Estimating Carbon Stock Change Caused by Multi-Scenario Land-Use Structure in Urban Agglomeration
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Markov Chain Model
3.2. MCCA Model
3.2.1. Quantitatively Mining the Relationship between Land-Use Component Changes and Driving Variables
3.2.2. Adaptive Inertia Competition Mechanism Based on Roulette Wheel Selection
3.2.3. MCCA Model Simulation Process
3.2.4. Performance of MCCA Model
3.3. InVEST Model
3.4. Scenario Settings
- (1)
- Scenario 1: Inertial development scenario (S1). This scenario is based on the land-use changes of the CZX urban agglomeration from the year 2000 to the year 2020, without considering the factor of policy planning, using the MCM model (Formula (1)) to predict the number of multiple land-use types, which is the basis of other scenarios.
- (2)
- Scenario 2: Cultivated land protection scenario (S2). Reducing the occupation of cultivated land caused by urban expansion is an important measure to ensure regional food security. Based on the S1 development scenario, this scenario uses the permanent basic cultivated land protection area as the restriction condition, and modifies the transition probability matrix in the MCM model. The probability of conversion from cultivated land to construction land is 40% of the S1 scenario, reducing the occupation of cultivated land by urban expansion and implementing cultivated land protection policies.
- (3)
- Scenario 3: Ecological priority scenario (S3). Ecological protection and restoration have become an important part of spatial planning. Reserving a certain amount of ecological land for species flows and exchange among multiple ecosystems can provide a basis for sustainable regional development. With reference to previous research, this scenario is based on the S1 development scenario, and the ecological protection area is used as a restriction condition. The probability of conversion of forest land and grassland to construction land is 50% of the S1 scenario. In addition, cultivated land also has certain ecological functions. The probability of conversion of cultivated land to construction land is 70% of the S1 scenario, and the reduction will be increased to the probability of conversion of cultivated land to forest land.
4. Results and Analysis
4.1. Data Preprocessing and Model Validation
4.2. Carbon Density Estimation of Multiple Land-Use Types
4.3. Land-Use Changes in CZX Urban Agglomeration
4.3.1. Land-Use Changes of the CZX Urban Agglomeration from 2000 to 2020
4.3.2. Land-Use Changes under Different Scenarios in the CZX Urban Agglomeration in 2030
4.4. Terrestrial Ecosystem Carbon Stock Change Caused by Land-Use Changes in the CZX Urban Agglomeration
4.4.1. Terrestrial Ecosystem Carbon Stock Change Caused by Land-Use Changes during 2000–2020
4.4.2. Terrestrial Ecosystem Carbon Stock Change Caused by Mixed Land-Use Structure Change under Three Scenarios in 2030
5. Discussion
6. Conclusions
- (1)
- The TECS of the CZX urban agglomeration in 2000, 2010, and 2020 were 104.05 Tg, 101.74 Tg, and 98.43 Tg, respectively. The carbon stock decreased between 2000 and 2010, and the reduction rate between 2010 and 2020 eased slightly.
- (2)
- The simulated land-use pattern under the three scenarios in 2030 is spatially different. Under the inertial development scenario, the urban expansion is more intense, at 1.34 times and 2.05 times that of each of the cultivated land protection scenario and the ecological priority scenario, and the loss of cultivated land and forest land is more serious. Under the cultivated land protection scenario, the loss of cultivated land area is only 0.75 km2, and cultivated land protection is well implemented. Under the ecological priority scenario, the ecological land is well protected, and the loss of forest land and grassland is only 0.53 times and 0.56 times that of the inertial development scenario and the cultivated land protection scenario, which well reflects the role of ecological constraints. There is no significant difference in the area changes of wetlands and water bodies in any of the three scenarios. It has become a consensus to protect water resources such as wetlands and water bodies under the auspices of ecological civilization.
- (3)
- The TECS in the study area is different in the third scenario. The carbon storage under the inertial development scenario, the cultivated land protection scenario, and the ecological priority scenario, are 95.82 Tg, 95.97 Tg, and 97.31 Tg, respectively, which are 2.61 Tg, 2.46 Tg, and 1.12 Tg lower than that in 2020. Spatially, the distribution of the inertia development scenario and the cultivated land protection scenario are more dispersed and showa continuous expansion trend. Under the ecological protection scenario, the growth rate of construction land is limited by ecological function land, and the carbon loss is less and is concentrated in a specific small area.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Figueres, C.; Schellnhuber, H.J.; Whiteman, G.; Rockstrom, J.; Hobley, A.; Rahmstorf, S. Three years to safeguard our climate. Nature 2017, 546, 593–595. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Li, B.; Gasser, T.; Tao, S.; Xu, J. The contributions of individual countries and regions to the global radiative forcing. Proc. Natl. Acad. Sci. USA 2021, 118, e2018211118. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimating carbon sinks in terrestrial ecosystems in China: Methods, progress, and prospects. Sci. Sin. (Terrae) 2022, 52, 11. (In Chinese) [Google Scholar]
- Xi, J. Address to the General Debate of the Seventy-Fifth Session of the United Nations General Assembly. Bulletin of The State Council of the People’s Republic of China. 2020. Available online: https://baijiahao.baidu.com/s?id=1678546728556033497&wfr=spider&for=pc (accessed on 23 September 2020).
- Ding, M.; Yang, X.; Zhao, R.; Zhang, Z.; XIao, L.; Xie, Z. Optimization of territorial space pattern under the goal of carbo neutrality: Theoretical framework and practical strategy. J. Nat. Resour. 2022, 37, 1137–1147. (In Chinese) [Google Scholar]
- Zhang, P.; Li, Y.; Yin, H.; Chen, Q.; Dong, Q.; Zhu, L. Spatio-temporal variation and dynamic simulation of ecosystem carbon storage in the north-south transitional zone of China. J. Nat. Resour. 2022, 5, 1183–1197. (In Chinese) [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.; Li, S.; Zhu, J. Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sens. 2020, 12, 528. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhao, Y.; Wu, J. Assessment of carbon balance attribution and carbon storage potential in China’s terrestrial ecosystem. Resour. Conserv. Recycl. 2023, 189, 106748. [Google Scholar] [CrossRef]
- Wu, W.; Xu, L.; Zheng, H.; Zhang, X. How much carbon storage will the ecological space leave in a rapid urbanization area? Scenario analysis from Beijing-Tianjin-Hebei Urban Agglomeration. Resour. Conserv. Recycl. 2023, 189, 106774. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, W.; Feng, Q.; Zhu, M.; Yang, L.; Zhang, J. Effects of land use and land cover change on soil organic carbon storage in the Hexi regions, Northwest China. J. Environ. Manag. 2022, 312, 114911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, L.; Xia, Q.; Dong, J. Land use change and its impact on carbon storage under the constraints of “three lines”: A case study of Wuhan city circle. Acta Ecol. Sin. 2022, 42, 2265–2280. [Google Scholar]
- Chen, G.; Li, X.; Liu, X. Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Sci. Data 2022, 9, 125. [Google Scholar] [CrossRef]
- Wu, S.; Hu, S.; Frazier, A.E.; Hu, Z. China’s urban and rural residential carbon emissions: Past and future scenarios. Resour. Conserv. Recycl. 2023, 190, 106802. [Google Scholar] [CrossRef]
- Temmink, R.J.M.; Lamers, L.P.M.; Angelini, C.; Bouma, T.J.; Fritz, C.; van de Koppel, J.; Lexmond, R.; Rietkerk, M.; Silliman, B.R.; Joosten, H.; et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 2022, 376, eabn1479. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Yin, G.; Piao, S.; Dybzinski, R.; Cong, N.; Li, X.; Wang, K.; Peuelas, J.; Zeng, H.; Chen, A. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 2020, 3, 694–700. [Google Scholar] [CrossRef]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar]
- Li, X.; Zhou, Y.; Hejazi, M.; Wise, M.; Vernon, C.; Iyer, G.; Chen, W. Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling. Commun. Earth Environ. 2021, 2, 201. [Google Scholar] [CrossRef]
- Liu, Y.; Xi, M.; Zhang, X.; Yu, Z.; Kong, F. Carbon storage distribution characteristics of wetlands in China and its influencing factors. Chin. J. Appl. Ecol. 2019, 30, 2481–2489. (In Chinese) [Google Scholar]
- Zeng, L.; Liu, X.; Li, W.; Ou, J.; Cai, Y.; Chen, G.; Li, M.; Li, G.; Zhang, H.; Xu, X. Global simulation of fine resolution land use/cover change and estimation of aboveground biomass carbon under the shared socioeconomic pathways. J. Environ. Manag. 2022, 312, 114943. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Liang, X.; Shi, H.; Ou, J. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model. Trop. Geogr. 2019, 39, 397–409. [Google Scholar]
- Wang, W.; Jiao, L.; Jia, Q.; Liu, J.; Mao, W.; Xu, Z.; Li, W. Land use optimization modelling with ecological priority perspective for large-scale spatial planning. Sustain. Cities Soc. 2021, 65, 102575. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Chen, Y.; Wang, L.; Zhou, Q.; Zheng, W.; Xiao, B. Which impacts more seriously on natural habitat loss and degradation? Cropland expansion or urban expansion? Land Degrad. Dev. 2021, 32, 946–964. [Google Scholar] [CrossRef]
- van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.A.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.; Lv, C.; Liu, W.; Yang, C.; Fan, D.; Wang, Z.; Guan, Q. Understanding Spatio-Temporal Patterns of Land Use/Land Cover Change under Urbanization in Wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Chen, L.; Cai, H.; Zhang, T.; Zhang, X.; Zeng, H. Land use multi-scenario simulation analysis of Rao River basin based on Marlov-FLUS model. Acta Ecol. Sin. 2022, 42, 3947–3958. [Google Scholar]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic simulation of land use/cover change and assessment of forest ecosystem carbon storage under climate change scenarios in Guangdong province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Cui, Y.; Zheng, H.; Zhu, L. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459. (In Chinese) [Google Scholar]
- Nie, X.; Lu, B.; Chen, Z.; Yang, Y.; Chen, S.; Chen, Z.; Wang, H. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage. Ecol. Indic. 2020, 118, 106708. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Guan, Q.; Clarke, K.C.; Chen, G.; Guo, S.; Yao, Y. Mixed-cell cellular automata: A new approach for simulating the spatio-temporal dynamics of mixed land use structures. Landsc. Urban Plan. 2021, 205, 103960. [Google Scholar] [CrossRef]
- Kapitza, S.; Golding, N.; Wintle, B.A. A fractional land use change model for ecological applications. Environ. Model. Softw. 2022, 147, 105258. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhang, D.; Zhang, J.; He, J.; Xu, X. Simulating mixed land-use change under multi- label concept by integrating a convolutional neural network and cellular automata: A case study of Huizhou, China. GISci. Remote Sens. 2022, 29, 609–632. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, L.; Dong, T.; Xu, Z.; Xu, G. Simulating urban dynamics by coupling top-down and bottom-up strategies. Int. J. Geogr. Inf. Sci. 2019, 33, 2259–2283. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, L.; Zhang, W.; Jia, Q.; Su, F.; Xu, G.; Ma, S. Delineating urban growth boundaries under multi-objective and constraints. Sustain. Cities Soc. 2020, 61, 102279. [Google Scholar] [CrossRef]
- Cui, W.; Cai, L.; Zhang, T.; Xi, H.; Yang, F.; Chen, M. Ecological security assessment and multi-scenario simulation analysis of Zhejiang Greater Bay Area based on LUCC. Acta Ecol. Sin. 2022, 42, 2136–2148. (In Chinese) [Google Scholar]
- Yao, Y.; Liu, X.; Li, X.; Liu, P.; Hong, Y.; Zhang, Y.; Mai, K. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. Int. J. Geogr. Inf. Sci. 2017, 31, 2452–2479. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Tong, X.; Lei, Z.; Gao, C.; Wang, J. Modeling changes in China’s 2000–2030 carbon stock caused by land use change. J. Clean. Prod. 2020, 252, 119659. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Dai, Y. A Study on Evolution and Optimization of Land Ecosystem Services in Hunan Province; China University of Geosciences: Wuhan, China, 2019. [Google Scholar]
- Xi, X.; Zhang, J.; Liao, Q.; Chen, D.; Bai, R.; Huang, Z. Multi-purpose regional geochemical survey and soil carbon reserves problem: Examples of Jiangsu, Henan, Sichuan, Jilin Provinces and Inner Mongolia. Quatennary Sci. 2008, 28, 58–67. [Google Scholar]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, L. Integrating a mixed-cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation. Land Degrad. Dev. 2022, 33, 1579–1595. [Google Scholar] [CrossRef]
- Kang, F.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Xu, Y.; Huang, Z.; Ji, J.; Wang, J. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China. Remote Sens. 2022, 14, 366. [Google Scholar] [CrossRef]
- Li, Y.; Han, N.; Li, X.; Du, H.; Mao, F.; Cui, L.; Liu, T.; Xing, L. Spatiotemporal Estimation of Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China. Remote Sens. 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yu, G.; He, N. Changes of soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. Acta Geogr. Sin. 2018, 73, 2150–2167. [Google Scholar]
Scenario Settings | Land-Use Type | Cultivated Land | Forest Land | Grass Land | Wetland | Water Bodies | Artificial Surface |
---|---|---|---|---|---|---|---|
S1 | Cultivated land | 1 | 1 | 1 | 1 | 1 | 1 |
Forest land | 1 | 1 | 1 | 1 | 1 | 1 | |
Grass land | 1 | 1 | 1 | 1 | 1 | 1 | |
Wetland | 1 | 1 | 1 | 1 | 1 | 1 | |
Water bodies | 1 | 1 | 1 | 1 | 1 | 1 | |
Artificial surface | 0 | 0 | 0 | 0 | 0 | 1 | |
S2 | Cultivated land | 1 | 0 | 0 | 0 | 0 | 0 |
Forest land | 1 | 1 | 1 | 0 | 0 | 1 | |
Grass land | 1 | 1 | 1 | 1 | 1 | 1 | |
Wetland | 1 | 0 | 1 | 1 | 1 | 1 | |
Water bodies | 0 | 0 | 0 | 0 | 1 | 1 | |
Artificial surface | 0 | 0 | 0 | 0 | 0 | 1 | |
S3 | Cultivated land | 1 | 1 | 1 | 1 | 1 | 1 |
Forest land | 0 | 1 | 0 | 0 | 0 | 0 | |
Grass land | 0 | 1 | 1 | 1 | 1 | 0 | |
Wetland | 0 | 0 | 0 | 1 | 1 | 0 | |
Water bodies | 0 | 0 | 0 | 0 | 1 | 0 | |
Artificial surface | 0 | 0 | 0 | 0 | 0 | 1 |
Land-Use Type | Ci-above | Ci-below | Ci-dead | Ci-soil | Literature Sources |
---|---|---|---|---|---|
Cultivated land | 4.7 | 0 | 0 | 33.46 | Dai et al. [45]; Liu et al. [23] |
Forest land | 30.55 | 14.66 | 13 | 82.29 | Dai et al. [45]; Liu et al. [23] |
Grass land | 3.37 | 7.48 | 4.47 | 44.36 | Dai et al. [45]; Liu et al. [23] |
Wetland | 4.23 | 0 | 0 | 152.65 | Dai et al. [45]; Xi et al. [46] |
Water bodies | 3.25 | 0 | 0 | 72.07 | Dai et al. [45]; Liu et al. [23] |
Artificial surface | 0.67 | 0.11 | 0 | 41.76 | Dai et al. [45]; Xi et al. [46] |
Year | Land-Use Type | Transfer Area in 2020 /km2 | Transfer-Out Area/km2 | Transfer-Out Contribution Rate/% | |||||
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grass Land | Wetland | Water Bodies | Artificial Surface | ||||
2000 | Cultivated land | 1797.98 | 328.44 | 45.48 | 0.26 | 45.32 | 407.05 | 826.55 | 37.33 |
Forest land | 498.59 | 3949.11 | 164.00 | 0.06 | 26.23 | 324.51 | 1013.39 | 45.77 | |
Grass land | 60.02 | 142.60 | 214.63 | 0.01 | 6.27 | 78.05 | 286.95 | 12.96 | |
Wetland | 1.43 | 0.58 | 0.09 | 6.28 | 17.49 | 1.35 | 20.94 | 0.95 | |
Water bodies | 13.21 | 8.15 | 2.99 | 0.17 | 206.96 | 14.90 | 39.42 | 1.78 | |
Artificial surface | 11.70 | 7.78 | 1.59 | 0 | 5.69 | 350.88 | 26.76 | 1.21 | |
transfer-in area/km2 | 584.95 | 487.55 | 214.15 | 0.50 | 101.00 | 825.86 | 2214.01 | ||
transfer-in contribution rate/% | 26.42 | 22.02 | 9.67 | 0.02 | 4.56 | 37.30 |
Land-Use Type | Area/km2 | Area Variation/km2 | |||||
---|---|---|---|---|---|---|---|
2020 | S1 | S2 | S3 | S1 | S2 | S3 | |
Cultivated land | 2382.94 | 2250.76 | 2382.19 | 2317.21 | −132.18 | −0.75 | −65.73 |
Forest land | 4436.67 | 3956.6 | 3976.04 | 4181.39 | −480.07 | −460.63 | −255.28 |
Grass land | 428.78 | 375.73 | 378.58 | 398.76 | −53.05 | −50.2 | −30.02 |
Wetland | 6.78 | 3.96 | 4.01 | 3.99 | −2.82 | −2.77 | −2.79 |
Water bodies | 307.96 | 357.92 | 359.97 | 360.44 | 49.96 | 52.01 | 52.48 |
Artificial surface | 1176.73 | 1794.87 | 1639.07 | 1478.06 | 618.14 | 462.34 | 301.33 |
Land-Use Type | Carbon Storage Change in Each Scenario | ||
---|---|---|---|
S1 | S2 | S3 | |
Cultivated land | −0.50 | 0 | −0.23 |
Forest land | −4.76 | −4.47 | −2.45 |
Grass land | −0.32 | −0.30 | −0.11 |
Wetland | −0.04 | −0.04 | −0.01 |
Water bodies | 0.38 | 0.35 | 0.40 |
Artificial surface | 2.63 | 2.0 | 1.28 |
sum | −2.61 | −2.46 | −1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Yan, D.; Wang, W. Estimating Carbon Stock Change Caused by Multi-Scenario Land-Use Structure in Urban Agglomeration. Sustainability 2023, 15, 5503. https://doi.org/10.3390/su15065503
Hu J, Yan D, Wang W. Estimating Carbon Stock Change Caused by Multi-Scenario Land-Use Structure in Urban Agglomeration. Sustainability. 2023; 15(6):5503. https://doi.org/10.3390/su15065503
Chicago/Turabian StyleHu, Jixi, Dingyue Yan, and Weilin Wang. 2023. "Estimating Carbon Stock Change Caused by Multi-Scenario Land-Use Structure in Urban Agglomeration" Sustainability 15, no. 6: 5503. https://doi.org/10.3390/su15065503
APA StyleHu, J., Yan, D., & Wang, W. (2023). Estimating Carbon Stock Change Caused by Multi-Scenario Land-Use Structure in Urban Agglomeration. Sustainability, 15(6), 5503. https://doi.org/10.3390/su15065503