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Abstract: Modern distribution systems and microgrids must deal with high levels of uncertainty
in their planning and operation. These uncertainties are mainly due to variations in loads and
distributed generation (DG) introduced by new technologies. This scenario brings new challenges to
planners and system operators that need new tools to perform more assertive analyses of the grid
state. This paper presents an optimization methodology capable of considering uncertainties in the
optimal allocation and sizing problem of DG in distribution networks. The proposed methodology
uses an interval power flow (IPF) that adds uncertainties to the combinatorial optimization problem
in charge of sizing and allocating DG units in the network. Two metaheuristics were implemented for
comparative purposes, namely, symbiotic organism search (SOS) and particle swarm optimization
(PSO). The proposed methodology was implemented in Python® using as benchmark distribution
systems the IEEE 33-bus and IEEE 69-bus test distribution networks. The objective function consists
of minimizing technical losses and regulating network voltage levels. The results obtained from the
proposed IPF on the tested networks are compatible with those obtained by the PPF, thus evidencing
the robustness and applicability of the proposed method. For the solution of the optimization
problem, the SOS metaheuristic proved to be robust, since it was able to find the best solutions (lowest
losses) while keeping voltage levels within the predetermined range. On the other hand, the PSO
metaheuristic showed less satisfactory results, since for all test systems, the solutions found were of
lower quality than the ones found by the SOS.

Keywords: distributed generation; distribution networks; interval power flow; metaheuristic opti-
mization; uncertainty

1. Introduction

Electric power systems (EPSs) play an important role in modern societies as they
enable the use of technologies and supply electrical energy to industries and households.
Nevertheless, their proper functioning can only be guaranteed if they have an adequate
set of tools for their operation and planning. Among these studies, the most common
analysis is the power flow (PF) in its AC and DC variants, which can be computed by using
several widely known techniques [1,2]. Still, the biggest weakness of these studies is that
the accuracy of their results is as good as the accuracy of the input data [3]. Power flow
inaccuracy can be due to measurement errors, inaccurate forecasts, assumptions of limits
on load, or scheduled outages [4].

The current political and economic landscape of the energy industry has increasingly
encouraged the use of distributed energy resources (DERs), which include small-scale
consumer-side generation, energy storage equipment, and demand response (DR) [5–8].
Thus, the role of consumers has been progressively changing, becoming more active. In
this context, load models must adapt to characterize these new uncertainties [9]. Interval
analysis can be seen as an effective tool for considering these uncertainties in PF problems.
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In this case, loads are modeled by a set of values varying linearly from the smallest to the
largest possible value, and thus nodal voltages, power flows, and losses are calculated in
an interval manner. This approach is known as interval power flow (IPF) [10–13].

Some mathematical tools are needed to calculate the IPF and ensure its convergence.
This can be accomplished either by Newton’s interval method or Krawczyk’s method [14],
which finds the interval solution of a system with a given tolerance. In [13], an optimal
distribution planning model is proposed using IPF for uncertainty addition, where the
interval results are used as merit functions in an optimization algorithm. Complementing
IPF, interval mathematics are also used for uncertainty addition in problems such as state
estimation and short-circuit calculation [15].

Another approach to adding uncertainty is the probabilistic power flow (PPF) [16–18].
In this case, loads are modeled by means of their density functions. Several research
works have proposed mathematical models to solve this problem. Monte Carlo simulation
(MCS) is the most widely used method for approaching a PPF. This method consists of
solving several deterministic PF with random variations of their parameters based on
their probability density functions, so if a large enough sample of results is obtained, a
highly accurate result can be expected [19]. Probabilistic uncertainties can also be modeled
by other methods, such as polynomial chaos expansion (PCE), which is able to work in
a non-intrusive way and model random variables and stochastic processes with a high
performance [20]. Table 1 presents the main characteristics of conventional power flow
(CPF), IPF, and PPF.

Table 1. Main characteristics of CPF, IPF, and PPF.

Conventional PF Interval PF Probabilistic PF

Nature of input variables Deterministic variables Interval variables Probability distribution
functions

Mathematical model
Power balance equations

with conventional mathematical
operations

Power balance equations
with interval mathematical

operations

Conventional power balance
equations considering the

realizations of random variables

Solution approach Newton–Raphson Krawczyk method
A pre-determined number

of simulations, each
running a Newton–Raphson

Obtained solution Unic solution

Interval form (interval
ranges of the output data

are not necessarily the
same as those of the

input data)

Probability distribution
function (not necessarily
the same as the one of the

input data)

IPF has been shown to be an effective tool to deal with uncertainties. In [21], the
authors implemented an IPF analysis considering interval power injections from wind
farms with the aim of guaranteeing interval values of the grid variables for safe system
operation. In [22], an affine arithmetic-based PF is proposed for the consideration of
unscheduled regional power fluctuations. The authors in [23] proposed an IPF based on a
multi-stage affine arithmetic to consider the uncertainty of loads and DG in an unbalanced
network. In [24], a hybrid between interval and probabilistic power flow is proposed using
an analytical clustering method. In this case, the uncertainties of random and interval
variables are considered simultaneously. The authors in [25] proposed an IPF to generate
optimal scenarios. In this approach, the interval uncertainties are considered with variable
bounds, and the objective function is programmed to compute such bound. In [26], the
authors proposed an IPF based on the Taylor inclusion function, while in [27] an IPF is
proposed using the correlation of the uncertainties of the power injections. Other variants
of the IPF are also proposed in [28,29].
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Even though power flow accuracy has improved, the distribution planning problem
involving the integration of DG is still complex. Therefore, several studies have also been
devoted to current and power control in distribution networks with DG [30–32]. Grid
connections for DG are significantly different from traditional centralized generator con-
nections. Several factors must be analyzed for planning the connection of DG, such as the
number of generating sources, their locations, and connection types, among others [33–35].

The installation of DG in non-optimal locations brings along a series of problems to the
network, including problems with protection coordination, over-voltages, and also an in-
crement on technical losses, therefore, having the opposite effect of the desired one [36–38].
Thus, using a method capable of selecting the best locations and preferable sizing in a
complex distribution network represents a useful tool for planners.

The problem of allocation and sizing of DG consists of two steps that are solved
together, the selection of the best locations for the installation of the generation and the
choice of the maximum capacity of each generating unit [39]. This problem has been widely
studied using a series of different objectives. Such objectives can be minimizing losses [40],
improving voltage profile [41], minimizing investments and maintenance costs [42] im-
provement of system reliability indices [43], and spinning reserve increment [44]; further-
more, there are proposals that combine several of these objectives [45–47].

The optimal location and sizing of DG is a complex optimization problem that can
be tackled by metaheuristic techniques such as genetic and evolutionary algorithms [48],
particle swarm optimization [49], symbiotic organism search (SOS) [50], gray wolf opti-
mizer [51], crow search algorithm [52], artificial ecosystem-based optimization [53], and
hybrid methodologies [54]. Recently, SOS and particle swarm optimization (PSO) [55,56]
have demonstrated to be effective when solving complex optimization problems. PSO
and SOS are optimization methodologies based on the behavior of swarms and symbiotic
organisms, respectively.

This paper presents a methodology for the optimal allocation and sizing of DG in
distribution networks that takes into account the existing uncertainties in loads and genera-
tors. The proposed methodology is based on an IPF for adding uncertainties; furthermore,
PSO and SOS are used for the optimization of generation in the grid; nonetheless, any
other metaheuristic technique might be applied. One of the strengths of IPF is that un-
certainties are considered through the percentage variation of the variables of interest;
then, it is possible to incorporate the expertise of the network operator to determine the
most appropriate ranges of variation of these variables and therefore, obtain more accurate
modeling of the operation. Furthermore, due to its nature, the IPF features a reduced
computational effort when compared to probabilistic approaches that require thousands of
simulations. In this sense, the main contributions of this paper are as follows: (i) it presents
a methodology capable of adding and evaluating uncertainties in the process of optimal DG
siting and sizing in distribution systems, (ii) two metaheuristic techniques are implemented
for assessing the performance of the proposed approach; namely, PSO and SOS, and (iii) an
analysis of the convergence of both metaheuristics operating with interval values is carried
out along with an evaluation of their performance under two different metrics.

2. Uncertainty Modeling

The uncertainty modeling was carried out following the IPF implemented by the
authors in [57] and is summarized below.

Step 1: Use a deterministic power flow to compute the bus voltages of the test system.
In this case, the input variables may be fixed at their deterministic values. Once this is done,
the percentage variations in demand and their respective interval values can be calculated
using Equations (1) and (2). In this case, Pc d

k and Qc d
k represent the deterministic values

of the active and reactive loads at bus k, respectively. Pc i
k and Qci

k are the interval values of
the active and reactive loads and α represents the percentage variation of the demand.

Pci
k = Pc d

k [1− α, 1 + α] (1)
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Qci
k = Qc d

k [1− α, 1 + α] (2)

Step 2: The expected values of the interval active and reactive power are calculated
using Equations (3) and (4). In this case, Pi

expk
and Qi

expk
are the interval active and interval

reactive powers expected at bus k, while Pd
expk

and Qd
expk

are the expected active and reactive
power used in the deterministic power flow.

Pi
expk

= Pd
expk
− Pcd

k + Pci
k (3)

Qi
expk

= Qd
expk
− Qcd

k + Qci
k (4)

The interval mismatches for initializing magnitudes and angles of bus voltages are
calculated as the difference between the interval powers and their deterministic values
calculated at each bus. Then, the interval increments of the modules and angles of the bus
voltages are calculated using the Jacobian matrix of the last iteration of the deterministic
power flow. Thus, the interval magnitudes and angles of the bus voltages can be calculated
using their deterministic results and the interval increments as detailed in [57].

Step 3: The interval active and reactive powers are calculated using Equations (5) and (6),
where

∥∥∥V̇i
k

∥∥∥ and
∥∥∥V̇i

m

∥∥∥ are the magnitudes of the interval voltages at buses k and m, respec-
tively. Gij and Bij are the real and imaginary components of the system admittance matrix
(Yij) and θi

k and θi
m are the interval phase angles of the voltages at buses k and m, respectively.

Finally, Pi
calck

and Qi
calck

are the interval values of the active and reactive powers.

Pi
calck

=
∥∥∥V̇i

k

∥∥∥2
Gkk +

∥∥∥V̇i
k

∥∥∥ k

∑
m ε Ωk

∥∥∥V̇i
m

∥∥∥(Gkmcos
(

θi
k − θi

m

)
+ Bkm sin

(
θi

k − θi
m

))
(5)

Qi
calck

= −
∥∥∥V̇i

k

∥∥∥2
Bkk +

∥∥∥V̇i
k

∥∥∥ k

∑
m ε Ωk

∥∥∥V̇i
m

∥∥∥(−Bkmcos
(

θi
k − θi

m

)
+ Gkm sin

(
θi

k − θi
m

))
(6)

Then, the interval mismatches are recalculated using Equations (7) and (8).

∆Pi
k = Pi

expk
− Pi

calck
(7)

∆Qi
k = Qi

expk
− Qi

calck
(8)

Step 4: Apply the Krawczyk operator and update the interval values of voltage angles
and magnitudes using Equation (9).[

θi

Vi

]h+1

=

[
θi

Vi

]⋂
K
(

xh, Xh
)

(9)

Step 5: Check whether the largest variation in the radius of the variables between iter-
ations is smaller than the specified tolerance, if yes, the interval power flow has converged,
if not, return to step 4.

Step 6: Compute the desired interval electric output quantities, Li(Vk, θk, Vm, θm) using
Equations (10) and (11).

∆Li =

[
∂Ld

∂θk
Xp +

∂Ld

∂Vk
Yp +

∂Ld

∂θm
Zp +

∂Ld

∂Vm
Wp

]
[∆Pi∆Qi]t (10)

Li = Ld + ∆Li (11)
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where Li and Ld are, respectively, the interval and deterministic values of the output
magnitude. Xp, Yp, Zp, and Wp are the rows of the inverse Jacobian matrix evaluated after
the convergence of the deterministic FP as shown in Equation (12).

[. . . ∆θi
k∆Vi

k . . . ∆θi
m∆Vi

m . . .]t = [. . . XpYp . . . ZpWp . . .]t[∆Pi∆Qi]t (12)

3. Optimal Location and Sizing of DG

Consumers and investors are those who usually decide on the location of new DG
units based on their needs and resources. Nonetheless, the utility may provide incentives
for the location of DG in specific places of the network that would render other benefits.
The approach presented in this paper considers that the utility may decide on the location
and sizing of new DG units within the network. The objective function is the minimiza-
tion of total active power losses with the sitting and sizing of DG as decision variables.
Furthermore, an IPF is used to introduce uncertainty to the problem.

3.1. Mathematical Modeling

DG allocation in non-optimal locations may cause technical issues such as an increment
in power losses and problems in protection coordination schemes. Therefore, it is important
to have an approach capable of selecting the best locations and preferable sizing of DG in
distribution networks [58].

Metaheuristic techniques are optimization tools better suited to handle combinatorial,
non-convex optimization problems than classic approximation approaches [59]. They have
been strongly developed since their introduction in the 1980s. Over time, these methods
have added in their implementation strategies that helped them to escape from local
optimal solutions in complex solution spaces, especially in methods that use one or more
neighborhood structures as a metric for defining moves and transitions in solutions.

Algorithms based on metaheuristics evaluate several potential or candidate solutions
and perform a series of operations so that new solutions are produced and re-evaluated.
These algorithms are designed in such a way that candidate solutions can be stored and
manipulated by the different operators used in the chosen technique. There are three
types of metaheuristics according to the method they use to arrive at a solution, namely,
constructive, local search, and population-based approaches. However, these are not
mutually exclusive and, therefore, metaheuristics may combine different features to form
hybrid methods [60–62]. In this paper, the SOS and PSO techniques were chosen to test the
proposed approach; nonetheless, any other metaheuristic technique may be implemented. It
is worth mentioning that the main purpose of the paper is not a comparison of metaheuristic
techniques, but rather the inclusion of uncertainties within the optimal siting and sizing of
DG in distribution networks by means of an IPF approach.

3.2. Symbiotic Organism Search

Living organisms rarely live in isolation, due to their dependence on other organisms
for their sustenance for survival. This dependency-based relationship is called symbiosis.
The most common symbiotic relationships between two organisms in nature are mutualism,
commensalism, and parasitism. In mutualism both organisms benefit, in commensalism
one organism is benefited and the other one is not affected, and in parasitism one of the
organisms benefits, and the other one is actually harmed.

The symbiotic organism search (SOS) metaheuristic simulates symbiotic relationships
with paired organisms, which are used to search for the fittest organism to solve the
optimization problem. As in other population-based metaheuristics, the SOS algorithm
iteratively uses a population of candidate solutions from promising areas to scan the
solution space in search of the global optimum value. Initial organisms are randomly
generated in the solution space. Each organism represents a candidate solution to the
optimization problem with an associated fitness value, which reflects the degree to which
the organism is adapted to the desired objective [50].
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In the SOS algorithm, generating a new solution is a process governed by mimicking
the biological interactions between two organisms in an ecosystem. Each organism interacts
with the others in three phases that resemble the real world: mutualism, commensalism,
and parasitism. With each generation, the organisms undergo interactions in each of the
symbiotic phases until a predetermined stopping criterion is reached [50].

3.2.1. Mutualistic Phase

An example of mutualism that benefits each participating organism is the relationship
between the woodpecker and the buffalo. The woodpecker feeds on insects present on the
buffalo’s body, while the buffalo benefits by removing these parasites. In SOS, Xi is the
organism occupying the i-th position in the ecosystem. Another organism, Xj is randomly
chosen from the population to interact with Xi. New solution candidates Xinew and Xjnew
are calculated based on the mutualistic relationship which is modeled as indicated in
Equations (13)–(15).

Xinew = Xi + rand(0, 1)× (Xbest −Mutual_Vector× BF1) (13)

Xjnew = Xj + rand(0, 1)× (Xbest −Mutual_Vector× BF2) (14)

Mutual_Vector =
Xi + Xj

2
(15)

In Equations (13) and (14), the term rand(0, 1) is a random number between 0 and 1, while
BF1 and BF2 represent how much the organisms will benefit from the mutual relationship. In
this case, BF1 and BF2 vary randomly between 1 and 2.

The mutual vector indicated in Equation (15) represents the mutualism relationship
between organisms Xi and Xj. The expression (Xbest −Mutual_Vector× BF) reflects the
mutual effort to achieve a good outcome and ensure survival. The term Xbest represents the
highest degree of fitness in the ecosystem, so using it can help increase the degree of fitness
of each of the organisms. Initially, the organisms are updated only if their new fitness
values are better than those prior to the organisms’ interaction.

3.2.2. Commensalism Phase

An example of commensalism is the relationship between the shark and the remora.
The remora attaches itself to the shark and feeds on the leftover food that the shark leaves
behind, while the shark is not affected by the presence and activities of the remora. In
this phase, an organism denoted as Xj is randomly chosen to relate to organism Xi. Thus,
organism Xi benefits from this interaction, while organism Xj suffers no change. A new
candidate Xinew is calculated in this interaction which is mathematically modeled by
Equation (16). Then, organism Xi is updated only if the new organism is fitter than the
previous one.

Xinew = Xi + rand(−1, 1) ∗ (Xbest − Xj) (16)

In Equation (16), the term rand(−1, 1) represents a random number between −1 and
1, while the expression (Xbest − Xj) reflects the benefit that organism Xi is receiving from
organism Xj, increasing its survival advantages in an ecosystem together with the current
fittest organism Xbest.

3.2.3. Parasitism Phase

An example of parasitism is the relationship between the chopper and other host birds.
The chopper lays its eggs in the nest of another bird, which benefits the chopper because it
transfers the job of caring for the chicks to the bird that had its nest invaded, and harms
the host because the resources of its offspring will be consumed by the parasite, which can
even kill the offspring of the host.

In the parasitism step, organism Xi takes over the role of a parasite by creating an
artificial organism called “Parasite Vector”. The parasite vector is created by duplicating
vector Xi and randomly changing one of its dimensions. An organism Xj is randomly
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chosen and serves as a host for the parasite vector. The latter tries to replace Xj organism,
so both organisms are evaluated, and if the parasite vector is fitter, it will eliminate Xj or-
ganism and assume its position in the ecosystem. The SOS metaheuristic was implemented
according to the algorithm described below.

Step 1: Generate an ecosystem of size M, with N-dimensional organisms.
Step 2: Evaluate the fitness of each of the organisms in the ecosystem through IPF,

where the fitness function f iti of each of the organisms is the value of the interval technical
losses obtained by IPF. Penalties are applied if a violation in voltage levels is observed. The
penalty consists of adding a high value to the objective function that is wanted to minimize.
Voltage level violations can be analyzed using Equation (17), where V̇i

k indicates the range
of acceptable voltage values per unit. After that, the fittest organism, Xbest is identified.

V̇i
k ⊂ [0.95; 1.05] (17)

All organisms in the ecosystem will undergo all the interactions described in phases 1,
2, and 3 at each iteration. The organism undergoing the interaction will be called Xi.

Phase 1—Mutualism:
Step 3: Select an organism Xj where j 6= i.
Step 4: The mutual vector is calculated by means of Equation (15).
Step 5: New organisms coming from mutualism are calculated using Equations (13) and (14),

with the parameters BF1 and BF2 randomly drawn between 1 and 2.
Step 6: The new organisms are evaluated and if they are fitter than the original

organisms, they replace them; otherwise, they are discarded.
Phase 2—Commensalism
Step 7: An organism Xj is selected where j 6= i.
Step 8: A new organism is generated through commensalism according to Equation (16).
Step 9: The new organism is evaluated and if it is fitter than the original Xi organism,

it replaces it; otherwise, it is discarded.
Phase 3—Parasitism
Step 10: An organism Xj is selected where j 6= i.
Step 11: A parasite vector is created by randomly changing one dimension of organism Xi.
Step 12: The new parasite organism is evaluated and if it is fitter than organism Xj it

replaces it; otherwise, it is discarded.
Step 13: It is checked if i is the last position in the population (if the whole population

has passed through the three symbiotic stages), if yes, go to the next step, if no, i = i + 1
and return to Step 2.

Step 14: It is checked if the stopping criterion has been reached, if not, return to Step 2.
If yes, the search for the optimal solution is complete.

Figure 1 presents the flowchart of the implemented SOS algorithm.

3.3. Particle Swarm Optimization

PSO is a metaheuristic technique proposed in [63] and is based on the representation of
the movement of organisms in a bird flock or fish school. PSO has shown to be effective for
solving several electrical engineering problems such as optimal sitting and sizing of DG [55,56],
ancillary service optimization [64], optimal sizing of photovoltaic systems [65], and optimal
protection coordination [66], among many others. PSO has also been hybridized to improve its
performance, as reported in [67–69]. According to the literature, the motion of birds in a flock
or schools of fish, which are commonly named swarms, can be based on five principles [63]:

• The proximity principle, where individuals in the population must be able to move
around in a search space.

• The quality principle, in which individuals must be able to respond to quality factors
in the environment.

• The principle of diverse responses, in which individuals should not be bound to a
restricted path.
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• The stability principle, in which individuals should not change their behavior when-
ever environmental conditions change.

• The adaptability principle, in which individuals must be able to change their behavior
when it is no longer convenient.

Figure 1. Flowchart of the implemented SOS algorithm.

The PSO algorithm starts from the basis of a swarm that is artificially generated in the
search space of solutions. Each element of this swarm is called a particle and behaves as a
point without mass and volume in an N-dimensional space. Each particle is a candidate
solution to the optimization problem. The iterations of these particles are governed by the
five principles mentioned above.

PSO is a search algorithm for optimal solutions based on the behavior of a swarm, in
which each particle can memorize its own “optimal” value, the “optimal” value of all other
particles in the swarm, and its own velocity, and has a fitness value that shows how close
that particle is to the optimal position. Thus, in each generation, the particles’ information is
combined to generate new velocities for each of the dimensions, which are used to generate
a new particle [70]. The flowchart of the implemented PSO is presented in Figure 2.

To describe the PSO algorithm, a swarm of size M in an N-dimensional space is
assumed, where the position of each particle i is Xi = (xi1, xi2, . . . , xid, . . . . , xiN), its
velocity is Vi = (vi1, vi2, . . . , vid, . . . , viN), and the optimal position that each particle
has assumed, that is, the position at which that particle has assumed the best fitness
value. This position is given by Pi = (pi1, pi2, . . . , pid, . . . , piN). The optimal swarm
position, which corresponds to the best of the optimal positions of the particles, is given by
Pg = (pgi1, pgi2, . . . , pgid, . . . , pgiN).

Thus, new velocities and positions for the particles can be calculated as:

vd
i,t+1 = ω× vd

i,t + c1 × rand(0, 1)× (pd
i,t − xd

i,t) + c2 × rand(0, 1)× (pg,t − xd
i,t) (18)

xd
i,t+1 = xd

i,t + vd
i,t+1 (19)

From Equation (18) it can be seen that the first term ω ∗ vd
i,t represents the influence

of the particle’s prior velocity, so parameter ω is called the inertial weight. The second
term, c1 × rand(0, 1)× (pd

i,t − xd
i,t), represents the distance between the particle and its own

optimal position. In this case, parameter c1 is called the cognitive learning factor. The
third term, c2 × rand(0, 1)× (pg,t − xd

i,t), represents the distance between the particle and
the optimal swarm position. It represents the fact that particles can share information
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and cooperate, moving according to the experience of the whole swarm. In this term, the
parameter c2 is called the social learning factor.

Figure 2. Flowchart of the implemented PSO.

The velocities and positions of each of the particles are iteratively updated. The local
and global maxima, Pg and Pi, are recalculated at each iteration until a predetermined
stopping criterion is reached.

The PSO metaheuristic was implemented according to the algorithm described below.
Step 1: Generate a swarm of size M, with N-dimensional particles and set iteration

zero with variable iter = 0.
Step 2: Evaluate each particle in the swarm via IPF, where the fitness function f iti of

each of the organisms is the value of interval technical losses obtained by IPF and penalties
are applied if a violation in voltage levels is observed. Violations in voltage levels can be
analyzed using Equation (17). After that, define the particle with the best position towards
the solution Pg in the swarm and also the best position of each of the particles Pi.

Step 3: A new velocity for the particles is calculated using Equation (18). In this
case, learning factors c1 = 2 and c2 = 1.49445, which are commonly used, are adopted [70].
Furthermore, an inertia factor ω is used given by Equation (20).

ω = ωmax −
ωmax −ωmin

max_iter
× iter (20)

In Equation (20), max_iter is the maximum number of iterations, iter is the value of
the current iteration, and ωmax = 0.9 and ωmin = 0.4 are adopted as the maximum and
minimum values for the inertial weight, respectively.

Step 4: Check if the stopping criterion iter = max_iter has been reached, if not,
iter = iter + 1 and return to Step 2, if yes, the optimal solution has been found.

3.4. Metrics

From the information returned by the IPF intervals, it is necessary to define a criterion to
evaluate which is the best value of the objective function; that is, the smallest value of the system
power losses. In this work, the following comparison methodologies were implemented:
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3.4.1. Comparison of the Midpoints

In this method, the interval X = [x1, x2] is considered to be smaller than the interval
Y = [y1, y2] if their midpoints, obtained from Equation (1), follow the following constraint
given by Equation (21).

X < Y ⇔ Mid(X) < Mid(Y) (21)

3.4.2. Evaluation Using the Interval Measurement Function

In this method, the interval X = [x1, x2] is considered to be smaller than the interval
Y = [y1, y2] if the interval measure function given by Equation (22) returns a value
greater than zero, according to Equations (23)–(26) [71], where mx and my represent the
midpoint of the intervals X and Y, respectively, while rx and ry represent the radius of
the intervals, respectively.

µ(X, Y) =


my −mx + 2 · sgn(my −mx), if ry +rx = 0
my−mx
ry+rx

+ sgn(my −mx), if mx 6= my and ry +rx 6= 0
ry−rx

max{ry ,rx} , if mx = my and ry +rx 6= 0

(22)

mx = Mid(X) (23)

rx = Radius(X) (24)

my = Mid(Y) (25)

ry = Radius(Y) (26)

In this case, sgn is given by Equation (27).

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

(27)

Thus, X < Y can be mathematically described by Equation (28).

X < Y ⇔ µ(X, Y) > 0 (28)

4. Tests and Results

In this paper, the IPF approach described and validated in [57] was implemented. For
the validation of the IPF, a deterministic power flow using the Newton–Rapshon method
with sparse matrix treatment was developed. After running the deterministic power flow,
the IPF is also processed as described in Section 2 (please see reference [57] for more details).
Medium voltage distribution systems with radial topologies were simulated with load
variations of 5−4 between iterations. All tests were carried out considering a single-phase
equivalent of the distribution test systems. The stopping criterion considers a maximum
variation in the radius of the variables of 10−4 between iterations. All computational
simulations were implemented in Python®.

After the validation of the IPF results, the optimal allocation and sizing of DG in the
test networks were developed in Python® based on the described metaheuristics: SOS [50]
and PSO [63]. The DG units allocated by these algorithms were also simulated with 5%
variations in their power. Regarding generation technologies, for the sake of simplicity, the
proposed approach does not model the intrinsic generation variability of renewable energy
resources; instead, an expected generation value is considered for the buses selected for
DG allocation. The maximum numbers of iterations were 100 and 250 for the IEEE 33-bus
and IEEE 69-bus test systems, respectively.
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4.1. Results with the IEEE 33-Bus Test System
4.1.1. System Data

The data on the IEEE 33-bus test system can be found in [72]. This system has a total
active load of 3715 kW and a total reactive load of 2300 kvar. The base values considered
are 100 kVA and 12.66 kV. The maximum and minimum values of the voltage magnitude,
obtained from the deterministic power flow, are 1.0 p.u and 0.909 p.u, respectively.

The optimal allocation and sizing of DG performed on the IEEE 33-bus test systems
was carried out considering buses 7, 10, 13, 26, 31, and 33 as eligible for DG allocation. This
consideration is based on the fact that in real distribution systems, not all network buses are
eligible for DG allocation due to constraints related to the availability of resources as well
as land use limitations. It was also considered the restriction that the maximum penetration
rate of DG in this system is 30%, that is, the total generation cannot exceed 30% of the grid
active load. Thus, for this system, the maximum generation to be allocated is 1114.5 kW.

4.1.2. SOS Applied to the IEEE 33-Bus Test System

The SOS algorithm was processed for the DG allocation, with 100 iterations in an
ecosystem of 20 organisms, and had its active power losses evaluated under the two
metrics presented in Section 3.4. The amounts of power allocated to each of the buses
are presented in Table 2. To validate the results of the SOS algorithm, a convergence
analysis was performed using the results of 10 optimization simulations using the midpoint
comparison metric. Table 3 presents the results of these simulations. Note that all of them
led to similar values, evidencing the convergence of the algorithm.

Table 2. Active power of DG allocated per bus by the SOS algorithm in the IEEE 33-bus test network.

Active Power of DG Allocated (kW)

Bus 7 10 13 26 31 33 Total
Midpoint Comparison 0 0 528.2 0 304.8 281.3 1114.4

Evaluation with Interval
Measurement Function 0 145.6 410.47 0 527.3 30.63 1114.3

Table 3. Convergence analysis of the SOS algorithm on the IEEE 33-bus test network.

SOS

Simulation Lower Limit of Losses (kW) Upper Limit of Losses (kW)

1 72.95 77.88
2 72.91 77.84
3 71.15 76.88
4 73.20 77.73
5 72.96 77.69
6 73.08 78.01
7 72.83 77.86
8 74.00 78.83
9 72.93 77.76
10 72.91 77.93

The proposed methodology only considers the results that meet voltage limits. Figure 3
allows us to verify this criterion. In this case, variables Vin f _m1 and Vsup_m1 are, respec-
tively, the lower and upper bounds of the magnitude of the interval voltages on each of the
buses in the solution obtained by the SOS algorithm using the midpoint comparison metric.
On the other hand, Vin f _m2 and Vsup_m2 are, respectively, the lower and upper bounds
of the magnitude of the interval voltage on each of the buses in the solution obtained by the
SOS algorithm, using the evaluation metric via the interval measure function. Finally, Vin f
and Vsup are, respectively, the lower and upper bounds of the magnitude of the interval
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voltage at each of the buses obtained by IPF without DG. Note that there is an important
improvement in the voltage profile when DG is included in the network.

Figure 3. Voltage profile of the IEEE 33-bus test system—SOS.

Table 4 presents the values of interval losses obtained by the SOS algorithm for the
two metrics used. Figures 4 and 5 show the convergence of the midpoints of the interval
losses and their diameters for the two metrics. From Figure 4, it is observed that the
convergence of the algorithm is obtained around iteration 55, which shows that the search
process aiming at minimum losses is adequate. On the other hand, when the radius of the
loss range of the best solution obtained at each iteration is evaluated, it is observed from
Figure 5 that the diameter increases over the course of the simulation, i.e., for both metrics
the uncertainty of the result increases over the course of the simulation. Also note that the
simulation performed by the comparison metric using the interval measure function results
in a smaller diameter.

Table 4. Interval losses obtained by the SOS algorithm for the IEEE 33-bus network.

Metric Lower Limit of Losses
(kW)

Upper Limit of Losses
(kW)

Midpoint comparison 72.95 77.88
Evaluation with Interval Measurement Function 73.14 77.91

Figure 4. Convergence of SOS algorithm for the IEEE 33-bus test system—midpoints.
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Figure 5. Convergence of SOS algorithm for the IEEE 33-bus test system—diameters.

Therefore, according to the results observed, it can be concluded that the SOS algorithm
is robust and efficient in solving the DG allocation and sizing problem when both metrics
are considered.

4.1.3. PSO Applied to the IEEE 33-Bus Test System

The PSO algorithm considers 100 iterations under a swarm of 20 particles. The active
power losses were evaluated, during the process, by means of the two metrics presented in
Section 3.4. The amount of power allocated to each bus is indicated in Table 5.

Table 5. Active power of DG allocated per bus by the PSO algorithm in the IEEE 33-bus test network.

Active Power of DG Allocated (kW)

Bus 7 10 13 26 31 33 Total
Midpoint Comparison 169.6 186.4 172.9 184.1 203.0 191.6 1107.8

Evaluation with Interval
Measurement Function 159.1 185.5 169.2 183.0 198.6 214.7 1110.3

To validate the results of the PSO algorithm, a convergence analysis was performed
using the results of 10 optimization simulations using the midpoint comparison metric.
Table 6 presents the results of these simulations. Note that all of the values are similar,
evidencing the convergence of the algorithm.

Table 6. Convergence analysis of the PSO algorithm on the IEEE 33-bus network.

PSO

Simulation Lower Limit of Losses (kW) Upper Limit of Losses (kW)

1 82.72 87.10
2 82.52 87.42
3 81.74 87.16
4 82.92 88.54
5 82.59 87.11
6 83.08 87.79
7 82.51 88.22
8 81.61 87.52
9 84.62 89.34
10 82.77 88.58
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According to Equation (17), the methodology only considers the results that satisfy
the pre-established voltage limits. Figure 6 evidences the enforcement of this criterion.

Figure 6. Voltage profile of the IEEE 33-bus test system—PSO.

In Figure 6, the variables Vin f _m1 and Vsup_m1 are, respectively, the lower and upper
bounds of the magnitude of the interval voltage at each bus of the system in the solution
obtained by the PSO algorithm using the midpoint comparison metric. The variables
Vin f _m2 and Vsup_m2 are, respectively, the lower and upper bounds of the magnitude
of the interval voltage at each bus of the system in the solution obtained by the PSO
algorithm using the evaluation metric via the interval measure function. Finally, the lines
corresponding to Vin f and Vsup are, respectively, the lower and upper bounds of the
magnitude of the interval voltage at each bus obtained by the IPF without DG.

Table 7 presents the values of interval losses obtained by the PSO algorithm for the
two metrics used. Figures 7 and 8 show the convergence of the midpoints of the interval
losses and their diameters for the two metrics.

From Figure 7, it is observed that the convergence of the algorithm is obtained around
iteration 9. This shows that the search process aiming at minimizing power losses is
successful since the midpoint decreases with each iteration. However, it is observed that
for both metrics the algorithm is stuck at a local minimum. On the other hand, when
evaluating the radius of the loss range of the best solution obtained at each iteration, it is
observed in Figure 8 that the radius increases over the course of the simulation, that is, for
both metrics, the uncertainty of the result increases over the course of the simulation.

Therefore, regarding the convergence of the PSO algorithm, it can be concluded that
it worked correctly when seeking to solve the DG allocation and sizing problem when
considering the two metrics, but was not able to escape from local optimal solutions.

Table 7. Interval losses obtained by the PSO algorithm for the IEEE 33-bus network.

Metric Lower Limit of Losses
(kW)

Upper Limit ofLosses
(kW)

Midpoint Comparison 82.72 87.10
Evaluation with Interval Measurement Function 82.25 86.65
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Figure 7. Convergence of the PSO algorithm for the IEEE 33-bus test system—midpoints.

Figure 8. Convergence of the PSO algorithm for the IEEE 33-bus test system—diameters.

4.1.4. Power Loss Comparison

Figure 9 illustrates the values of losses considering midpoint comparison and evalua-
tion with interval measurement function for both PSO and SOS algorithms. It is observed
that SOS presents better performance than PSO, where the SOS midpoint is 75.42 MW
while the PSO midpoint is 84.92 MW, approximately.

In summary, from the results presented in Sections 4.1.2–4.1.4 it is clear that the SOS
algorithm performed better when compared to the PSO. From Figure 7 it is evident that the
PSO algorithm was stuck at a local minimum for both metrics.



Sustainability 2023, 15, 5171 16 of 24

Figure 9. Convergence of PSO and SOS—33-bus test system.

4.2. Results with the IEEE 69-Bus Test System
4.2.1. System Data

The data for this system can be found in [73]. The base values considered are 100 kVA
and 12.66 kV. The 69-bus system has a total active load of 3802.19 kW and a total reactive load
of 2694.60 kvar. The maximum and minimum values of the voltage magnitude, obtained from
a deterministic power flow, are 1.0 p.u and 0.909 p.u, respectively.

The proposed methodology for optimal allocation and sizing of DG considers the
following candidate buses: 10, 18, 27, 40, 49, 54, 62, and 68. It is also considered that the
maximum DG penetration rate is 20%, which corresponds to 760.44 kW.

4.2.2. SOS Applied to the IEEE 69-Bus Test System

The SOS algorithm was simulated considering 250 iterations in an ecosystem of
20 organisms. The active power losses are evaluated under the two metrics presented in
Section 3.4. The amounts of power allocated as a result of the implemented algorithm at
each bus are presented in Table 8.

Table 8. Active power of DG allocated per bus by the SOS algorithm in the IEEE 69-bus network.

Allocated Distributed Generation Active Power (kW)

Bus 10 18 27 40 49 54 63 68 Total
Midpoint Comparison 0 0 18.72 0 21.32 0 720.4 0 760.44

Evaluation with Interval
Measurement Function 13.2 11.1 0 2.91 62.63 0 670.6 0 760.44

According to Equation (17), the methodology only considers the results that meet the
pre-established voltage limits. Figure 10 allows us to verify this condition.

In Figure 10, the lines corresponding to Vin f _m1 and Vsup_m1 are, respectively, the
lower and upper bounds of the magnitude of the interval voltage on the system buses in
the solution obtained by the SOS algorithm, using the midpoint comparison metric. The
lines of variables Vin f _m2 and Vsup_m2 are, respectively, the lower and upper bounds of
the magnitude of the interval voltage on the system buses in the solution obtained by the
SOS algorithm, using the evaluation metric via the interval measure function. Vin f and
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Vsup indicate, respectively, the lower and upper bounds of the magnitude of the interval
voltage obtained by the IPF without DG.

Figure 10. Voltage profile of the IEEE 69-bus test system—SOS.

The interval losses obtained by the SOS algorithm are presented in Table 9. Figures 11
and 12 show the convergence of the midpoints of the interval losses and their diameters for
the two metrics. From Figure 11, it can be inferred that the convergence of the algorithm
is obtained around iteration 92. On the other hand, when the diameter of the loss range
of the best solution obtained at each iteration is evaluated, it can be seen in Figure 12
that the radius varies during the simulation. Also note that simulation performed by the
comparison metric using the interval measure function results in a smaller diameter.

Therefore, regarding the convergence of the SOS algorithm, it was observed that the
algorithm is robust and efficient in solving the DG allocation and sizing problem when
both metrics are considered.

Table 9. Interval losses obtained by the SOS algorithm for the IEEE 69-bus test network.

Metric Lower Limit of Losses
(kW)

Upper Limit of Losses
(kW)

Midpoint Comparison 79.7 129.5
Evaluation Using the Interval Measurement Function 85.7 135.3

Figure 11. Convergence of the SOS algorithm for the IEEE 69-bus—midpoints.
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Figure 12. Convergence of the SOS algorithm for the IEEE 69-bus—diameters.

4.2.3. PSO Applied to the IEEE 69-Bus Test System

The PSO algorithm was run considering 250 iterations on a swarm of 20 particles.
The active power losses are evaluated under the two metrics presented in Section 3.4. The
amounts of power allocated to the candidate buses are presented in Table 10.

Table 10. Active power of DG allocated per bar by the SOS algorithm in the IEEE 69-bus network.

Allocated Distributed Generation Active Power (kW)

Bus 10 18 27 40 49 54 63 68 Total
Midpoint Comparison 69.9 118.1 95.47 52.9 86 102.8 115.1 88.5 728.7

Evaluation with Interval
Measurement Function 92.9 97.5 82.3 100.5 75.7 97.3 114.1 85.3 745.7

As already mentioned, the proposed approach only considers results that meet voltage
limits. This can be verified in Figure 13, where Vin f _m1 and Vsup_m1 are the lower
and upper bounds of the magnitude of the interval voltage on the system buses in the
solution obtained by the PSO algorithm, using the midpoint comparison metric. The lines
of variables Vin f _m2 and Vsup_m2 are, respectively, the lower and upper bounds of the
magnitude of the interval voltage on the system buses in the solution obtained by the
PSO algorithm, using the evaluation metric via the interval measure function. Finally, the
variables Vin f and Vsup are, respectively, the lower and upper bounds of the magnitude
of the interval voltage on the system buses obtained by IPF without DG.

Table 11 shows the interval loss values obtained by the PSO algorithm for the two
metrics used. Figures 14 and 15 show the convergence of the midpoints of the interval
losses and their diameters for the two metrics. From Figure 14, it is observed that the
convergence of the algorithm is obtained around iteration 9 and, it shows that the search
process aiming at minimum losses is adequate since the midpoint decreases with each
iteration. However, it is clearly observed that for both metrics the algorithm is stuck in a
local minimum. On the other hand, when evaluating the radius of the loss range of the
best solution obtained at each iteration, it is observed from Figure 15 that the diameter
increases over the course of the simulation, i.e., for both metrics the uncertainty of the result
increases over the course of the simulation. Also note that the simulation performed by the
comparison metric using the interval measure function results in a smaller diameter.

Therefore, regarding the convergence of the PSO algorithm, it was observed that
the algorithm worked correctly in trying to solve the DG allocation and sizing when
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considering the two metrics, but it was not able to escape from local optimal solutions.
Furthermore, the solution at which the algorithm was stuck is not even able to regulate the
feeder voltage within the desired limits.

Figure 13. Voltage profile of the IEEE 69-bus test system—PSO.

Table 11. Interval losses obtained by the PSO algorithm for the IEEE 69-bus network.

Metric Lower Limit of Losses
(kW)

Upper Limit of Losses
(kW)

Midpoint Comparison 145.56 193.70
Evaluation with Interval Measurement Function 148.77 196.30

Figure 14. Convergence of the PSO algorithm for the IEEE 69-bus test system—midpoints.



Sustainability 2023, 15, 5171 20 of 24

Figure 15. Convergence of the PSO algorithm for the IEEE 69-bus test system—diameters.

4.2.4. Power Loss Comparison

Figure 16 presents the power losses considering midpoint comparison and evaluation
with interval measurement function for the metaheuristics under study. Note that the
midpoint of lower power losses obtained with the SOS and PSO approaches approximately
correspond to 104.57 MW and 169.63 MW, respectively.

Figure 16. Power loss comparison between PSO and SOS—69-bus test system.

In summary, from the results presented in Sections 4.2.2–4.2.4 it is observed that the SOS
algorithm performed better when compared to the PSO. Additionally, according to Figure 14,
it is evident that the PSO algorithm was stuck at a local minimum for both metrics.

5. Conclusions

This paper presented an optimal location and sizing approach of DG in distribution
networks using PSO and SOS metaheuristics; furthermore, the proposed approach im-
plements an interval power flow that adds uncertainty to the optimization problem. The
results obtained in the two distribution test systems evidenced the superiority of the SOS
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methodology over PSO. With the parameters and modeling used in this work, the SOS
metaheuristic obtained better results in all simulations. One of the advantages of SOS over
PSO lies in the fact that SOS does not require configuration or fine-tuning of parameters.
The implemented methodologies were evaluated using two different metrics, the midpoint
comparison and the interval evaluation function. From the results obtained, both met-
rics present equivalent results; however, the interval evaluation function results show a
smaller diameter.

In particular, for the IEEE 69-bus network, it was observed that the PSO algorithm
did not perform well, not even being able to propose a solution capable of meeting the
constraints regarding the system voltage levels. Nonetheless, in cases where the optimal
solutions involved the allocation of DG in all candidate buses, the PSO algorithm showed
reasonable results. The PSO algorithm did not have good convergence when considering
the simultaneity of the DG allocation and sizing problems; however, according to the
results obtained, adequate convergence can be expected when only the sizing problem
is addressed.

The SOS algorithm using IPF showed to be a robust methodology capable of adding
uncertainty to the optimal location and sizing problem of DG units in distribution systems,
which is becoming increasingly common in modern power distribution systems.
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