Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow
Abstract
:1. Introduction
2. Uncertainty Modeling
3. Optimal Location and Sizing of DG
3.1. Mathematical Modeling
3.2. Symbiotic Organism Search
3.2.1. Mutualistic Phase
3.2.2. Commensalism Phase
3.2.3. Parasitism Phase
3.3. Particle Swarm Optimization
- The proximity principle, where individuals in the population must be able to move around in a search space.
- The quality principle, in which individuals must be able to respond to quality factors in the environment.
- The principle of diverse responses, in which individuals should not be bound to a restricted path.
- The stability principle, in which individuals should not change their behavior whenever environmental conditions change.
- The adaptability principle, in which individuals must be able to change their behavior when it is no longer convenient.
3.4. Metrics
3.4.1. Comparison of the Midpoints
3.4.2. Evaluation Using the Interval Measurement Function
4. Tests and Results
4.1. Results with the IEEE 33-Bus Test System
4.1.1. System Data
4.1.2. SOS Applied to the IEEE 33-Bus Test System
4.1.3. PSO Applied to the IEEE 33-Bus Test System
4.1.4. Power Loss Comparison
4.2. Results with the IEEE 69-Bus Test system
4.2.1. System Data
4.2.2. SOS Applied to the IEEE 69-Bus Test System
4.2.3. PSO Applied to the IEEE 69-Bus Test System
4.2.4. Power Loss Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, X.; Qu, L.; Qiao, W. Robust AC Optimal Power Flow for Power Networks With Wind Power Generation. IEEE Trans. Power Syst. 2016, 31, 4163–4164. [Google Scholar] [CrossRef]
- Lopez-lezama, J.M.; Murillo-Sanchez, C.; Zuluaga, L.; Gutierrez-Gomez, J. A Contingency-Based Security-Constrained Optimal Power Flow Model for Revealing the Marginal Cost of a Blackout Risk-Equalizing Policy in the Colombian Electricity Market. In Proceedings of the 2006 IEEE/PES Transmission Distribution Conference and Exposition: Latin America, Caracas, Venezuela, 15–18 August 2006; pp. 1–6. [Google Scholar] [CrossRef]
- Bian, J.; Wang, H.; Wang, L.; Li, G.; Wang, Z. Probabilistic optimal power flow of an AC/DC system with a multiport current flow controller. CSEE J. Power Energy Syst. 2021, 7, 744–752. [Google Scholar] [CrossRef]
- Amiri, H.; Mohammadi, M.; Karimi, M.; Rastegar, M.; Rostami, A. Probabilistic Load Flow Based on Parameterized Probability-Boxes for Systems with Insufficient Information. IEEE Access 2021, 9, 161038–161045. [Google Scholar] [CrossRef]
- Villada Duque, F.; López Lezama, J.M.; Muñoz Galeano, N. Effects of Incentives for Renewable Energy in Colombia. Ing. Univ. 2017, 21, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Strezoski, L.; Padullaparti, H.; Ding, F.; Baggu, M. Integration of Utility Distributed Energy Resource Management System and Aggregators for Evolving Distribution System Operators. J. Mod. Power Syst. Clean Energy 2022, 10, 277–285. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, J. Virtual Power Plant Operation Strategy Under Uncertainty with Demand Response Resources in Electricity Markets. IEEE Access 2022, 10, 62763–62771. [Google Scholar] [CrossRef]
- Rezaei, E.; Dagdougui, H.; Ojand, K. Hierarchical Distributed Energy Management Framework for Multiple Greenhouses Considering Demand Response. IEEE Trans. Sustain. Energy 2023, 14, 453–464. [Google Scholar] [CrossRef]
- Primadianto, A.; Lu, C. A Review on Distribution System State Estimation. IEEE Trans. Power Syst. 2017, 32, 3875–3883. [Google Scholar] [CrossRef]
- de Oliveira, L.W.; Seta, F.d.S.; de Oliveira, E.J. Optimal reconfiguration of distribution systems with representation of uncertainties through interval analysis. Int. J. Electr. Power Energy Syst. 2016, 83, 382–391. [Google Scholar] [CrossRef]
- Pereira, L.; da Costa, V.; Rosa, A. Interval arithmetic in current injection power flow analysis. Int. J. Electr. Power Energy Syst. 2012, 43, 1106–1113. [Google Scholar] [CrossRef]
- Araujo, B.M.C.; da Costa, V.M. New Developments in the Interval Current Injection Power Flow Formulation. IEEE Lat. Am. Trans. 2018, 16, 1969–1976. [Google Scholar] [CrossRef]
- Seta, F.D.S.; de Oliveira, L.W.; de Oliveira, E.J. Distribution System Planning with Representation of Uncertainties Based on Interval Analysis. J. Control Autom. Electr. Syst. 2020, 31, 494–510. [Google Scholar] [CrossRef]
- Mori, H.; Yuihara, A. Calculation of multiple power flow solutions with the Krawczyk method. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 30 May–2 June 1999; Volume 5, pp. 94–97. [Google Scholar] [CrossRef]
- Rasmussen, T.B.; Yang, G.; Nielsen, A.H. Interval estimation of voltage magnitude in radial distribution feeder with minimal data acquisition requirements. Int. J. Electr. Power Energy Syst. 2019, 113, 281–287. [Google Scholar] [CrossRef]
- Lin, X.; Shu, T.; Tang, J.; Ponci, F.; Monti, A.; Li, W. Application of Joint Raw Moments-Based Probabilistic Power Flow Analysis for Hybrid Power Systems. IEEE Trans. Power Syst. 2022, 37, 1399–1412. [Google Scholar] [CrossRef]
- Li, Y.; Wan, C.; Chen, D.; Song, Y. Nonparametric Probabilistic Optimal Power Flow. IEEE Trans. Power Syst. 2022, 37, 2758–2770. [Google Scholar] [CrossRef]
- Shu, T.; Lin, X.; Peng, S.; Du, X.; Chen, H.; Li, F.; Tang, J.; Li, W. Probabilistic Power Flow Analysis for Hybrid HVAC and LCC-VSC HVDC System. IEEE Access 2019, 7, 142038–142052. [Google Scholar] [CrossRef]
- Peng, S.; Lin, X.; Tang, J.; Xie, K.; Ponci, F.; Monti, A.; Li, W. Probabilistic Power Flow of AC and DC Hybrid Grids With Addressing Boundary Issue of Correlated Uncertainty Sources. IEEE Trans. Sustain. Energy 2022, 13, 1607–1619. [Google Scholar] [CrossRef]
- Fu, C.; Xu, Y.; Yang, Y.; Lu, K.; Gu, F.; Ball, A. Response analysis of an accelerating unbalanced rotating system with both random and interval variables. J. Sound Vib. 2020, 466, 115047. [Google Scholar] [CrossRef]
- Cheng, W.; Cheng, R.; Shi, J.; Zhang, C.; Sun, G.; Hua, D. Interval Power Flow Analysis Considering Interval Output of Wind Farms through Affine Arithmetic and Optimizing-Scenarios Method. Energies 2018, 11, 3176. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Gu, W.; Wang, Y.; Chen, C. An Affine Arithmetic-Based Power Flow Algorithm Considering the Regional Control of Unscheduled Power Fluctuation. Energies 2017, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Z.; Dou, X.; Hu, M.; Xu, Y. Interval power flow analysis via multi-stage affine arithmetic for unbalanced distribution network. Electr. Power Syst. Res. 2017, 142, 1–8. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.; Tang, F.; Liu, C. A clustering-based analytical method for hybrid probabilistic and interval power flow. Int. J. Electr. Power Energy Syst. 2021, 126, 106605. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Shi, K.; Qiu, M.; Hua, D.; Ngan, H. An Interval Power Flow Analysis Through Optimizing-Scenarios Method. IEEE Trans. Smart Grid 2018, 9, 5217–5226. [Google Scholar] [CrossRef]
- Liao, X.; Liu, K.; Zhang, Y.; Wang, K.; Qin, L. Interval method for uncertain power flow analysis based on Taylor inclusion function. Transm. Distrib. IET Gener. 2017, 11, 1270–1278. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Q.; Zhao, J.; Hu, W. A Computational Attractive Interval Power Flow Approach With Correlated Uncertain Power Injections. IEEE Trans. Power Syst. 2020, 35, 825–828. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Ngan, H.; Yang, P.; Hua, D. A Mixed Interval Power Flow Analysis Under Rectangular and Polar Coordinate System. IEEE Trans. Power Syst. 2017, 32, 1422–1429. [Google Scholar] [CrossRef]
- Tang, K.; Dong, S.; Zhu, C.; Song, Y. Affine Arithmetic-Based Coordinated Interval Power Flow of Integrated Transmission and Distribution Networks. IEEE Trans. Smart Grid 2020, 11, 4116–4132. [Google Scholar] [CrossRef]
- Çelik, D.; Meral, M.E. Current control based power management strategy for distributed power generation system. Control Eng. Pract. 2019, 82, 72–85. [Google Scholar] [CrossRef]
- Chen, G.; Lewis, F.L.; Feng, E.N.; Song, Y. Distributed Optimal Active Power Control of Multiple Generation Systems. IEEE Trans. Ind. Electron. 2015, 62, 7079–7090. [Google Scholar] [CrossRef]
- Machado, L.F.M.; Santo, S.G.D.; Junior, G.M.; Itiki, R.; Manjrekar, M.D. Multi-Source Distributed Energy Resources Management System Based on Pattern Search Optimal Solution Using Nonlinearized Power Flow Constraints. IEEE Access 2021, 9, 30374–30385. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. An Approach for Optimal Coordination of Over-Current Relays in Microgrids with Distributed Generation. Electronics 2020, 9, 1740. [Google Scholar] [CrossRef]
- Rajagopalan, A.; Swaminathan, D.; Alharbi, M.; Sengan, S.; Montoya, O.D.; El-Shafai, W.; Fouda, M.M.; Aly, M.H. Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods. Energies 2022, 15, 8889. [Google Scholar] [CrossRef]
- Gallego Pareja, L.A.; López-Lezama, J.M.; Gómez Carmona, O. A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation. Energies 2022, 15, 3063. [Google Scholar] [CrossRef]
- Pérez Posada, A.F.; Villegas, J.G.; López-Lezama, J.M. A Scatter Search Heuristic for the Optimal Location, Sizing and Contract Pricing of Distributed Generation in Electric Distribution Systems. Energies 2017, 10, 1449. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, J.; Zhang, Y.J.; Xu, Z. Optimal Location Planning of Renewable Distributed Generation Units in Distribution Networks: An Analytical Approach. IEEE Trans. Power Syst. 2018, 33, 2742–2753. [Google Scholar] [CrossRef]
- Afraz, A.; Malekinezhad, F.; Shenava, S.; Jlili, A. Optimal sizing and sitting in radial standard system using pso. Am. J. Sci. Res. 2012, 67, 50–58. [Google Scholar]
- Mareddy, P.; Reddy, V.; Vyza, U. Optimal DG placement for minimum real power loss in radial distribution systems using PSO. J. Theor. Appl. Inf. Technol. 2010, 13, 107–116. [Google Scholar]
- Sedighizadeh, M.; Rezazadeh, A. Using Genetic Algorithm for Distributed Generation Allocation to Reduce Losses and Improve Voltage Profile. Int. J. Comput. Syst. Eng. 2008, 2, 50–55. [Google Scholar]
- Liu, K.Y.; Sheng, W.; Liu, Y.; Meng, X.; Liu, Y. Optimal sitting and sizing of DGs in distribution system considering time sequence characteristics of loads and DGs. Int. J. Electr. Power Energy Syst. 2015, 69, 430–440. [Google Scholar] [CrossRef]
- Bhadoria, V.S.; Pal, N.S.; Shrivastava, V.; Jaiswal, S.P. Reliability Improvement of Distribution System by Optimal Sitting and Sizing of Disperse Generation. Int. J. Reliab. Qual. Saf. Eng. 2017, 24, 1740006. [Google Scholar] [CrossRef]
- Abou El-Ela, A.; Allam, S.; Shatla, M. Maximal optimal benefits of distributed generation using genetic algorithms. Electr. Power Syst. Res. 2010, 80, 869–877. [Google Scholar] [CrossRef]
- Moradi, M.; Abedini, M. A novel method for optimal DG units capacity and location in Microgrids. Int. J. Electr. Power Energy Syst. 2016, 75, 236–244. [Google Scholar] [CrossRef]
- Moradi, M.H.; Abedini, M.; Hosseinian, S.M. A Combination of Evolutionary Algorithm and Game Theory for Optimal Location and Operation of DG from DG Owner Standpoints. IEEE Trans. Smart Grid 2016, 7, 608–616. [Google Scholar] [CrossRef]
- Ameli, A.; Farrokhifard, M.R.; Davari-nejad, E.; Oraee, H.; Haghifam, M.R. Profit-Based DG Planning Considering Environmental and Operational Issues: A Multiobjective Approach. IEEE Syst. J. 2017, 11, 1959–1970. [Google Scholar] [CrossRef]
- Ali, A.; Keerio, M.U.; Laghari, J.A. Optimal Site and Size of Distributed Generation Allocation in Radial Distribution Network Using Multi-objective Optimization. J. Mod. Power Syst. Clean Energy 2021, 9, 404–415. [Google Scholar] [CrossRef]
- Purlu, M.; Turkay, B.E. Optimal Allocation of Renewable Distributed Generations Using Heuristic Methods to Minimize Annual Energy Losses and Voltage Deviation Index. IEEE Access 2022, 10, 21455–21474. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Prayogo, D. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Comput. Struct. 2014, 139, 98–112. [Google Scholar] [CrossRef]
- Sanjay, R.; Jayabarathi, T.; Raghunathan, T.; Ramesh, V.; Mithulananthan, N. Optimal Allocation of Distributed Generation Using Hybrid Grey Wolf Optimizer. IEEE Access 2017, 5, 14807–14818. [Google Scholar] [CrossRef]
- Farh, H.M.H.; Al-Shaalan, A.M.; Eltamaly, A.M.; Al-Shamma’A, A.A. A Novel Crow Search Algorithm Auto-Drive PSO for Optimal Allocation and Sizing of Renewable Distributed Generation. IEEE Access 2020, 8, 27807–27820. [Google Scholar] [CrossRef]
- Eid, A.; Kamel, S.; Korashy, A.; Khurshaid, T. An Enhanced Artificial Ecosystem-Based Optimization for Optimal Allocation of Multiple Distributed Generations. IEEE Access 2020, 8, 178493–178513. [Google Scholar] [CrossRef]
- Nayeripour, M.; Mahboubi-Moghaddam, E.; Aghaei, J.; Azizi-Vahed, A. Multi-objective placement and sizing of DGs in distribution networks ensuring transient stability using hybrid evolutionary algorithm. Renew. Sustain. Energy Rev. 2013, 25, 759–767. [Google Scholar] [CrossRef]
- da Rosa, W.; Gerez, C.; Belati, E. Optimal Distributed Generation Allocating Using Particle Swarm Optimization and Linearized AC Load Flow. IEEE Lat. Am. Trans. 2018, 16, 2665–2670. [Google Scholar] [CrossRef]
- Arif, S.M.; Hussain, A.; Lie, T.T.; Ahsan, S.M.; Khan, H.A. Analytical Hybrid Particle Swarm Optimization Algorithm for Optimal Siting and Sizing of Distributed Generation in Smart Grid. J. Mod. Power Syst. Clean Energy 2020, 8, 1221–1230. [Google Scholar] [CrossRef]
- Nogueira, W.C.; Garcés Negrete, L.P.; López-Lezama, J.M. Interval Load Flow for Uncertainty Consideration in Power Systems Analysis. Energies 2021, 14, 642. [Google Scholar] [CrossRef]
- Alinejad-Beromi, Y.; Sedighizadeh, M.; Sadighi, M. A particle swarm optimization for sitting and sizing of Distributed Generation in distribution network to improve voltage profile and reduce THD and losses. In Proceedings of the 2008 43rd International Universities Power Engineering Conference, Padova, Italy, 1–4 September 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Adaptive protection coordination scheme in microgrids using directional over-current relays with non-standard characteristics. Heliyon 2021, 7, e06665. [Google Scholar] [CrossRef] [PubMed]
- Gendreau, M.; Potvin, J.Y. Handbook of Metaheuristics; Springer: New York, NY, USA, 2010; Volume 2. [Google Scholar]
- Radosavljević, J.; Arsić, N.; Milovanović, M.; Ktena, A. Optimal Placement and Sizing of Renewable Distributed Generation Using Hybrid Metaheuristic Algorithm. J. Mod. Power Syst. Clean Energy 2020, 8, 499–510. [Google Scholar] [CrossRef]
- Ellahi, M.; Abbas, G. A Hybrid Metaheuristic Approach for the Solution of Renewables-Incorporated Economic Dispatch Problems. IEEE Access 2020, 8, 127608–127621. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Dos Santos Alonso, A.M.; Pereira Junior, B.R.; Brandao, D.I.; Marafao, F.P. Optimized Exploitation of Ancillary Services: Compensation of Reactive, Unbalance and Harmonic Currents Based on Particle Swarm Optimization. IEEE Lat. Am. Trans. 2021, 19, 314–325. [Google Scholar] [CrossRef]
- Silva de Souza, J.; Percy Molina, Y.; Silva de Araujo, C.; Pereira de Farias, W.; Santos de Araujo, I. Modified Particle Swarm Optimization Algorithm for Sizing Photovoltaic System. IEEE Lat. Am. Trans. 2017, 15, 283–289. [Google Scholar] [CrossRef]
- Ghanbari, M.; Gandomkar, M.; Nikoukar, J. Protection Coordination of Bidirectional Overcurrent Relays Using Developed Particle Swarm Optimization Approach Considering Distribution Generation Penetration and Fault Current Limiter Placement. IEEE Can. J. Electr. Comput. Eng. 2021, 44, 143–155. [Google Scholar] [CrossRef]
- Prashant; Sarwar, M.; Siddiqui, A.S.; Ghoneim, S.S.M.; Mahmoud, K.; Darwish, M.M.F. Effective Transmission Congestion Management via Optimal DG Capacity Using Hybrid Swarm Optimization for Contemporary Power System Operations. IEEE Access 2022, 10, 71091–71106. [Google Scholar] [CrossRef]
- Zhen, L.; Liu, Y.; Dongsheng, W.; Wei, Z. Parameter Estimation of Software Reliability Model and Prediction Based on Hybrid Wolf Pack Algorithm and Particle Swarm Optimization. IEEE Access 2020, 8, 29354–29369. [Google Scholar] [CrossRef]
- Dabhi, D.; Pandya, K. Enhanced Velocity Differential Evolutionary Particle Swarm Optimization for Optimal Scheduling of a Distributed Energy Resources With Uncertain Scenarios. IEEE Access 2020, 8, 27001–27017. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Alolyan, I. A new method for comparing closed intervals. Aust. J. Math. Anal. Appl. 2011, 8, 1–6. [Google Scholar]
- Alam, A.; Gupta, A.; Bindal, P.; Siddiqui, A.; Zaid, M. Power Loss Minimization in a Radial Distribution System with Distributed Generation. In Proceedings of the 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 22–23 February 2018; pp. 21–25. [Google Scholar] [CrossRef]
- Baran, M.E.; Wu, F.F. Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 725–734. [Google Scholar] [CrossRef]
Conventional PF | Interval PF | Probabilistic PF | |
---|---|---|---|
Nature of input variables | Deterministic variables | Interval variables | Probability distribution functions |
Mathematical model | Power balance equations with conventional mathematical operations | Power balance equations with interval mathematical operations | Conventional power balance equations considering the realizations of random variables |
Solution approach | Newton–Raphson | Krawczyk method | A pre-determined number of simulations, each running a Newton–Raphson |
Obtained solution | Unic solution | Interval form (interval ranges of the output data are not necessarily the same as those of the input data) | Probability distribution function (not necessarily the same as the one of the input data) |
Active Power of DG Allocated (kW) | |||||||
---|---|---|---|---|---|---|---|
Bus | 7 | 10 | 13 | 26 | 31 | 33 | Total |
Midpoint Comparison | 0 | 0 | 528.2 | 0 | 304.8 | 281.3 | 1114.4 |
Evaluation with Interval Measurement Function | 0 | 145.6 | 410.47 | 0 | 527.3 | 30.63 | 1114.3 |
SOS | ||
---|---|---|
Simulation | Lower Limit of Losses (kW) | Upper Limit of Losses (kW) |
1 | 72.95 | 77.88 |
2 | 72.91 | 77.84 |
3 | 71.15 | 76.88 |
4 | 73.20 | 77.73 |
5 | 72.96 | 77.69 |
6 | 73.08 | 78.01 |
7 | 72.83 | 77.86 |
8 | 74.00 | 78.83 |
9 | 72.93 | 77.76 |
10 | 72.91 | 77.93 |
Metric | Lower Limit of Losses (kW) | Upper Limit of Losses (kW) |
---|---|---|
Midpoint comparison | 72.95 | 77.88 |
Evaluation with Interval Measurement Function | 73.14 | 77.91 |
Active Power of DG Allocated (kW) | |||||||
---|---|---|---|---|---|---|---|
Bus | 7 | 10 | 13 | 26 | 31 | 33 | Total |
Midpoint Comparison | 169.6 | 186.4 | 172.9 | 184.1 | 203.0 | 191.6 | 1107.8 |
Evaluation with Interval Measurement Function | 159.1 | 185.5 | 169.2 | 183.0 | 198.6 | 214.7 | 1110.3 |
PSO | ||
---|---|---|
Simulation | Lower Limit of Losses (kW) | Upper Limit of Losses (kW) |
1 | 82.72 | 87.10 |
2 | 82.52 | 87.42 |
3 | 81.74 | 87.16 |
4 | 82.92 | 88.54 |
5 | 82.59 | 87.11 |
6 | 83.08 | 87.79 |
7 | 82.51 | 88.22 |
8 | 81.61 | 87.52 |
9 | 84.62 | 89.34 |
10 | 82.77 | 88.58 |
Metric | Lower Limit of Losses (kW) | Upper Limit of Losses (kW) |
---|---|---|
Midpoint Comparison | 82.72 | 87.10 |
Evaluation with Interval Measurement Function | 82.25 | 86.65 |
Allocated Distributed Generation Active Power (kW) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Bus | 10 | 18 | 27 | 40 | 49 | 54 | 63 | 68 | Total |
Midpoint Comparison | 0 | 0 | 18.72 | 0 | 21.32 | 0 | 720.4 | 0 | 760.44 |
Evaluation with Interval Measurement Function | 13.2 | 11.1 | 0 | 2.91 | 62.63 | 0 | 670.6 | 0 | 760.44 |
Metric | Lower Limit of Losses (kW) | Upper Limit of Losses (kW) |
---|---|---|
Midpoint Comparison | 79.7 | 129.5 |
Evaluation Using the Interval Measurement Function | 85.7 | 135.3 |
Allocated Distributed Generation Active Power (kW) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Bus | 10 | 18 | 27 | 40 | 49 | 54 | 63 | 68 | Total |
Midpoint Comparison | 69.9 | 118.1 | 95.47 | 52.9 | 86 | 102.8 | 115.1 | 88.5 | 728.7 |
Evaluation with Interval Measurement Function | 92.9 | 97.5 | 82.3 | 100.5 | 75.7 | 97.3 | 114.1 | 85.3 | 745.7 |
Metric | Lower Limit of Losses (kW) | Upper Limit of Losses (kW) |
---|---|---|
Midpoint Comparison | 145.56 | 193.70 |
Evaluation with Interval Measurement Function | 148.77 | 196.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, W.C.; Garcés Negrete, L.P.; López-Lezama, J.M. Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow. Sustainability 2023, 15, 5171. https://doi.org/10.3390/su15065171
Nogueira WC, Garcés Negrete LP, López-Lezama JM. Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow. Sustainability. 2023; 15(6):5171. https://doi.org/10.3390/su15065171
Chicago/Turabian StyleNogueira, Wallisson C., Lina P. Garcés Negrete, and Jesús M. López-Lezama. 2023. "Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow" Sustainability 15, no. 6: 5171. https://doi.org/10.3390/su15065171
APA StyleNogueira, W. C., Garcés Negrete, L. P., & López-Lezama, J. M. (2023). Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow. Sustainability, 15(6), 5171. https://doi.org/10.3390/su15065171