Effects of Rediset Additive on the Performance of WMA at Low, Intermediate, and High Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Selection
2.2. Laboratory Conditions
2.2.1. Oxidation Conditioning
2.2.2. Combination of Oxidation and Moisture Damage Conditioning
2.3. Mixture Testing
2.3.1. Cantabro Mass Loss (CML) Testing
- ML = percent mass loss;
- m1 = specimen mass before testing;
- m2 = specimen mass after testing.
2.3.2. Indirect Tensile (IDT) Testing
- P max = maximum load (N);
- t = specimen thickness (mm);
- D = specimen diameter (mm).
2.3.3. Asphalt Pavement Analyzer (APA) Testing
2.3.4. Hamburg Loaded Wheel-Tracking (HLWT) Testing
2.4. Binder Testing
2.4.1. Dynamic Shear Rheometer (DSR) Testing
- Tc = critical temperature, ˚C;
- T1 = lower of the two test temperatures, ˚C;
- T2 = higher of the two test temperatures, ˚C;
- Ps = property specification value;
- P1 = results of the test for the specified value of the property at T1;
- P2 = results of the test for the specified value of the property T2.
2.4.2. Bending Beam Rheometer (BBR) Testing
2.4.3. Penetration (Pen.) Testing
3. Test Results
3.1. Binder Testing
3.2. Mixture Testing
3.3. Statistical Assessment of Mixture Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, S.; Wen, H.; Zhang, W.; Shen, S.; Mohammad, L.N.; Faheem, A.; Muhunthan, B. Field performance of top-down fatigue cracking for warm mix asphalt pavements. Int. J. Pavement Eng. 2019, 20, 33–43. [Google Scholar] [CrossRef]
- Safaei, F.; Lee, J.; Nascimento, L.; Hintz, C.; Kim, Y. Implications of Warm-Mix Asphalt on Long Term Oxidative Aging and Fatigue Performance of Asphalt Binders and Mixtures. Road Mater. Pavement Des. 2014, 15, 45–61. [Google Scholar] [CrossRef]
- Howard, I.L.; Bazuhair, R.W.; Pittman, C.V.; Smith, B.T. Columbus Mississippi Field Aging and Laboratory Conditioning Study: Plant Mixed and Laboratory Compacted Asphalt Mixtures. Report FHWA/MS-DOT-RD-18-266/270-Volume 3; Mississippi State University, Department of Civil and Environmental Engineering: Starkville, MS, USA, 2018. [Google Scholar]
- Capitão, S.D.; Picado-Santos, L.G.; Martinho, F. Pavement engineering materials: Review on the use of warm-mix asphalt. Constr. Build. Mater. 2012, 36, 1016–1024. [Google Scholar] [CrossRef]
- d’Angelo, J.; Harm, E.; Bartoszek, J.; Baumgardner, G.; Corrigan, M.; Cowsert, J.; Yeaton, B. Warm-Mix Asphalt, European Practice; Report FHWA-PL-08-007; Federal Highway Administration, Office of International Programs, USA: Philadelphia, PA, USA, 2008. [Google Scholar]
- Chen, S.; You, Z.; Sharifi, N.P.; Yao, H.; Gong, F. Material selections in asphalt pavement for wet-freeze climate zones: A review. Constr. Build. Mater. 2019, 201, 510–525. [Google Scholar] [CrossRef]
- Alhasan, A.A.; Abbas, A.R.; Nazzal, M.; Dessouky, S.; Ali, A.; Kim, S.S.; Powers, D. Low-temperature characterization of foamed warm-mix asphalt produced by water injection. Transp. Res. Rec. 2014, 2445, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Goh, S.W. Development and improvement of warm-mix asphalt technology. Ph.D Thesis, Michigan Technological University, Houghton, MI, USA, 2012. [Google Scholar]
- Cheraghian, G.; Falchetto, A.C.; You, Z.; Chen, S.; Kim, Y.S.; Westerhoff, J.; Wistuba, M.P. Warm mix asphalt technology: An up to date review. J. Clean. Prod. 2020, 268, 122128. [Google Scholar] [CrossRef]
- Rahman, T.; Dawson, A.; Thom, N. Warm mix asphalt (WMA) for rapid construction in airfield pavement. Constr. Build. Mater. 2020, 246, 118411. [Google Scholar] [CrossRef]
- West, R.; Rodezno, C.; Julian, G.; Prowell, B.; Frank, B.; Osborn, L.V.; Kriech, T. Field Performance of Warm Mix Asphalt Technologies; Report NCHRP 779; National Academies of Sciences, Engineering, and Medicine, American Association of State Highway and Transportation Officials with the Federal Highway Administration: Washington, DC, USA, 2014. [Google Scholar]
- Bazuhair, R.W.; Pittman, C.V.; Howard, I.L.; Jordan, W.S., III; Hemsley, J.M., Jr.; Baumgardner, G.L. Conditioning and testing protocol combinations to detect asphalt mixture damage. Transp. Res. Rec. 2018, 2672, 10–21. [Google Scholar] [CrossRef]
- Kristjánsdóttir, Ó.; Muench, S.T.; Michael, L.; Burke, G. Assessing potential for warm-mix asphalt technology adoption. Transp. Res. Rec. 2007, 2040, 91–99. [Google Scholar] [CrossRef]
- Zaumanis, M. Warm Mix Asphalt Investigation. Master’s Thesis, Technical University of Denmark, Lyngby, Denmark, 2010. [Google Scholar]
- Chen, Z.; Zhang, H.; Duan, H.; Shi, C. Improvement of thermal and optical responses of short-term aged thermochromic asphalt binder by warm-mix asphalt technology. J. Clean. Prod. 2021, 279, 123675. [Google Scholar] [CrossRef]
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm mix asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Ji, J.; Yao, H.; Yuan, Z.; Suo, Z.; Xu, Y.; Li, P.; You, Z. Moisture susceptibility of warm mix asphalt (WMA) with an organic wax additive based on X-ray computed tomography (CT) technology. Adv. Civ. Eng. 2019, 2019, 7101982. [Google Scholar] [CrossRef]
- Abdullah, M.E.; Zamhari, K.A.; Buhari, R.; Bakar, S.K.A.; Kamaruddin, N.H.M.; Nayan, N.; Yusoff, N.I.M. Warm mix asphalt technology: A review. J. Teknol. 2014, 71, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Diefenderfer, S.D.; McGhee, K.K.; Donaldson, B. Installation of Warm Mix Asphalt Projects in Virginia; Report FHWA/VTRC 07-R25; Virginia Transportation Research Council: Charlottesville, VA, USA, 2007. [Google Scholar]
- Hurley, G.C.; Prowell, B.D. Evaluation of Evotherm for Use in Warm Mix Asphalt; Report 06-02; National Center for Asphalt Technology: Auburn, AL, USA, 2006. [Google Scholar]
- Prowell, B.D.; Hurley, G.C.; Crews, E. Field performance of warm-mix asphalt at national center for asphalt technology test track. Transp. Res. Rec. 2007, 1998, 96–102. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, Y.; Luo, X.; Luo, R.; Lytton, R.L. Improved methodology to evaluate fracture properties of warm-mix asphalt using overlay test. Transp. Res. Rec. 2015, 2506, 8–18. [Google Scholar] [CrossRef]
- Behl, A.; Chandra, S. Aging characteristics of warm-mix asphalt binders. J. Mater. Civ. Eng. 2017, 29, 04017155. [Google Scholar] [CrossRef]
- Hill, B.; Behnia, B.; Hakimzadeh, S.; Buttlar, W.G.; Reis, H. Evaluation of low-temperature cracking performance of warm-mix asphalt mixtures. Transp. Res. Rec. 2012, 2294, 81–88. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, W.; Shen, S.; Li, X.; Muhunthan, B.; Mohammad, L.N. Field-aged asphalt binder performance evaluation for Evotherm warm mix asphalt: Comparisons with hot mix asphalt. Constr. Build. Mater. 2017, 156, 574–583. [Google Scholar] [CrossRef]
- Porras, J.D.; Hajj, E.Y.; Sebaaly, P.E.; Kass, S.; Liske, T. Performance evaluation of field-produced warm-mix asphalt mixtures in Manitoba, Canada. Transp. Res. Rec. 2012, 2294, 64–73. [Google Scholar] [CrossRef]
- Liu, J.; Li, P. Low temperature performance of sasobit-modified warm-mix asphalt. J. Mater. Civ. Eng. 2012, 24, 57–63. [Google Scholar] [CrossRef]
- Diefenderfer, S.D.; Hearon, A.J. Laboratory Evaluation of a Warm Asphalt Technology for Use in Virginia; Report No FHWA/VTRC 09-R11; Virginia Transportation Research Council: Charlottesville, VA, USA, 2008. [Google Scholar]
- Bonaquist, R.F. Mix Design Practices for Warm Mix Asphalt; NCHRP Report 691; Transportation Research Board: Sterling, VA, USA, 2011. [Google Scholar]
- Xu, J.; Yang, E.; Luo, H.; Ding, H. Effects of warm mix additives on the thermal stress and ductile resistance of asphalt binders. Constr. Build. Mater. 2020, 238, 117746. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Constr. Build. Mater. 2013, 43, 242–252. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, Y.; Chen, F.; Han, F. Performance evaluation of new warm mix asphalt and water stability of its mixture based on laboratory tests. Constr. Build. Mater. 2020, 241, 118017. [Google Scholar] [CrossRef]
Mixture ID | M0 | M1 | M2 |
---|---|---|---|
PG | 64–10 | 64–10 | 64–10 |
Bitumen (%) | 5.6 | 5.6 | 5.6 |
WMA | None | Sasobit | Rediset LQ-1200 |
Dosage | None | 1.5 % binder | 0.5 % binder |
P25mm (%) | 100 | 100 | 100 |
P19.0mm (%) | 100 | 100 | 100 |
P12.5mm (%) | 92.2 | 92.2 | 92.2 |
P9.5mm (%) | 86.8 | 86.8 | 86.8 |
P4.75mm (%) | 57.2 | 57.2 | 57.2 |
P2.36mm (%) | 38.7 | 38.7 | 38.7 |
P1.18mm (%) | 24 | 24 | 24 |
P0.60mm (%) | 15.6 | 15.6 | 15.6 |
P0.30mm (%) | 10 | 10 | 10 |
P1.5mm (%) | 7 | 7 | 7 |
P0.075mm (%) | 5.4 | 5.4 | 5.4 |
NMAS (mm) | 12.5 | 12.5 | 12.5 |
Gb | 1.0 | 1.0 | 1.0 |
Gsb | 2.7 | 2.7 | 2.7 |
Ps | 94.4 | 94.4 | 94.4 |
Gse | 2.8 | 2.8 | 2.8 |
DP | 1.2 | 1.2 | 1.2 |
Mixture | Pen. (dmm) | DSR8mm | DSR25mm | BBR Tc-s | BBR Tc-m |
---|---|---|---|---|---|
M0 | 34 | 26.5 | 69.8 | −10.9 | −17.7 |
M1 | 30 | 27.3 | 74.1 | −12.1 | −9.9 |
M2 | 33 | 25.6 | 69.4 | −13.9 | −18.3 |
Conditions | Mix | CML ML (%) | IDT St (kpa) | HLWT | APA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5K | 10K | 15K | 20K | P12.5 | 25 | 4K | 8K | ||||
Unaged | M0 | 6.1 | 1415 | 2.55 | 6.50 | 10.62 | ---1 | 16462 | 0.256 | 2.562 | 3.604 |
M1 | 7.6 | 1602 | 2.26 | 4.12 | 6.42 | ---1 | 19492 | 0.239 | 1.480 | 1.762 | |
M2 | 6.4 | 1757.2 | 3.85 | 4.11 | 8.63 | ---1 | 14928 | 0.272 | 2.385 | 2.931 | |
Oxidation | M0 | 7.3 | 1711 | 1.29 | 2.38 | 3.39 | 4.61 | ---2 | 0.140 | 2.241 | 2.850 |
M1 | 11.1 | 1835 | 1.44 | 4.68 | 5.6 | 7.25 | ---2 | 0.204 | 1.145 | 1.418 | |
M2 | 8.1 | 2114.8 | 1.45 | 4.13 | 7.13 | ---1 | 18816 | 0.058 | 2.292 | 2.728 | |
Combination of oxidation and moisture | M0 | 11.6 | 1073 | 6.1 | 10.4 | ---1 | ---1 | 12693 | ---3 | ---3 | ---3 |
M1 | 13.1 | 995 | 2.57 | 3.23 | 7.19 | ---1 | 17435 | ---3 | ---3 | ---3 | |
M2 | 10.4 | 1174 | 7.26 | ---1 | ---1 | ---1 | 9647 | ---3 | ---3 | ---3 |
Condition | MIX | CML (%) | IDT (kPa) | APA at 8K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Δ (Mi − M0) | p-Value | t-Test | Sig.D * | Δ (Mi − M0) | p-Value | t-Test | Sig.D * | Δ (Mi − M0) | p-Value | t-Test | Sig.D * | ||
Unaged | M1 | 1.5 | 0.012 | A | Yes | 187.0 | 0.018 | B | Yes | −1.84 | 0.004 | A | Yes |
M2 | 0.3 | 0.494 | B | No | 342.2 | 0.004 | A | Yes | −0.67 | 0.065 | A | No | |
Oxidation | M1 | 3.8 | 0.001 | A | Yes | 124.0 | 0.052 | B | No | −1.43 | 0.001 | A | Yes |
M2 | 0.8 | 0.036 | B | Yes | 403.8 | 0.003 | A | Yes | −0.12 | 0.074 | A | No | |
Combination of oxidation and moisture | M1 | 1.5 | 0.018 | A | Yes | −78.0 | 0.050 | B | Yes | ---1 | ---1 | ---1 | ---1 |
M2 | −1.2 | 0.037 | C | Yes | 101.0 | 0.082 | A | No | ---1 | ---1 | ---1 | ---1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, M.A.; Bazuhair, R.W. Effects of Rediset Additive on the Performance of WMA at Low, Intermediate, and High Temperatures. Sustainability 2023, 15, 5471. https://doi.org/10.3390/su15065471
Alqahtani MA, Bazuhair RW. Effects of Rediset Additive on the Performance of WMA at Low, Intermediate, and High Temperatures. Sustainability. 2023; 15(6):5471. https://doi.org/10.3390/su15065471
Chicago/Turabian StyleAlqahtani, Majed A., and Rabeea W. Bazuhair. 2023. "Effects of Rediset Additive on the Performance of WMA at Low, Intermediate, and High Temperatures" Sustainability 15, no. 6: 5471. https://doi.org/10.3390/su15065471
APA StyleAlqahtani, M. A., & Bazuhair, R. W. (2023). Effects of Rediset Additive on the Performance of WMA at Low, Intermediate, and High Temperatures. Sustainability, 15(6), 5471. https://doi.org/10.3390/su15065471