Model distribution and (b) overturning spectrum. 

4. Overturning Fragility Analysis 

To determine the overturning fragility, one should first estimate the conditional 

probability Pf for the damage measure (DM) surpassing a pre-defined capacity limit state 

(LS), given an IM value: 

𝑃f = 𝑃(𝐷𝑀 > 𝐿𝑆|𝐼𝑀) (10) 

To facilitates the calculation of conditional probability Pf, Dimitrakopoulos and Par-

askeva [56] have presented a probability tree diagram that takes into account the peculi-

arities of the rocking responses (Figure 7). The probability Pf is calculated by combining 

two likelihoods, i.e., the rocking-overturning probability (Pro) and the probability of DM 

surpassing LS without overturning (Pex). As the probability Pex during safe rocking has 

been studied [59], this paper focuses on deriving the overturning probability Pro, and a 

comparative study of a suite of IMs has been conducted on the performance of deriving 

the overturning probability. 

 

Figure 7. Probability tree diagram for the rocking problem. 

4.1. Damage Measure and Limit States 

In the real world, it is obvious that overturning occurs when the absolute peak rock-

ing rotation |θmax| reaches π/2. In the subsequent overturning fragility analysis, |θmax| is 

used as the DM in this paper and LS = π/2 indicates the occurrence of overturning (Equa-

tion (11)). 

𝐷𝑀 = |𝜃max|, 𝐿𝑆 = 𝜋/2 (11) 

The dimensionless DM, normalized absolute peak rocking angle |θmax|/α, has been 

widely adopted for rocking fragility analysis because it provides a straight insight into the 

degree of rocking response [56–59]. Its physical meaning is clear: a larger-than-zero value 

implies the existence of rocking, whereas higher values indicate more severe rocking and 

even overturning. This index (|θmax|/α) is also used as a criteria of overturning, but there 

are different opinions on the threshold value. Some investigators use larger-than-one 

0

2

4

6

8

10

12

0 2 4 6 8 10 12
ωP/P

P
F

A
/g

ta
n
α

Overturning Safe

0

2

4

6

8

10

12

0 2 4 6 8 10 12
ωP/P

P
F

A
/g

ta
n
α

(a) (b) 

Block 1 Block 2 Block 3 Block 4

Excitation

Rocking

No rocking

Overturning

No overturning

Pf =P(DM >LS |IM)

|θmax|/α >LS 
Pr=1 Pnr

Pnr

Pro

1 Pro

1 Pex

Pex

|θmax|/α <LS 

Figure 7. Probability tree diagram for the rocking problem.

4.1. Damage Measure and Limit States

In the real world, it is obvious that overturning occurs when the absolute peak rocking
rotation |θmax| reaches π/2. In the subsequent overturning fragility analysis, |θmax|
is used as the DM in this paper and LS = π/2 indicates the occurrence of overturning
(Equation (11)).

DM = |θmax|, LS = π/2 (11)

The dimensionless DM, normalized absolute peak rocking angle |θmax|/α, has been
widely adopted for rocking fragility analysis because it provides a straight insight into
the degree of rocking response [56–59]. Its physical meaning is clear: a larger-than-zero
value implies the existence of rocking, whereas higher values indicate more severe rocking
and even overturning. This index (|θmax|/α) is also used as a criteria of overturning, but
there are different opinions on the threshold value. Some investigators use larger-than-one
values to denote overturning [54,58,70], while some other researchers have suggested the
possibility of the block surviving overturning and returning to its original configuration
eventually with |θmax|/α > 1.0 [38,71], which differs from the common quasi-static view-
point of the seismic response. When overturning occurs the numerical response may tend
to infinite values. Thus, Dimitrakopoulos and Paraskeva [56] pointed out that the threshold
of overturning does not correspond to a particular rotation value (e.g., |θmax|/α > 1.0 or
even 1.5), but rather at infinite values in numerical simulations.

4.2. Intensity Measures

Liu et al. [59] evaluated eight frequently used dimensionless IMs in a rocking fragility
analysis and proposed a novel dimensionless IM determined by the excitation magnitude,
frequency and block geometry parameters. The novel IM shows obvious superiority in
predicting the peak rocking rotation angle during safe rocking compared with eight well-
known IMs. In this paper, we use the same IM suite to evaluate their performance in an
overturning analysis. The detailed information on the IM suite is listed in Table 1 and can
also be found in [59].
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Table 1. Detailed information on the IM suite.

Intensity Measure Expression Physical Meaning Ref

IM1
ωP
P

Dimensionless
excitation frequency [38]

IM2
PFA

g tan α Dimensionless PFA [38]
IM3

P·PFV
g tan α Dimensionless PFV [56]

IM4 1.484
(

PFA
g tan α

)1.644(ωP
P
)−2.013

Dimensionless
combinations of PFA

and floor motion
frequency

[56]

IM5 0.063
(

PFA
g tan α

)2.954(ωP
P
)−0.942 [56]

IM6
(

PFA
g tan α

)0.52(ωP
P
)−0.48 [56]

IM7
(

PFA
g tan α

)0.6(ωP
P
)−0.4 [56]

IM8
eR

4·P·PFV
g tan α

Dimensionless PFV
considering the

restitution coefficient
[58]

IM9
PFA·TP

2

R tan α *
Dimensionless floor

displacement [59]

* TP is the period of the one-sine pulse excitation.

Within this IM suite, IM1 to IM3 are univariate IMs with the physical meaning of
dimensionless excitation frequency, dimensionless PFA and dimensionless PFV, respectively.
IM4 to IM7 are bivariate IMs, which may increase the computational cost. IM8 is an IM
proposed by Sieber et al. [58] with the physical meaning of the dimensionless peak velocity
considering the restitution coefficient eR. The novel IM9 [59], with the physical meaning of
dimensionless displacement, explicitly considers the excitation (PFA and ωP) and the block
geometric (R and α).

4.3. Hybrid Strip and Hybrid Ratio

Figure 8 displays the simulated rocking responses against the varying values of
different IMs. There exists a particular hybrid IM strip (HS), within which both safe rocking
and overturning occur, and outside of which a clear distinction can be made between the
two states of safe rocking and overturning. To quantitively estimate the size of the HS,
the hybrid ratio (HR) is presented in this paper to compare the performance of various
IMs for predicting overturning (Figure 8). The parameter HR defined in Equation (12) can
assess the performance of different IMs to evaluate whether a rigid block will overturn if
subjected to an excitation.

HR =

√(
WHS
RS

)2
+

(
WHS
RO

)2
(12)

where WHS is the width of the hybrid strip, RS and RO are the range of IM corresponding
to safe rocking and the range of IM corresponding to overturning, respectively. Generally,
a smaller HR for a type of IM indicates a smaller size of the hybrid strip relative to the
overall IM range, which means a better prediction performance.

Figure 9 offers a comparative evaluation of all the examined IMs. The novel IM9 is the
closest to the origin of the coordinates, i.e., the HR of IM9 is the smallest (Table 2). Although
IM1 has the smallest WHS/RS (0.50), IM9 is close to it (0.51). These results indicate that IM9
can best identify the state transition from safe rocking to overturning compared with the
other eight IMs.
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Table 2. Analysis parameters of different IMs.

IM WHS RS RO WHS/RS WHS/RO HR WSAS

IM1 4.00 8.00 5.50 0.50 0.73 0.88 0.80
IM2 9.50 9.50 9.50 1.00 1.00 1.41 1.90
IM3 1.00 1.40 10.00 0.71 0.10 0.72 0.20
IM4 1.09 1.40 70.52 0.78 0.02 0.78 0.20
IM5 10.43 10.46 65.42 1.00 0.16 1.01 2.00
IM6 0.62 1.01 2.68 0.61 0.23 0.65 0.12
IM7 1.12 1.49 3.34 0.75 0.34 0.83 0.20
IM8 0.98 1.14 8.08 0.86 0.12 0.87 0.19
IM9 8.77 17.07 543.92 0.51 0.02 0.51 1.70

4.4. Probability of Overturning

The standard analysis strip (SAS), whose width (WSAS) is one-fifth of WHS, is used to
obtain the overturning probability within the specific IM value in Figure 8. The overturning
probability Pro can be estimated directly by Equation (13), which can be used in the
subsequent overturning fragility analysis to obtain the fragility curves.

Pro =
number of overturning simulations
total number of rocking simulations

(13)

The lognormal cumulative distribution function is widely used to fit fragility functions
in earthquake engineering because of its robustness in deriving fragility functions [72]:

P(Overturning|IM = x ) = Φ
(

ln(x/µ)

β

)
(14)

where P is the probability that excitation with IM = x will cause the overturning of the
rigid block, Φ is the standard normal cumulative distribution function, µ is the median
of the fragility function (the IM level with a 50% probability of overturning), and β is the
dispersion or logarithmic standard deviation. The least squares method is used to fit the
overturning probability data obtained from Figure 8 to generate the overturning fragility
curves. The error between the overturning probability data and the fitted overturning
probability from the fragility function is:

error =
n

∑
i=1

(Pi − Pfit(IM = xi))
2 (15)

where n is the number of the overturning probability data, Pi is the ith overturning prob-
ability and Pfit is the fitted overturning probability when the IM = xi. The error can be
minimized by adjusting β:

β = argmin(error) = argmin
n

∑
i=1

(
Pi −Φ

(
ln(xi/µ)

β

))2
(16)

Figure 10 shows the overturning fragility curves for different IMs obtained by fitting
the overturning probability data. For comparing the performance of various IMs in es-
timating the overturning probability, the fitted analysis parameters are used to generate
the coefficient of variation (CV) in this paper. CV is a standardized measure of the disper-
sion of a probability distribution defined as the ratio of the standard deviation β to the
mean µ. Compared with the other eight IMs, IM9 exhibits obvious superiority by having
the smallest CV (Figure 11). Therefore, IM9 is recommended as an IM for overturning
fragility analysis.
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Figure 10. Overturning fragility curves for different IMs.
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4.5. Effect of Analysis Strip Width

From the process of an overturning fragility analysis, it can be found that the width of
the analysis strip may affect the fragility curves. To examine this effect, we adjusted the
width of the analysis strip (WAS) to half and twice WSAS, respectively. Figure 12 shows that,
for all nine IMs, the overturning fragility curves obtained for different analysis strip widths
are almost the same. The fragility curves have good robustness for different widths of the
analysis strips. IM9 maintains the smallest CV, which once again proves its superiority for
overturning fragility analysis (Table 3).
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Table 3. Analysis parameters for different widths of the analysis strips.

IM
WAS = WSAS/2 WAS = WSAS WAS = 2WSAS

µ β CV (%) µ β CV (%) µ β CV (%)

IM1 4.60 0.32 6.96 4.77 0.32 6.71 4.68 0.28 5.98
IM2 7.65 1.48 19.35 7.97 1.72 21.59 8.19 2.22 27.12
IM3 1.39 0.12 8.63 1.36 0.14 10.32 1.40 0.13 9.27
IM4 1.28 0.11 8.58 1.27 0.14 11.05 1.32 0.13 9.82
IM5 8.01 0.40 5.00 7.43 0.48 6.46 7.76 0.51 6.57
IM6 1.25 0.07 5.59 1.27 0.07 5.52 1.27 0.09 7.10
IM7 1.74 0.10 5.73 1.73 0.12 6.92 1.72 0.12 6.97
IM8 1.11 0.11 9.94 1.09 0.14 12.88 1.06 0.26 24.57
IM9 12.80 0.17 1.33 13.15 0.15 1.14 13.28 0.15 1.13

5. Conclusions

This study provides deterministic and probabilistic views into the rocking-overturning
responses of freestanding rigid blocks. The simulated results for four block models under
excitation with various characteristics were conducted to generate the overturning spec-
trum. A comparative study of nine intensity measures, including one used for the first
time in overturning fragility analysis was conducted to evaluate their capability to predict
overturning. The overturning fragility curves were derived by the least-square fitting of a
lognormal cumulative distribution. Some concluding remarks are drawn:
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1. An effective IM for overturning fragility analysis should include as many of the
excitation characteristics and as much of the block geometry information as possible.

2. A hybrid ratio, a parameter that can estimate the size of the hybrid IM strip within
which both safe rocking and overturning may occur, is presented to quantitively
compare the performance of various IMs in predicting overturning. A novel IM9
(dimensionless floor displacement) had the best performance with the smallest HR.

3. The novel IM9 first used in an overturning fragility analysis performs best by signif-
icantly reducing the coefficient of variation compared with some well-known IMs.
Thus, IM9 is recommended as an IM for overturning fragility analysis.

4. Different widths of analysis strips were used to generate the overturning fragility
curves. The results show that the strip width only slightly affects the overturning
fragility curves, thus revealing the good robustness of the analysis process.
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Appendix A

Table A1. Notations of the variable.

Symbol Definition

2b Width
2h Height
R Size parameter
α Slenderness parameter
IO Moment of inertia
θ and

..
θ Rotation angle and rotational angular acceleration

..
u0 Horizontal excitation
H and B Vertical and horizontal transient distances
g Gravity acceleration
M Restoring moment
.
θ1 and

.
θ2 Angular velocities before and after impacts

e Restitution coefficient
eR Rigid-body restitution coefficient
fd Damping force
k Tangent stiffness
ICM Additional moment of inertia
δα Small range around initial position
cD Discrete viscous damping coefficient
θmax Peak rocking rotation
Tp Period of pulse excitation
ωP Circular frequency of pulse excitation
P Frequency parameter of block
PFA Peak floor acceleration
PFV Peak floor velocity
IM Intensity measure
DM Damage measure
LS Limit state
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Table A1. Cont.

Symbol Definition

Pf Conditional probability
Pro Overturning probability
Pex Probability of DM exceeding LS within safe rocking
WHS Width of the hybrid strip
RS and RO IM range corresponding to safe rocking and overturning
HR Hybrid ratio
WSAS Standard analysis strip width
Pi Overturning probability
Pfit Fitted overturning probability
β Dispersion
µ Median value of fragility function
CV Coefficient of variation
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