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Abstract: A nanocellulose-based adsorbent was successfully synthesized via a hydrothermal process.
It was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy, Field Emission
Electron Microscopy and Brunauer–Emmett–Teller surface area analysis. Photocatalysis has the best
potential to replace the conventional wastewater treatment technology through the photodegradation
of organic contaminants. This study focuses on the preparation of a photocatalytic adsorbent of
nanocellulose prepared from sago waste for the removal of diclofenac from industrial wastewater.
Its photocatalytic activity was evaluated through the degradation of diclofenac (100 mg/L) under
ultraviolet (UV) light. The effect of different loadings of TiO2 and kinetics on the photocatalytic
activity was investigated. To study its removal, the experiments were carried out under UV light
with different contact times ranging from 30 to 120 min at room temperature. The maximum removal
percentage was found to be 57.5% for 200 µL of TiO2, and this increased up to 82.4% for 800 µL of
TiO2. The maximum removal capacity was found to be 13.3 mg/g. The kinetics was well fitted with
“pseudo-first order model” (PSO). Kinetic analysis using the PSO model at 100 ppm of diclofenac
sodium gave a value of equilibrium adsorption capacity, qe of 13.52 mg/g. The adsorption kinetics
gave a value of calculated equilibrium adsorption capacity, qe of 13.52 mg/g using different non-
linear regression plots. It obeyed a pseudo-first-order reaction with the lowest AICc, RSME values
of 0.56 and 0.53 and the highest correlation coefficient, R2, of 0.99. Three kinetics models were
fitted for the current adsorption kinetics data, and their suitability was inferred as the following:
pseudo-first-order > pseudo-second-order > Langmuir–Hinshelwood.

Keywords: nanocellulose; magnetite; titanium dioxide; photocatalyst; kinetic study; diclofenac

1. Introduction

Diclofenac (DCF) is widely used to treat fever, pain, rheumatoid arthritis, etc. [1–3]. The
molecule is readily absorbed from the gastrointestinal tract. However, is water insoluble.
DCF has been detected in µg/L in in drinking water, ground water and surface water
all around the world. It can cause harmful effects on both human health and aquatic
ecosystems, such as cytopathological symptoms in the gills, kidneys and liver of rainbow
trout. DCF cannot be removed effectively by conventional wastewater treatment due to its
stable chemical structure. Therefore, it is essential to develop more effective and sustainable
treatment technologies for the removal of DCF and to treat and reuse wastewater.

Over the years, there has been increasing research into the application of nanocellulose
(NC) as a smart material for water purification. Several studies have proven that NC
provide greater surface areas, functional groups, water insolubility and high holding ability
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to extract heavy metal ions in wastewater treatment [4,5]. In addition, they offer effective
and affordable treatment strategies at minimal cost.

Advanced oxidation processes (AOPs) including electrochemical oxidations, photocatal-
ysis, photo-Fenton and ultraviolet/H2O2 have been employed to remove contaminants from
wastewater. In recent years, photocatalyst technology has been a hot research area [3,6–8].
Heterogeneous photocatalysis is an advanced oxidation process based on light and semi-
conductors to generate oxidizing/reducing species dealing with environmental pollutants.
Non-toxic, chemically stable titanium dioxide (TiO2) is the most widely studied as a photo-
catalyst [9–11]. Adequate photon energy (hv) irradiated onto TiO2 particle surfaces (3.2 eV
(anatase form) or 3.0 eV (rutile form)) will create electron–hole pair formation (e−–h+).
The photonic excitation leaves behind an empty unfilled valance band, thus creating the
electron–hole pair. The series of chain oxidative–reductive reactions that occur at the
photon-activated surfaces is postulated as below [12]:

Photoexcitation: TiO2 + hv→ e+ + h+ (1)

Charge− carrier trapping of e−: e−CB → e−TR (2)

Charge− carrier trapping of h+: h+
VB → h+

TR (3)

Electron− hole recombination: e−TR + h+
VB
(
h+

TR
)
→ e−CB + heat (4)

Photoexcited e− scavenging: (O2)ads + e− → O•−2 (5)

Oxidation of hydroxyls: OH−+ h+ → OH· (6)

Photodegradation by OH : R−H + OH· → R′·+ H2O (7)

The e−TR and h+
TR in (Equation (4)) represent the surface-trapped valence-band electron

and conduction-band hole, respectively. It was reported that these trapped carriers are
usually TiO2-surface-bound and do not recombine immediately after photon excitation. In
the absence of electron scavengers (Equation (4)), the photoexcited electron recombines
with the valence band hole in nanoseconds with the simultaneous dissipation of heat
energy. Thus, the presence of electron scavengers is vital to prolong the recombination
and successful functioning of photocatalysis. Equation (5) depicts how the presence of
oxygen prevents the recombination of electron–hole pairs, while allowing the formation of
superoxide radical O•−2 .

NC can be applied for various approaches and possibly functions such as filters,
adsorbents or membranes depending on the structure of the pore and the method of prepa-
rations. In this study, an adsorbent based on photocatalysis was prepared. The interaction
of magnetite (Fe3O4) has attracted much attention with TiO2 as it influences photocatalytic
activity due to its large surface area to volume ratio which offer high capacity for adsorp-
tion in wastewater treatment [13]. Thus, mixing TiO2 with magnetite and nanocellulose
may provide a more sustainable use in water treatment involving adsorption [14,15] and
photocatalytic activity [16].

Herein, we were able to develop a novel NC/Fe3O4/TiO2 adsorbent via a hydrother-
mal process. Mathematical models were used quantitatively to predict and correlate
adsorption capacities/strengths and to design adsorptive processes. Modelling facilitates
our understanding of biosorption dynamics, the anticipation of responses, improvements
in biosorption processes, and the analysis of data [17]. Kinetics and isotherms are important
in moving technology from the laboratory to the industrial scale. Kinetics describes the rate
of the adsorption process, whereas isotherms represent the equilibrium connection between
sorbent and adsorbent concentrations at a fixed temperature. The Akaike Information
Criterion (AICc), the Root Mean-Square Error (RMSE), and the adjusted Determination
Coefficient (R2) were used to determine the best-fit kinetic reaction of the present study [17].
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2. Materials and Methods
2.1. Materials

Nanocellulose was prepared from sago bark waste collected from a sago industry in
Sarawak. Iron (III) hexahydrate (FeCl3·6H2O), iron (II) chloride tetrahydrate (FeCl2·4H2O),
trisodium citrate (Na3C6H5O7), sodium hydroxide (NaOH), titanium (IV) n- butoxide
(TBOT) and ethanol were purchased from Merck. Sodium hydroxide (NaOH) and sodium
acetate were purchased from Sigma Aldrich. Diclofenac (Brand: Dicloran-USP; 50 mg;
pharmaceutical grade) was obtained from a local pharmacy.

2.2. Preparation of Nanocellulose Adsorbent

The methods for the preparation of the nanocellulose adsorbent are described below.

2.2.1. Isolation of Cellulose

Alkaline treatment was used to eliminate the amorphous polymer of hemicellulose
and the remaining lignin [18]. The bleaching process was carried out using hydrogen
peroxide. The white color of the fiber of cellulose obtained after the bleaching process
indicated the successful removal of lignin and other impurities.

2.2.2. Preparation of Nanocellulose

To produce nanocellulose, 1 g of extracted cellulose was hydrolyzed with H2SO4
(40 wt.%) at 45 ◦C for 60 min in a ratio of 1:20. After hydrolysis, the suspension was
washed repeatedly with cold deionized water. It was later centrifuged at 4000 rpm for
30 min, which gave a pearl white sediment. The slurry was further sonicated for 40 min
and dried [5]. The nanocellulose powder was characterized by X-ray diffraction (XRD).

2.2.3. Synthesis of Magnetite (Fe3O4)

The Fe3O4 nanoparticles were synthesized using the chemical coprecipitation method.
Fe3+ and Fe2+ with a molar ratio of 1: 2 in the form of iron (II) chloride tetrahydrate (1.00 g,
0.005 mol) and iron (III) chloride hexahydrate (2.70 g, 0.010 mol) were dissolved in 130 mL
of distilled water with vigorous stirring for 2 h. Then, 30 mL of NaOH (2M) was added
rapidly into the mixture, which formed a black precipitate, Fe3O4. The mixture was then
heated to 60 ◦C for 1 h. The mixture was left to cool down to room temperature, and the
magnetite was washed several times with distilled water and ethanol until a pH value of
7 was achieved. The magnetite was redispersed for 30 min in 200 mL of trisodium citrate
solution (0.3 M) before being heated at 80 ◦C for 1 h. This was to cap the particles from
further growth. The magnetite was then collected and washed with acetone to remove any
remnant of trisodium citrate. Finally, the magnetite was redispersed in 100 mL of distilled
water for 30 min to form a stable ferrofluid. The prepared ferrofluid was stored in a fridge
(4 ◦C) until further use [16].

2.2.4. Synthesis of Nanocellulose/Magnetite Adsorbents (Fe3O4)

The magnetic nanocellulose/magnetite was synthesized using the hydrothermal
method. First, 0.5 g of nanocellulose was dissolved in 20 mL of H2O with vigorous
mechanical stirring at 80 ◦C in a water bath until a homogeneous viscous solution was
formed. Subsequently, 0.45 g of Fe3O4 and 1.21 g of sodium acetate were added to the
nanocellulose solution with vigorous agitation for 30 min at 80 ◦C in a water bath to form
a homogeneous solution. The solution was poured into a Teflon-lined stainless-steel au-
toclave for hydrothermal treatment at 110, 130 and 150 ◦C for 4 h. It was later cooled to
ambient temperature; the black precipitate product was separated by a magnet and washed
several times with water and ethanol. The as-prepared samples were dried overnight at
50 ◦C in an oven [19].
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2.2.5. Synthesis of Nanocellulose/Fe3O4/TiO2

A total of 0.10 g of nanocellulose/Fe3O4 powder was added into a 10 mL absolute
ethanol solution and sonicated for ca. 20 min in an ultrasonic bath to obtain a homogenous
colloidal solution. An amount of 200 µL of TBOT was added into the dispersion dropwise,
and the mixture was sonicated for 15 min. It was then decanted into a vapor-phase
hydrolysis apparatus (VPHA) with deionized water situated at the bottom of it to produce
vapor at a raised temperature. The closed VPHA was heated to 110 ◦C and maintained
for 5 h. Then, the VPHA was cooled to room temperature. The as-prepared powder was
collected by a magnet and washed with absolute ethanol and deionized water and dried in
the oven at 50 ◦C. The same procedure was repeated to prepare the adsorbent with various
concentrations of TiO2. Table 1 describes the various types of adsorbent prepared [16,19].

Table 1. Synthesized adsorbent with various dosages of TiO2.

Adsorbent Sample Code

Nanocellulose/Fe3O4 NC/Fe3O4
Nanocellulose/Fe3O4/TiO2 (200 µL) Ads-1
Nanocellulose/Fe3O4/TiO2 (400 µL) Ads-2
Nanocellulose/Fe3O4/TiO2 (800 µL) Ads-3

2.3. Photocatalytic Reaction

Ultraviolet (UV) light photocatalytic reactions were carried out to characterize the
degradations rate of diclofenac. The suspension was irradiated with an ultraviolet lamp.
First, 0.1 g/L adsorbent was added to wastewater. Prior to the photocatalytic process,
wastewater containing adsorbent was stirred and stored in the dark for 30 min. The
diclofenac concentration was determined in the sequence of 30, 60, 90 and 120 min using
a Lamba 35 UV light (Perkiin Elmer, Walthham, MA, USA). The photocatalytic activity of the
adsorbent was evaluated in terms of the degradation of diclofenac in wastewater under UV-
light illumination. The initial concentration of diclofenac was 100 mg/L. The suspension
was stirred magnetically (200 rpm) in the dark for 30 min to reach the absorption/desorption
equilibrium of the adsorbent as well as to obtain the maximum absorption of diclofenac.
At the end of the first 30 min, a sample of 10 mL was taken from the wastewater by
means of syringe filters (Millex Millipore, Carrigtwohill, Ireland: 0.22 µm). After the first
measurement, the UV lamp was turned on, and changes in absorption under UV light
were measured. A 100 W UV lamp (UVP Co., Upland, CA, USA) was used for the UV
light source at the wavelength of 365 nm. The same procedure was applied after 30, 60,
90 and 120 min of UV light illumination. It is assumed that holes (h+) reacted with water
molecules (H2O), which were adsorbed on the TiO2 surface, to generate hydroxyl radicals
(OH.), which assisted in the degradation of the diclofenac (Figure 1).
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The mechanism of diclofenac removal via photocatalysis were discussed by Martínez
and team [20]. The diclofenac removal was calculated by the following Equation (8):

R (%) = [C0 −C1)/C0]× 100 (8)

where R is diclofenac removal percent, C0 is the initial diclofenac concentration in ppm and
C1 is the concentration of diclofenac solution after irradiation in ppm.

2.4. Characterization

The nanocellulose powders’ phase compositions were identified by X-ray diffraction
(XRD) equipment (D/max 2550 PC, Rigaku Co., Tokyo, Japan) using Cu Kα radiation at
40 Kv and 200 mA. The morphology was studied using a field emission scanning elec-
tron microscope (FESEM) (Model: Zeiss, Supra 55VP, Jena, Germany) equipped with an
energy-dispersive X-ray and field emission scanning electron microscope (Model: Clara
Tescan, Brno, Republic Czech). The samples were coated using a gold coater. The nitrogen
adsorption and desorption isotherms were obtained at 77K using Autosorb -1 MP (Quan-
tachrome, Boynton Beach, FL, USA) utilizing Barrett–Emmett–Teller calculations of pore
volume and pore size (diameter) distributions from the desorption branch of the isotherm.
The FTIR spectra of the samples were recorded using the PerkinElmer Spectrum in the
range of 4000 cm−1 to 500 cm−1 at 4 cm−1 resolution using PerkinElmer Fourier-Transform
infrared attenuated total reflection (FTIR-ATR).

2.5. Kinetic Study

The concentration of the solution of the absorbent–absorbate solution at various time
intervals was determined [21–23]. The quantity absorbed at time t, denoted by the symbol
qt (mg/g), was estimated using Equation (9). qt denotes the removal capacity by 1 g of
absorbent at a certain time of exposure. It was assessed by performing an adsorption
study under optimal conditions at certain time intervals until the adsorption reached an
equilibrium, in this case 120 min. The non-linear regression of all kinetic models was plotted
and analyzed using Curve Expert 6.0. The removal rate was assumed to be proportional to
the difference between the extracted concentration and the number of accessible sites in
the pseudo-first-order equation (PFO) proposed by Lagergren for solid–liquid systems [22].
The pseudo-first-order kinetic model equation is as follows:

qt = qe

(
1− e−k1t

)
(9)

A second-order relation between the adsorption rate and the difference between
saturation concentrations is proposed in the pseudo-second-order model (PSO), which
implies that chemisorption is the rate-limiting step. The equation for the pseudo-second-
order kinetic model is shown in Equation (10). The model is based on the adsorption
capacity onto a solid phase, and the nonlinear form of PSO was initially proposed by
Blanchard et al. It is expressed as:

qt =
ktqe2t

1 + k2 qet
(10)

Langmuir–Hinshelwood (LH) kinetics is the most commonly used kinetic expression
to explain the kinetics of catalytic processes [24]. The Langmuir–Hinshelwood expression
that explains the kinetics of catalytic systems is given by:

qt = −dC
dt

=
ktKC

1 + KC
(11)

where qt represents the rate of reaction that changes with time.
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The model involves two steps: the adsorption of reactants onto the catalyst surface
and reaction of the adsorbed species. The rate of the overall reaction is determined by the
rate of the slower step.

The term r in Equation (11) was represented in terms of the initial reaction rate, r0,
as a function of the initial diclofenac concentration, C0, or in terms of Ce, where Ce is the
equilibrium diclofenac concentration in solution after the completion of dark experiments.
The initial rate of the reaction as a function of C0 and Ce is given by Equations (12) and (13),
respectively:

qt =
ktKC0

1 + KC0
(12)

qt =
ktKCe

1 + KCe
(13)

2.6. Statistical Analysis

For all models tested in this study, statistical discriminatory tests such as Root-Mean-
Square Error (RMSE), corrected AICc (Akaike Information Criterion), accuracy factor (AF)
and bias factor (BF) and adjusted coefficient of determination (R2) were utilized in this
work. All the parameter estimations were made using CurveExpert 6.0.

The RMSE was calculated according to Equation (14) where n is experimental data
points, Obi and Pdi are the experimental and predicted data, respectively, while p is param-
eter numbers [17].

RMSE =

√√√√√ n
∑

i=1
(Pdi −Obi)

2

n− p
(14)

The Akaike Information Criterion (AIC) AICc, which is based on the information
theory [23], is calculated as follows (Equation (15)):

AICc = 2p + n ln
(

RSS
n

)
+ 2(p + 1) +

2(p + 1)(p + 2)
n− p− 2

(15)

Further error function analyses are the Accuracy Factor (AF) and Bias Factor (BF)
(Equations (16) and (17)).

Bias factor = 10
(

n
∑

i=1
log (Pdi/Obi)

n )
(16)

Accuracy factor = 10
(

n
∑

i=1
log |(Pdi/Obi)|

n )
(17)

3. Results and Discussions

Figure 2 shows the XRD peak for raw sago and nanocellulose. The crystallinity index,
CrI for each sample, was determined based on Equation (18) [25]:

CrI =
I 002 − Iam

Iam
(18)

where I 002 is the maximum intensity of the (0 0 2) lattice diffraction peak and Iam is the inten-
sity scattered by the amorphous part of the sample. The diffraction peak for plane (0 0 2) is
located at a diffraction angle around 2θ = 22◦, and the intensity scattered by the amorphous
part is measured as the lowest intensity at a diffraction angle around 2θ = 18◦. The crys-
tallinity index for raw sago and nanocellulose is 23% and 73%, respectively. The crystallinity
of nanocellulose demonstrates higher crystallinity because of the efficient removal of the
amorphous parts by the cleavage of glycosidic linkages releasing crystallites [8].
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Figure 2. XRD peak for raw sago and nanocellulose.

Figure 3 shows the XRD peak for nanocellulose/Fe3O4 prepared at different tem-
peratures. The peaks at 2θ = 30.1◦,35.3◦, 43◦ and 53.3◦ and 62.7◦ stand for [(220), (311),
(400), (422) and (440)] which are consistent with the main phases of the magnetite (Fe3O4)—
JCPDS card no. 019–0629 [19]. The peaks at 2θ = 18.2◦, 30.5◦, 35.7◦, 43.4◦, 53.55◦, 57.5◦ and
62.9◦ stand for the (111), (220), (311), (400), (422), (511) and (440) planes, representing the
nanocellulose/Fe3O4. These peaks appeared to have weak intensities due to the interaction
of magnetite and nanocellulose [26]. The nanocellulose/Fe3O4 prepared at 130 ◦C was
further added with TiO2.
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Figure 4 shows the XRD peaks for nanocellulose/Fe3O4 and nanocellulose/Fe3O4/TiO2
magnetite adsorbent. The peaks at 2θ = 30.1◦, 35.3◦, 43◦, 53.3◦ and 62.7◦ which stand for
[(220), (311), (400), (422) and (440)] are consistent with the main phases of the magnetite
(Fe3O4)—JCPDS card no. 019-0629 [19]. The peaks at 2θ = 25.68◦, 38.47◦, 48.13◦ and 54.55◦

which stand for the (101), (103), (200) and (105) refer to anatase phase of TiO2 and demon-
strate the formation of well-crystallized TiO2 (JCPDS card no 01-0562) [27]. The XRD results
demonstrate that the crystalline and anatase Fe3O4 and TiO2, respectively, coexisted in the
adsorbent sample.
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Figure 5 shows the comparison of the FTIR spectra range of the prepared nanocellulose,
Fe3O4, NC/Fe3O4, Ads-1, Ads-2 and Ads-3. The spectrum shows the appearance peaks at
1064, 1639 and 2893 cm−1 which represent -C-O-, C=O and -C-H stretching, respectively [28].
Meanwhile, the Fe3O4 spectrum shows peaks at 542 and 1647 cm−1 which represent Fe-O
stretching and C=O, respectively [29]. Ads-1 shows the presence of nanocellulose and
magnetite Fe3O4 peaks. A similar pattern was observed for Ads-2 and Ads-3. The wide
absorption band around 3600–3000 cm−1 that appeared in all samples was attributed to
the stretching vibration of −OH from the hydroxyl group originated from the free water
molecules on the adsorbent surfaces [28,30].

Further analysis was carried out using FESEM to compare the surface morphologies
of the synthesized adsorbent. Figure 5 demonstrates that NC/Fe3O4 appeared to have
smoother appearances compared to NC/Fe3O4/TiO2 (200 µL), which showed rougher
surfaces. The rougher surfaces allowed more diclofenac molecules to be absorbed onto
them. White particles (marked red) on the NC/Fe3O4/TiO2 surface were identified as TiO2
particles. This is supported by the EDX results. This finding shows that TiO2 particles were
well dispersed on the NC/Fe3O4 surface. Figure 6c shows the FESEM mapping result of
Ads-1. This further confirms the presence of TiO2 along with carbon (C) and iron (Fe).
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The surface area, pore volume and pore diameter of prepared adsorbents were de-
termined using BET. Based on Table 2, the prepared adsorbents could be classified in
the category of mesoporous as their pore sizes were in the range of 2–10 nm. With the
addition of more TiO2 from 200 µL to 400 µL, the BET surface area increased. However,
with the addition of more TiO2 up to 800 µL, the surface area decreased, as TiO2 tends to
agglomerate and cumulate in pores [27].

Table 2. The results of BET analyses for the prepared adsorbent.

Adsorbent BET Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Diameter
(nm)

Ads-1 74.87 0.1282 6.853
Ads-2 160.65 0.167 6.354
Ads-3 103.39 0.155 6.011

Studies on the effect of varying the adsorbent dosage of TiO2 in NC/Fe3O4/TiO2 from
200 µL to 800 µL on the DCF removal within a 120 min reaction were carried out. Upon UV
irradiation, DCF removal showed 57% with 200 µL TiO2 loading. The removal percentages
displayed no significant changes (57.4%) with the addition of a TiO2 dosage up to 400 µL.
However, the removal of diclofenac increased up to 82% with the addition of an 800 µL TiO2
dosage (Figure 7). This signifies that 800 µL pf TiO2 is the best amount to promote maximum
UV light absorption and transfer the charge carriers to the surface for photocatalytic
treatment. The OH radicals that were produced in the photocatalytic process oxidized
the DCF organic pollutant to intermediates/degradation products and finally to complete
mineralization. The degradation pathway of DCF is reported to include hydroxylation, the
cleavage of the N-H bond, dehalogenation and aromatic ring opening [10].
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Figure 8 shows the removal percentage of diclofenac as a function of time with different
loadings of TiO2. In the first 30 min in the dark, the removal of diclofenac increased up to
50% for 200 µL and 400 µL loadings of TiO2. This shows that the presence of nanocellulose
and magnetite in the adsorbent system facilitated the DCF removal through the adsorption
process [16]. It is known that cellulose and magnetite are good adsorbents [31]. This shows
that NC/Fe3O4/TiO2 could remove 50% of DCF in dark conditions predominantly by
the adsorption process. Upon UV irradiation from 30 min to 120 min, although the TiO2
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dosage increased from 200 to 400 µL, only a very small increment in DCF was removed.
The removal of DCF was not greatly impacted by increasing the dosage of TiO2 from 200 to
400 µL but was favored by the adsorption process and a minimum amount by photocatalytic
activity. This finding corroborates with those reported by Kanakaraju et al. [16]. However,
with a higher loading of TiO2 at 800 µL, the removal percentage of diclofenac was seen to
increase up to 87%, indicating photocatalytic activity dominates the removal of DCF. There
could be more •OH radicals formed that could have aided in the removal of diclofenac. The
adsorption and photocatalytic reaction behavior can be further discussed through kinetic
analysis prediction.
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Kinetic analysis was analyzed using three models which were pseudo-first-order
(PFO), pseudo-second-order (PSO) and Langmuir–Hinshelwood (LH) kinetic (Figure 8).
Since the linearization of nonlinear data disturbs the data’s error structure, this makes
it harder to assess uncertainty, which is often reported as the 95% confidence interval
range [20]. Hence, non-linear regression is preferable for kinetic model fitting since it
is conducted on the same abscissa with a linear regression plot, showing more accurate
calculations. Figure 9a,b depict the experimental and calculated data plot on pseudo-first
and pseudo-second kinetic models, respectively, while Figure 9c shows the Langmuir–
Hinshelwood (L-H) model with an unfit data plot. This L-H plot is abundantly being
studied in photocatalysis study. However, for the study of batch removal, it has limited ap-
plications in heterogeneous catalytic systems since it usually offers negative-order kinetics,
which cause erroneous results to be obtained as the kinetic rate parameters estimated at
intrinsic kinetic conditions fail to predict the reaction rate when mass transport limitation
also plays a role [32]. Another limitation of the Langmuir–Hinshelwood mechanism is that
it does not account for the possibility of multiple reaction pathways, which can lead to
different reaction products. Additionally, the assumption of random reactions between
adsorbed species may not always be accurate, as some surface structures may favor certain
reaction pathways over others. Lastly, the Langmuir–Hinshelwood mechanism assumes
that the catalyst surface is homogeneous, while real catalysts often have heterogeneous
surface structures that can affect the reaction kinetics. A previous recent finding claims that
the validity of the L-H model in photocatalytic reaction could be a misinterpretation, and
without proper experimental evidence, it is dubious [32,33].
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Considering the statistical indicators, pseudo-first-order is more accurate in describing
the diclofenac removal kinetic profiles than PSO and LH based on error functions analysis
with the lowest SSE and AICc, with an R2 nearest to 1.0 (Table 3). Kinetic analysis using
the PSO model at 100 ppm of diclofenac sodium gives a value of equilibrium adsorption
capacity, with a qe of 13.52 mg g−1 (Table 4). It was inferred that the three kinetics models
discovered to be suitable for fitting the current adsorption kinetics data are as follows:
pseudo-first-order > pseudo-second-order > Langmuir–Hinshelwood. As far as diclofenac
removal is concerned, the PFO was the best model for the crosslinked soy polysaccharide-
based hydrogel nanostructure [34–36].

Table 3. Statistical analysis for removal of sodium diclofenac using 800 µL TiO2 loading amount in
photocatalytic reaction.

Model RMSE R2 AICc

Pseudo-1st-order 0.526 0.997 0.558
Pseudo-2nd-order 1.271 0.971 5.064

Langmuir-Hinshelwood 3.344 0.631 28.47

Table 4. Model constants for the kinetics study of removal of sodium diclofenac.

Model Adsorption Capacity, qe (mg/g) Constant, k (95% Confidence Interval)

Pseudo-1st-order 13.52 0.04 (0.023 to 0.05)
Pseudo-2nd-order 17.23 0.002(0.0065 to 0.004059)

L-H 1.33 0.07(0.0032 to 0.0562)

The pseudo-first-order model was utilized to fit data for all TiO2 loadings, and the
data showed excellent agreement with the pseudo-first-order equation (Figure 10) with
all regressed lines showing correlation coefficients, R2 > 0.99. As a result, it is reason-
able to conclude that the process is pseudo-first-order rather than pseudo-second-order
or Langmuir–Hinshelwood. It is also possible that adsorption happens in nature as ph-
ysisorption, which portray the physical adsorption between two-phase system bulk that is
reversible in nature [37–39]. The present study also shows accordance with the findings of
a previous analysis of adsorption using a ZnO-chitosan nanocomposite as the nanocellulose
component [40].
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4. Conclusions

We developed an adsorbent comprising nanocellulose that was obtained from sago
waste. Fe3O4/TiO2 was added to the nanocellulose to give a photocatalytic adsorbent. The
system was able to remove diclofenac from industrial wastewater with 57.5% with 200 µL of
TiO2, and this increased up to 82.4% with 800 µL of TiO2. The maximum removal capacity
was found to be 13.3 mg/g. The kinetics was well fitted with the pseudo-first-order model,
which gave a qe of 13.52 mg/g. The statistical analyses showed the lowest AICc and RSME
values of 0.56 and 0.53, respectively, and the highest correlation coefficient, R2, of 0.99. This
research has demonstrated the synergistic interaction of adsorption and photocatalysis
reactions for environmental pollutant removal.
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