Perspectives on Taiwan’s Pathway to Net-Zero Emissions
Abstract
:1. Introduction
Taiwan’s Key Milestones in the Global Fight against Climate Change
2. Net-Zero Policy in Taiwan: A Low-Carbon Transition
2.1. Four Strategies of Taiwan’s Net-Zero Emissions
2.1.1. Energy Transition
2.1.2. Industrial Transition
2.1.3. Lifestyle Transition
2.1.4. Social Transition
3. Insights into Taiwan’s Net-Zero Emission Plan
3.1. Will the Renewable Energy Boom Lead to More Blakouts?
3.2. Virtual Power Plant (VPP), a New Form of Energy Management
3.3. A Nuclear-Free Taiwan by 2025?
3.4. Could Carbon Capture, Utilization and Storage Be the Antidote for Climate Change?
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herold, A.; Cames, M.; Siemons, A.; Emele, L.; Cook, V. The Development of Climate Negotiations in View of Warsaw (COP 19). 2013. Available online: https://www.europarl.europa.eu/thinktank/en/document/IPOL-ENVI_ET(2013)507493 (accessed on 14 September 2022).
- Arora, N.K.; Mishra, I. COP26: More challenges than achievements. Environ. Sustain. 2021, 4, 585–588. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lin, C.L. Effects of Taiwan’s Promotion of Solar PV on its Economy and for Net-zero Emissions. Adv. Manag. Appl. Econ. 2022, 12, 55–74. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Establishing a Carbon Border Adjustment Mechanism; European Commission: Luxembourg, 2021. [Google Scholar]
- RE100. (n.d.). RE100 Members. Available online: https://www.there100.org/re100-members (accessed on 14 September 2022).
- Sharma, V.K.; Singh, R.; Gehlot, A.; Buddhi, D.; Braccio, S.; Priyadarshi, N.; Khan, B. Imperative role of photovoltaic and concentrating solar power technologies towards renewable energy generation. Int. J. Photoenergy 2022, 2022, 3852484. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, C.; Yuan, P. Is there a grid-connected effect of grid infrastructure on renewable energy generation? Evidence from China’s upgrading transmission lines. Energy Environ. 2022, 33, 975–995. [Google Scholar] [CrossRef]
- Laws and Regulations Database of The Republic of China (Taiwan). (n.d.). Renewable Energy Development Act. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=J0130032 (accessed on 14 September 2022).
- Laws and Regulations Database of The Republic of China (Taiwan). (n.d.). Greenhouse Gas Reduction and Management Act. Available online: https://law.moj.gov.tw/Eng/LawClass/LawAll.aspx?PCode=O0020098 (accessed on 14 September 2022).
- Environmental Protection Administration, Executive Yuan, R.O.C. (Taiwan). (n.d.). Second-Stage Greenhouse Gas Control Target. Available online: https://ghgrule.epa.gov.tw/greenhouse_control/greenhouse_control (accessed on 6 March 2023).
- Lin, M.X.; Liou, H.M.; Chou, K.T. National energy transition framework toward SDG7 with legal reforms and policy bundles: The case of Taiwan and its comparison with Japan. Energies 2020, 13, 1387. [Google Scholar] [CrossRef] [Green Version]
- National Development Council. Taiwan’s Pathway to Net-Zero Emissions in 2050. 2022. Available online: https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzExL3JlbGZpbGUvMC8xNDgwMS9mMGUyYzBiNy02N2UzLTQ0MjgtOWU5ZS04NGRmNDVlNThkNmYucGRm&n=VGFpd2Fu4oCZcyBQYXRod2F5IHRvIE5ldC1aZXJvIEVtaXNzaW9ucyBpbiAyMDUwLnBkZg%3d%3d&icon=..pdf (accessed on 14 September 2022).
- Environmental Protection Administration, Executive Yuan, R.O.C. (Taiwan). (n.d.). Environmental Protection Administration to Amend the “Greenhouse Gas Reduction and Management Act” to “Climate Change Response Act”. Available online: https://www.epa.gov.tw/eng/F7AB26007B8FE8DF/562d710e-7b1e-4bd6-858a-3606ef20e180 (accessed on 14 September 2022).
- Environmental Protection Administration, Executive Yuan, R.O.C. (Taiwan). 2020; 2020 National Greenhouse Gas Inventory. Available online: https://ghgrule.epa.gov.tw/report/report_page/31 (accessed on 6 March 2023).
- International Energy Agency. World Energy Model Documentation. 2021. Available online: https://iea.blob.core.windows.net/assets/932ea201-0972-4231-8d81-356300e9fc43/WEM_Documentation_WEO2021.pdf (accessed on 14 September 2022).
- Van Heddeghem, W.; Lambert, S.; Lannoo, B.; Colle, D.; Pickavet, M.; Demeester, P. Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput. Commun. 2014, 50, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.J.; Aráujo, J.M.; Martinho, G.; Pereiro, A.B. Waste management strategies to mitigate the effects of fluorinated greenhouse gases on climate change. Appl. Sci. 2021, 11, 4367. [Google Scholar] [CrossRef]
- Kebreab, E.; Clark, K.; Wagner-Riddle, C.; France, J. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Anim. Sci. 2006, 86, 135–157. [Google Scholar] [CrossRef]
- Su, J.J.; Liu, B.Y.; Chang, Y.C. Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan. Agric. Ecosyst. Environ. 2003, 95, 253–263. [Google Scholar] [CrossRef]
- Taipower. (n.d.). History of Net Power Generated and Purchased by Energy Type. Available online: https://www.taipower.com.tw/en/index.aspx (accessed on 14 September 2022).
- Million Rooftop PVs Promotion Office. (n.d.). Mission Statement. Available online: https://www.mrpv.org.tw/Article/PubArticleEng.aspx?type=engpolicy&post_id=13506 (accessed on 14 September 2022).
- Chou, J.S.; Ou, Y.C.; Lin, K.Y. Collapse mechanism and risk management of wind turbine tower in strong wind. J. Wind. Eng. Ind. Aerodyn. 2019, 193, 103962. [Google Scholar] [CrossRef]
- Stoll-Kleemann, S.; Schmidt, U.J. Reducing meat consumption in developed and transition countries to counter climate change and biodiversity loss: A review of influence factors. Reg. Environ. Chang. 2017, 17, 1261–1277. [Google Scholar] [CrossRef] [Green Version]
- Bray, R.; Montero, A.M.; Ford, R. Skills deployment for a ‘just’net zero energy transition. Environ. Innov. Soc. Transit. 2022, 42, 395–410. [Google Scholar] [CrossRef]
- National Development Council. The “12 Key Strategies” Action Plan—Just Transition; 2022. Available online: https://www.ndc.gov.tw/Content_List.aspx?n=6BA5CC3D71A1BF6F (accessed on 6 March 2023).
- Licata, A.; Kokkinos, A.; Michell, F. Analysis of Variable Renewable Energy and Reserve Margins. In ASME Power Conference; American Society of Mechanical Engineers: New York, NY, USA, 2022; Volume 85826, p. V001T10A001. [Google Scholar]
- Yu, D.; Wang, J.; Li, D.; Jermsittiparsert, K.; Nojavan, S. Risk-averse stochastic operation of a power system integrated with hydrogen storage system and wind generation in the presence of demand response program. Int. J. Hydrogen Energy 2019, 44, 31204–31215. [Google Scholar] [CrossRef]
- Executive Yuan, Republic of China (Taiwan). Nuclear-Free Homeland Policy Remains Unchanged; 2016. Available online: https://english.ey.gov.tw/Page/61BF20C3E89B856/e61c7f0b-9918-4c62-b80b-8a255f1f4aa8 (accessed on 14 September 2022).
- Taipower. Coal Procurement in Taipower. 2022. Available online: https://www.taipower.com.tw/en/page.aspx?mid=4489 (accessed on 14 September 2022).
- Pandžić, H.; Kuzle, I.; Capuder, T. Virtual power plant mid-term dispatch optimization. Appl. Energy 2013, 101, 134–141. [Google Scholar] [CrossRef]
- Barton, J.P.; Infield, D.G. Energy storage and its use with intermittent renewable energy. IEEE Trans. Energy Convers. 2004, 19, 441–448. [Google Scholar] [CrossRef]
- Winter, G. The rise and fall of nuclear energy use in Germany: Processes, explanations and the role of law. J. Environ. Law 2013, 25, 95124. [Google Scholar] [CrossRef]
- Energypedia. (n.d.). Energy Transition in Taiwan. Available online: https://energypedia.info/wiki/Energy_Transition_in_Taiwan#Nuclear_Phaseout (accessed on 14 September 2022).
- Kao, H.; Rau, R.J. Detailed structures of the subducted Philippine Sea plate beneath northeast Taiwan: A new type of double seismic zone. J. Geophys. Res. Solid Earth 1999, 104, 1015–1033. [Google Scholar] [CrossRef] [Green Version]
- The Community Research and Development Information Service. Nuclear Power Plants Located in Tsunami Risk Zones; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Gullberg, A.T.; Ohlhorst, D.; Schreurs, M. Towards a low carbon energy future–Renewable energy cooperation between Germany and Norway. Renew. Energy 2014, 68, 216–222. [Google Scholar] [CrossRef]
- Halser, C.; Paraschiv, F. Pathways to Overcoming Natural Gas Dependency on Russia—The German Case. Energies 2022, 15, 4939. [Google Scholar] [CrossRef]
- NIKKEIAsia, Nikkei Inc. Japan PM Kishida Orders New Nuclear Power Plant Construction. 2022. Available online: https://asia.nikkei.com/Politics/Japan-PM-Kishida-orders-new-nuclear-power-plant-construction (accessed on 14 September 2022).
- European Commission. Factsheet: EU Taxonomy Accelerating Sustainable Investments; European Commission: Luxembourg, 2022. [Google Scholar]
- Tochaikul, G.; Phattanasub, A.; Khemkham, P.; Saengthamthawee, K.; Danthanavat, N.; Moonkum, N. Radioactive waste treatment technology: A review. Kerntechnik 2022, 87, 208–225. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Othman MH, D.; Singh, D.; Avtar, R.; Hwang, G.H.; Setiadi, T.; Lo, W.H. Technological solutions for long-term storage of partially used nuclear waste: A critical review. Ann. Nucl. Energy 2022, 166, 108736. [Google Scholar] [CrossRef]
- Papafotiou, A.; Li, C.; Zbinden, D.; Hayek, M.; Hannon, M.J.; Marschall, P. Site Selection for a Deep Geological Repository in Switzerland: The Role of Performance Assessment Modeling. Energies 2022, 15, 6121. [Google Scholar] [CrossRef]
- Guo, H.; Jin, X.; Huo, X.; Gu, H.; Wu, H. Influence of nuclear data library on neutronics benchmark of China experimental fast reactor start-up tests. Nucl. Eng. Technol. 2022, 54, 3888–3896. [Google Scholar] [CrossRef]
- Aitkaliyeva, A. Recent trends in metallic fast reactor fuels research. J. Nucl. Mater. 2022, 558, 153377. [Google Scholar] [CrossRef]
- Arena, P.; Di Maio, P.A. Special Issue on Structural and Thermo-Mechanical Analyses in Nuclear Fusion Reactors. Appl. Sci. 2022, 12, 12562. [Google Scholar] [CrossRef]
- Çakar, N.D.; Erdoğan, S.; Gedikli, A.; Öncü, M.A. Nuclear energy consumption, nuclear fusion reactors and environmental quality: The case of G7 countries. Nucl. Eng. Technol. 2022, 54, 1301–1311. [Google Scholar] [CrossRef]
- Chinese National Federation of Industries. 2021 White Paper. 2021. Available online: https://drive.google.com/file/d/1FhUG0ZPtY0Jt_JEGA0ROfUxKQkJ7NyN-/view (accessed on 14 September 2022).
- Olejarnik, P. World Energy Outlook 2013; International Energy Agency: Paris, France, 2013. [Google Scholar]
- Castro-Munoz, R.; Ahmad, M.Z.; Malankowska, M.; Coronas, J. A new relevant membrane application: CO2 direct air capture (DAC). Chem. Eng. J. 2022, 446, 137047. [Google Scholar] [CrossRef]
- Mostafa, M.; Antonicelli, C.; Varela, C.; Barletta, D.; Zondervan, E. Capturing CO2 from the atmosphere: Design and analysis of a large-scale DAC facility. Carbon Capture Sci. Technol. 2022, 4, 100060. [Google Scholar] [CrossRef]
- Leonzio, G.; Fennell, P.S.; Shah, N. A comparative study of different sorbents in the context of direct air capture (DAC): Evaluation of key performance indicators and comparisons. Appl. Sci. 2022, 12, 2618. [Google Scholar] [CrossRef]
- Almena, A.; Thornley, P.; Chong, K.; Röder, M. Carbon dioxide removal potential from decentralized bioenergy with carbon capture and storage (BECCS) and the relevance of operational choices. Biomass Bioenergy 2022, 159, 106406. [Google Scholar] [CrossRef]
- Briones-Hidrovo, A.; Rey, J.R.C.; Dias, A.C.; Tarelho, L.A.; Beauchet, S. Assessing a bio-energy system with carbon capture and storage (BECCS) through dynamic life cycle assessment and land-water-energy nexus. Energy Convers. Manag. 2022, 268, 116014. [Google Scholar] [CrossRef]
- Bartocci, P.; Abad, A.; Mattisson, T.; Cabello, A.; de las Obras Loscertales, M.; Negredo, T.M.; Zampilli, M.; Taiana, A.; Serra, A.; Arauzo, I.; et al. Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency. Renew. Sustain. Energy Rev. 2022, 169, 112851. [Google Scholar] [CrossRef]
- Watari, T.; Cao, Z.; Hata, S.; Nansai, K. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 2022, 13, 4158. [Google Scholar] [CrossRef] [PubMed]
- Zajac, M.; Skocek, J.; Ben Haha, M.; Deja, J. CO2 mineralization methods in cement and concrete industry. Energies 2022, 15, 3597. [Google Scholar] [CrossRef]
- Chai, Y.; Packham, N.; Wang, M. Process improvement analysis of pyrolysis/gasification of biomass and waste plastics with carbon capture and utilisation through process simulation. Fuel 2022, 324, 124571. [Google Scholar] [CrossRef]
- Ishaq, H.; Crawford, C. CO2-Based alternative fuel production to support development of CO2 capture, utilization and storage. Fuel 2023, 331, 125684. [Google Scholar] [CrossRef]
- KKamolov, A.; Turakulov, Z.; Rejabov, S.; Díaz-Sainz, G.; Gómez-Coma, L.; Norkobilov, A.; Fallanza, M.; Irabien, A. Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes. Membranes 2023, 13, 130. [Google Scholar] [CrossRef]
- Dey, P.; Singh, P.; Saha, M. An insight into the recent developments in membrane-based carbon dioxide capture and utilization. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 311–326. [Google Scholar]
- Chowdhury, F.A.; Goto, K.; Yamada, H.; Matsuzaki, Y. A screening study of alcohol solvents for alkanolamine-based CO2 capture. Int. J. Greenhouse Gas Control. 2020, 99, 103081. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Ionic-liquid-based CO2 capture systems: Structure, interaction and process. Chem. Rev. 2017, 117, 9625–9673. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhao, Y.; Li, D.; Sun, J. Task-specific ionic liquids for carbon dioxide absorption and conversion into value-added products. Curr. Opin. Green Sustain. Chem. 2022, 34, 100599. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, Z.; Zhang, Z.; Zeng, S.; Li, F.; Zhang, X.; Nie, Y.; Zhang, L.; Zhang, S.; Ji, X. Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy Environ. 2021, 6, 314–328. [Google Scholar] [CrossRef]
- Craveiro, R.; Neves, L.A.; Duarte, A.R.C.; Paiva, A. Supported liquid membranes based on deep eutectic solvents for gas separation processes. Sep. Purif. Technol. 2021, 254, 117593. [Google Scholar] [CrossRef]
- Ros, M.; Read, A.; Uilenreef, J.; Limbeek, J. Start of a CO2 Hub in Rotterdam: Connecting CCS and CCU. Energy Procedia 2014, 63, 2691–2701. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.C.; Liu, W.H.; Hsu, H.W. Calcium Looping Carbon Capture Process. In Handbook of Chemical Looping Technology; Wiley: Hoboken, NJ, USA, 2018; pp. 397–433. [Google Scholar]
- Ou-Yang, C.; Chen, H.W.; Ho, C.H.; Chou, J.C.; Yuan, Y.T.; Ho, C.L.; Hsueh, H.T.; Chen, S.T.; Liao, P.C.; Chao, L.K. Value chain analysis of algal bioenergy and carbon capture integrated with a biotechnology innovation. J. Clean. Prod. 2018, 180, 349–359. [Google Scholar] [CrossRef]
- Yu, C.W.; Chiao, C.H.; Hwang, L.T.; Yang, W.H.; Yang, M.W. A pilot 3000 m drilling for characterizing a candidate deep saline aquifer in western Taiwan. Energy Procedia 2014, 63, 5071–5082. [Google Scholar] [CrossRef] [Green Version]
- Vikara, D.; Shih, C.Y.; Lin, S.; Guinan, A.; Grant, T.; Morgan, D.; Remson, D. US DOE’s economic approaches and resources for evaluating the cost of implementing carbon capture, utilization, and storage (CCUS). J. Sustain. Energy Eng. 2017, 5, 307–340. [Google Scholar] [CrossRef]
- Cau, G.; Tola, V.; Ferrara, F.; Porcu, A.; Pettinau, A. CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2 capture: Techno-economic analysis. Fuel 2018, 214, 423–435. [Google Scholar] [CrossRef]
- Mantripragada, H.C.; Zhai, H.; Rubin, E.S. Boundary Dam or Petra Nova–Which is a better model for CCS energy supply? Int. J. Greenh. Gas Control 2019, 82, 59–68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.-H.; Lee, C.-H.; Wu, J.-Y.; Chen, W.-S. Perspectives on Taiwan’s Pathway to Net-Zero Emissions. Sustainability 2023, 15, 5587. https://doi.org/10.3390/su15065587
Chen P-H, Lee C-H, Wu J-Y, Chen W-S. Perspectives on Taiwan’s Pathway to Net-Zero Emissions. Sustainability. 2023; 15(6):5587. https://doi.org/10.3390/su15065587
Chicago/Turabian StyleChen, Pin-Han, Cheng-Han Lee, Jun-Yi Wu, and Wei-Sheng Chen. 2023. "Perspectives on Taiwan’s Pathway to Net-Zero Emissions" Sustainability 15, no. 6: 5587. https://doi.org/10.3390/su15065587
APA StyleChen, P. -H., Lee, C. -H., Wu, J. -Y., & Chen, W. -S. (2023). Perspectives on Taiwan’s Pathway to Net-Zero Emissions. Sustainability, 15(6), 5587. https://doi.org/10.3390/su15065587