Modified Nanocellulose-Based Adsorbent from Sago Waste for Diclofenac Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanocellulose Adsorbent
2.2.1. Isolation of Cellulose
2.2.2. Preparation of Nanocellulose
2.2.3. Synthesis of Magnetite (Fe3O4)
2.2.4. Synthesis of Nanocellulose/Magnetite Adsorbents (Fe3O4)
2.2.5. Synthesis of Nanocellulose/Fe3O4/TiO2
2.3. Photocatalytic Reaction
2.4. Characterization
2.5. Kinetic Study
2.6. Statistical Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and endocrine disrupting compounds in u.s. drinking water. Environ. Sci. Technol. 2009, 43, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanif, H.; Waseem, A.; Kali, S.; Qureshi, N.A.; Majid, M.; Iqbal, M.; Ur-Rehman, T.; Tahir, M.; Yousaf, S.; Iqbal, M.M.; et al. Environmental risk assessment of diclofenac residues in surface waters and wastewater: A hidden global threat to aquatic ecosystem. Environ. Monit. Assess. 2020, 192, 204. [Google Scholar] [CrossRef] [PubMed]
- Steven, T.; Nawaz, R.; Sahrin, N.T.; Lee, K.M.; Bianchi, C.L.; Chong, F.K. H2O2-assisted Sonophotocatalytic Degradation of Diclofenac Using a Visible Light-Active Flower-like Micron-Sized TiO2 Photocatalyst. Malays. J. Chem. 2021, 23, 108–125. [Google Scholar] [CrossRef]
- Abou-Zeid, R.E.; Khiari, R.; El-Wakil, N.; Dufresne, A. Current State and New Trends in the Use of Cellulose Nanomaterials for Wastewater Treatment. Biomacromolecules 2018, 20, 573–597. [Google Scholar] [CrossRef]
- Reshmy, R.; Thomas, D.; Philip, E.; Paul, S.A.; Madhavan, A.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Tarafdar, A.; et al. Potential of nanocellulose for wastewater treatment. Chemosphere 2021, 281, 130738. [Google Scholar] [CrossRef]
- Addamo, M.; Augugliaro, V.; Di Paola, A.; Garcia-Lopez, E.; Loddo, V.; Marci, G.; Molinari, R.; Palmisano, L.; Schiavello, M. Preparation, Characterization, and Photoactivity of Polycrystalline Nanostructured TiO2 Catalysts. J. Phys. Chem. B 2004, 108, 3303–3310. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, S.; Li, A.; Liu, D.; Sun, H.; Zhao, F. Low-cost bauxite residue-MoS2 possessing adsorption and photocatalysis ability for removing organic pollutants in wastewater. Sep. Purif. Technol. 2022, 283, 120144. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Huang, Y.; Jia, Y.; Chen, L. Enhanced photocatalytic oxidation degradability for real cyanide wastewater by designing photocatalyst GO/TiO2/ZSM-5: Performance and mechanism research. Chem. Eng. J. 2022, 428, 131257. [Google Scholar] [CrossRef]
- Leong, S.; Razmjou, A.; Wang, K.; Hapgood, K.; Zhang, X.; Wang, H. TiO2 based photocatalytic membranes: A review. J. Membr. Sci. 2014, 472, 167–184. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Motti, C.A.; Glass, B.D.; Oelgemoller, M. Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors. Environ. Chem. 2014, 11, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Mu, R.; Xu, Z.; Li, L.; Shao, Y.; Wan, H.; Zheng, S. On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction. J. Hazard. Mater. 2010, 176, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Villa, S.; Caratto, V.; Locardi, F.; Alberti, S.; Sturini, M.; Speltini, A.; Maraschi, F.; Canepa, F.; Ferretti, M. Enhancement of TiO2 NPs Activity by Fe3O4 Nano-Seeds for Removal of Organic Pollutants in Water. Materials 2016, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, N.A.H.M.; Lim, L.B.L.; Usman, A.; Kooh, M.R.R. Efficient adsorption of malachite green dye using Artocarpus odoratissimus leaves with artificial neural network modelling. Desalin. Water Treat. 2018, 101, 313–324. [Google Scholar] [CrossRef]
- Rahimi Kooh, M.R.; Thotagamuge, R.; Chau, Y.-F.C.; Mahadi, A.H.; Lim, C.M. Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue. J. Taiwan Inst. Chem. Eng. 2022, 132, 104134. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Lim, Y.-C.; Pace, A. Magnetic hybrid TiO2/Alg/FeNPs triads for the efficient removal of methylene blue from water. Sustain. Chem. Pharm. 2018, 8, 50–62. [Google Scholar] [CrossRef]
- Hami, H.K.; Ruba, F.A.; Amel, S.M.; Asma, A.M. An overview of using error function in adsorption isotherm modeling. Muthanna J. Pure Sci. (MJPS) 2021, 8, 22–30. [Google Scholar] [CrossRef]
- Naduparambath, S.; Purushothaman, E. Sago seed shell: Determination of the composition and isolation of microcrystalline cellulose (MCC). Cellulose 2016, 23, 1803–1812. [Google Scholar] [CrossRef]
- Aghamali, A.; Khosravi, M.; Hamishehkar, H.; Modirshahla, N.; Behnajady, M.A. Preparation of novel high performance recoverable and natural sunlight-driven nanocomposite photocatalyst of Fe3O4/C/TiO2/N-CQDs. Mater. Sci. Semicond. Process. 2018, 87, 142–154. [Google Scholar] [CrossRef]
- Martínez, C.; Canle, L.M.; Fernández, M.I.; Santaballa, J.A.; Faria, J. Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B Environ. 2011, 107, 110–118. [Google Scholar] [CrossRef]
- Subramanyam, B.; Das, A. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. J. Environ. Health Sci. Eng. 2014, 12, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef]
- Basirun, A.A.; Khudri, M.A.M.R.S.; Yasid, N.A.; Othman, A.R.; Johari, W.L.W.; Shukor, M.Y.; Halmi, M.I.E. Kinetic Analysis for the Removal of Copper Using Durvillaea antarctica. J. Environ. Microbiol. Toxicol. 2019, 7, 32–35. [Google Scholar] [CrossRef]
- Kumar, M.; Tamilarasan, R. Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arab. J. Chem. 2017, 10, S1567–S1577. [Google Scholar] [CrossRef] [Green Version]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, Y.; Zhang, Q.; Li, Y.; Wang, C.; Zhou, Y. Direct liquid phase deposition fabrication of waxberry-like magnetic Fe3O4@TiO2 core-shell microspheres. Mater. Chem. Phys. 2016, 181, 391–396. [Google Scholar] [CrossRef]
- Shi, F.; Li, Y.; Zhang, Q.; Wang, H. Synthesis of Fe3O4/C/TiO2 magnetic photocatalyst via vapor phase hydrolysis. Int. J. Photoenergy 2012, 2012, 365401. [Google Scholar] [CrossRef] [Green Version]
- Salamat, S.; Younesi, H.; Bahramifar, N. Synthesis of magnetic core–shell Fe3O4@TiO2 nanoparticles from electric arc furnace dust for photocatalytic degradation of steel mill wastewater. RSC Adv. 2017, 7, 19391–19405. [Google Scholar] [CrossRef] [Green Version]
- Gopalakannan, V.; Viswanathan, N. One pot synthesis of metal ion anchored alginate–gelatin binary biocomposite for efficient Cr(VI) removal. Int. J. Biol. Macromol. 2016, 83, 450–459. [Google Scholar] [CrossRef]
- Ben Hammouda, S.; Adhoum, N.; Monser, L. Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process. J. Hazard. Mater. 2015, 294, 128–136. [Google Scholar] [CrossRef]
- Wei, J.; Yang, Z.; Sun, Y.; Wang, C.; Fan, J.; Kang, G.; Zhang, R.; Dong, X.; Li, Y. Nanocellulose-based magnetic hybrid aerogel for adsorption of heavy metal ions from water. J. Mater. Sci. 2019, 54, 6709–6718. [Google Scholar] [CrossRef]
- Gangwal, V.; Van Der Schaaf, J.; Kuster, B.; Schouten, J. The effect of mass transport limitation on the estimation of intrinsic kinetic parameters for negative order reactions. Appl. Catal. A Gen. 2004, 274, 275–283. [Google Scholar] [CrossRef]
- Lazar, M.A.; Varghese, S.; Nair, S.S. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates. Catalysts 2012, 2, 572–601. [Google Scholar] [CrossRef] [Green Version]
- Anirudhan, T.; Rejeena, S. Photocatalytic degradation of eosin yellow using poly (pyrrole-co-aniline)-coated TiO2/nanocellulose composite under solar light irradiation. J. Mater. 2015, 2015, 636409. [Google Scholar] [CrossRef] [Green Version]
- Rathod, M.; Moradeeya, P.G.; Haldar, S.; Basha, S. Nanocellulose/TiO2 composites: Preparation, characterization and application in the photocatalytic degradation of a potential endocrine disruptor, mefenamic acid, in aqueous media. Photochem. Photobiol. Sci. 2018, 17, 1301–1309. [Google Scholar] [CrossRef]
- Yue, Y.; Shen, S.; Cheng, W.; Han, G.; Wu, Q.; Jiang, J. Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids Surf. A Physicochem. Eng. Aspects 2022, 636, 128035. [Google Scholar] [CrossRef]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood kinetics—A theoretical study. Catal. Commun. 2008, 9, 82–84. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.; Hosseini-Bandegharaei, A.; Chao, H. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef]
- Kopinke, F.-D.; Georgi, A.; Goss, K.-U. Comment on “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solution: A critical review, published by Tran et al. [Water Research 120, 2017, 88–116]”. Water Res. 2018, 129, 520–521. [Google Scholar] [CrossRef]
- Zango, Z.U.; Dennis, J.O.; Aljameel, A.I.; Usman, F.; Mohammed Ali, M.K.; Abdulkadir, B.A.; Algessair, S.; Aldaghri, O.A.; Ibnaouf, K.H. Effective removal of methylene blue from simulated wastewater using ZnO-chitosan nanocomposites: Optimization, kinetics, and Isotherm studies. Molecules 2022, 27, 4746. [Google Scholar] [CrossRef]
Adsorbent | Sample Code |
---|---|
Nanocellulose/Fe3O4 | NC/Fe3O4 |
Nanocellulose/Fe3O4/TiO2 (200 µL) | Ads-1 |
Nanocellulose/Fe3O4/TiO2 (400 µL) | Ads-2 |
Nanocellulose/Fe3O4/TiO2 (800 µL) | Ads-3 |
Adsorbent | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Ads-1 | 74.87 | 0.1282 | 6.853 |
Ads-2 | 160.65 | 0.167 | 6.354 |
Ads-3 | 103.39 | 0.155 | 6.011 |
Model | RMSE | R2 | AICc |
---|---|---|---|
Pseudo-1st-order | 0.526 | 0.997 | 0.558 |
Pseudo-2nd-order | 1.271 | 0.971 | 5.064 |
Langmuir-Hinshelwood | 3.344 | 0.631 | 28.47 |
Model | Adsorption Capacity, qe (mg/g) | Constant, k (95% Confidence Interval) |
---|---|---|
Pseudo-1st-order | 13.52 | 0.04 (0.023 to 0.05) |
Pseudo-2nd-order | 17.23 | 0.002(0.0065 to 0.004059) |
L-H | 1.33 | 0.07(0.0032 to 0.0562) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che Su, N.; Basirun, A.A.; Hameed Sultan, N.S.; Kanakaraju, D.; Wilfred, C.D. Modified Nanocellulose-Based Adsorbent from Sago Waste for Diclofenac Removal. Sustainability 2023, 15, 5650. https://doi.org/10.3390/su15075650
Che Su N, Basirun AA, Hameed Sultan NS, Kanakaraju D, Wilfred CD. Modified Nanocellulose-Based Adsorbent from Sago Waste for Diclofenac Removal. Sustainability. 2023; 15(7):5650. https://doi.org/10.3390/su15075650
Chicago/Turabian StyleChe Su, Noorhaslin, Ain Aqilah Basirun, Nor Shahroon Hameed Sultan, Devagi Kanakaraju, and Cecilia Devi Wilfred. 2023. "Modified Nanocellulose-Based Adsorbent from Sago Waste for Diclofenac Removal" Sustainability 15, no. 7: 5650. https://doi.org/10.3390/su15075650
APA StyleChe Su, N., Basirun, A. A., Hameed Sultan, N. S., Kanakaraju, D., & Wilfred, C. D. (2023). Modified Nanocellulose-Based Adsorbent from Sago Waste for Diclofenac Removal. Sustainability, 15(7), 5650. https://doi.org/10.3390/su15075650