Causes, Types and Consequences of Municipal Waste Landfill Fires—Literature Review
Abstract
:1. Introduction
2. Causes and Mechanisms of Landfill Fires
3. Consequences of Spontaneous Landfill Fires
4. Case Studies of Illegal Burning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Dąbrowska, D.; Witkowski, A.; Sołtysiak, M. Application of pollution indices for the assessment of the negative impact of a municipal landfill on groundwater (Tychy, southern Poland). Geol. Q. 2018, 62, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Šourková, M.; Adamcová, D.; Zloch, J.; Skutnik, Z.; Vaverková, M. Evaluation of the Phytotoxicity of Leachate from a Mu-nicipal Solid Waste Landfill: The Case Study of Bukov Landfill. Environments 2020, 7, 111. [Google Scholar] [CrossRef]
- Cudjoe, D.; Yuan, Q.; Su Han, M. An assessment of the influence of awareness of benefits and perceived difficulties on waste sorting intention in Beijing. J. Clean. Prod. 2020, 272, 123084. [Google Scholar] [CrossRef]
- Cudjoe, D.; Acquah, P. Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere 2021, 265, 129186. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K.-A. The evolution of waste-to-energy incineration: A review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Koda, E.; Miszkowska, A.; Sieczka, A.; Osiński, P. Heavy metal contamination within a restored landfill site. Environ. Geotech. 2018, 7, 512–521. [Google Scholar] [CrossRef]
- Vaverková, M.; Elbl, J.; Koda, E.; Adamcová, D.; Bilgin, A.; Lukas, V.; Podlasek, A.; Kintl, A.; Wdowska, M.; Brtnický, M.; et al. Chemical Composition and Hazardous Effects of Leachate from the Active Municipal Solid Waste Landfill Sur-rounded by Farmlands. Sustainability 2020, 12, 4531. [Google Scholar] [CrossRef]
- Wdowczyk, A.; Szymańska-Pulikowska, A. How to Choose Pollution Indicators for Monitoring Landfill Leachates. Proceedings 2020, 51, 23. [Google Scholar] [CrossRef]
- Ren, M.; Zhenzhong, Y.; Xu, L.; Lu, Q.; Zhang, X.; Yu, Y.; Fan, Y.; Gao, Y.; Chen, J.; Zhang, H. Partitioning and removal behaviors of PCDD/Fs, PCBs and PCNs in a modern municipal solid waste incineration system. Sci. Total Environ. 2020, 735, 139134. [Google Scholar] [CrossRef]
- Luo, H.; Cheng, Y.; Dongqin, H.; En-Hua, Y. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, X.; Meng, Y.; Chen, Z. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack Constr. Build. Mater. 2017, 147, 398–406. [Google Scholar] [CrossRef]
- Yao, X.; Guo, Z.; Liu, Y.; Li, J.; Feng, W.; Lei, H.; Gao, Y. Reduction potential of GHG emissions from municipal solid waste incineration for power generation in Beijing. J. Clean. Prod. 2019, 241, 118283. [Google Scholar] [CrossRef]
- Reddy, P.J. Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies; CRC Press: London, UK, 2016. [Google Scholar]
- China Statistical Yearbook; China Statistics Press: Beijing, China, 2020.
- Eurostat Waste Statistics Municipal Waste Statistics; Eurostat: Luxembourg, 2017; pp. 1–6. [CrossRef]
- Dąbrowska, D.; Rykała, W. A Review of Lysimeter Experiments Carried Out on Municipal Landfill Waste. Toxics 2021, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Romeo, V.; Brown, S.; Stuver, S. A GIS Analysis of Illegal Dumping in the 78249 zip Code of Bexar County. In Proceedings of the 23rd Annual Esri International User Conference, San Diego, CA, USA, 7–11 July 2013; pp. 7–11. [Google Scholar]
- Webb, B.; Marshall, B.; Czarnomski, S.; Tilley, N. Fly-Tipping: Causes, Incentives and Solutions. 2016. Available online: http://www.tacklingflytipping.com/Documents/NFTPG-Files/Jill-Dando-report-flytipping-research-report.pdf (accessed on 19 January 2023).
- Sabrin, S. Development of a subsurface landfill fire risk-index. Theses Diss. 2018, 2599. Available online: https://rdw.rowan.edu/etd/2599 (accessed on 19 January 2023).
- Milosevic, L.; Mihajlovic, E.; Djordjevic, A.; Protic, M.; Ristic, D. Identification of Fire Hazards Due to Landfill Gas Generation and Emission. Pol. J. Environ. Stud. 2018, 27, 213–221. [Google Scholar]
- Stearns, R.P.; Peyotan, G.S. Utilization of landfills as building sites. Waste Manag. Res. 1984, 2, 75–83. [Google Scholar] [CrossRef]
- Bergstrom, J.; Bjorner, B. Dioksiner ock brander ved avfallsupplag (Dioxines and fires at landfills). Reforsk FoU 1992, 68. (In Swedish, with English summary). [Google Scholar]
- Chrysikou, L.; Gemenetzis, P.; Kouras, A.; Manoli, E.; Terzi, E.; Samara, C. Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environ. Int. 2007, 34, 210–225. [Google Scholar] [CrossRef]
- Øygard, J.K.; Maage, A.; Gjengedal, E. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the metal content of the deposited waste and the leachate. Water Res. 2014, 38, 2851–2858. [Google Scholar] [CrossRef]
- Yin, K.; Tong, H.; Giannis, A.; Wang, J.Y.; Chang, V.W.C. Multiple geophysical surveys for old landfill monitoring in Singapore. Environ. Monit. Assess. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Kondracka, M.; Stan-Kłeczek, I.; Sitek, S.; Ignatiuk, D. Evaluation of geophysical methods for characterizing industrial and municipal waste dumps. Waste Manag. 2021, 125, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, X.; Struble, L.; Yang, E. Characterization of calcium-containing phases in alkali-activated municipal solid waste incineration bottom ash binder through chemical extraction and deconvoluted Fourier transform infrared spectra. J. Clean. Prod. 2018, 192, 782–789. [Google Scholar] [CrossRef]
- Werner, A.; Meschke, K.; Bohlke, K.; Daus, B.; Haseneder, R.; Repke, J. Resource Recovery from Low-Grade Ore Deposits and Mining Residuals by Biohydrometallurgy and Membrane Technology. Potentials and Case Studies. ChemBioEng Rev. 2018, 5, 6–17. [Google Scholar] [CrossRef]
- Gwenzi, W.; Gora, D.; Chaukura, N.; Tauro, T. Potential for leaching of heavy metals in open-burning bottom ash and soil from a non-engineered solid waste landfill. Chemosphere 2016, 147, 144–154. [Google Scholar] [CrossRef]
- Bihalowicz, J.; Rogula-Kozlowska, W.; Krasuski, A. Contribution of landfill fires to air pollution—An assessment methodology. Waste Manag. 2021, 125, 182–191. [Google Scholar] [CrossRef]
- Singh, A.; Spak, S.N.; Stone, E.A.; Downard, J.; Bullard, R.L.; Pooley, M.; Kostle, P.A.; Mainprize, M.W.; Wichman, M.D.; Peters, T.M.; et al. Uncontrolled combustion of shredded tires in a landfill—Part 2: Population exposure, public health response, and an air quality index for urban fires. Atmos. Environ. 2015, 104, 273–283. [Google Scholar] [CrossRef]
- Morales, S.; Toro, A.; Morales, L.; Leiva, G. Landfill fire and airborne aerosols in a large city: Lessons learned and future needs. Air Qual. Atmos. Health 2018, 11, 111–121. [Google Scholar] [CrossRef]
- Weichenthal, S.; Van Rijswijk, D.; Kulka, R.; You, H.; Van Ryswyk, K.; Willey, J.; Dugandzic, R.; Sutcliffe, R.; Moulton, J.; Baike, M.; et al. The impact of a landfill fire on ambient air quality in the north: A case study in Iqaluit. Canada. Environ. Res. 2015, 142, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Rykała, W.; Fabiańska, M.J.; Dąbrowska, D. The Influence of a Fire at an Illegal Landfill in Southern Poland on the Formation of Toxic Compounds and Their Impact on the Natural Environment. Int. J. Environ. Res. Public Health 2022, 19, 13613. [Google Scholar] [CrossRef]
- Manjunatha, G.S.; Chavan, D.; Lakshmikanthan, P.; Singh, L.; Kumar, S.; Kumar, R. Specific heat and thermal conductivity of municipal solid waste and its effect on landfill fires. Waste Manag. 2020, 116, 120–130. [Google Scholar] [CrossRef]
- Hogland, W.; Bramryd, T.; Persson, I. Physical, biological and chemical effects on unsorted fractions of industrial solid waste in waste fuel storage. Waste Manag. Res. 1996, 14, 197–210. [Google Scholar] [CrossRef]
- Bates, M. Managing Landfill Sites Fires in Northampton. Rep. Environ. Transp. Scrut. Committee. Northants. Cty. Counc. Northamp. Northants. 2014, 138, 1–41. [Google Scholar]
- Aderemi, A.; Otitoloju, A. An assessment of landfill fires and their potential health effects—A case study of a municipal solid waste landfill in Lagos, Nigeria. Int. J. Environ. Prot. 2012, 2, 22–26. [Google Scholar]
- Ghouti, M.; Khan, M.; Nasser, M.; Al-Saad, K.; Heng, O. Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources. Environ. Technol. Innov. 2021, 21, 101267. [Google Scholar] [CrossRef]
- Dahl, O.; Nurmesniemi, H.; Pöykiö, R.; Watkins, G. Comparison of the characteristics of bottom ash and fly ash from a medium-size municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fueal Process. Technol. 2019, 90, 871–878. [Google Scholar] [CrossRef]
- Ashworth, D.C.; Elliott, P.; Toledano, M.B. Waste incineration and adverse birth and neonatal outcomes: A systematic review. Environ. Int. 2014, 69, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.T.; Pons, J.C.; Chertow, M. Waste informatics: Establishing characteristics of contemporary U.S. landfill quantities and practices. Environ. Sci. Technol. 2016, 50, 10877–10884. [Google Scholar] [CrossRef]
- Chavan, D.; Lakshmikanthan, P.; Mondal, P.; Kumar, S.; Kumar, R. Determination of ignition temperatureof municipal solid waste for understanding surface and sub-surface landfill fire. Waste Manag. 2019, 97, 123–130. [Google Scholar] [CrossRef]
- Koelsch, F.; Fricke, K.; Mahler, C.; Damanhuri, E. Stability of Landfills-The Bandung Dumpsite Disaster. In Proceedings of the Sardinia, Tenth International Waste Management and Landfill Symposium, Cagliari, Italy, 3–7 October 2005; CISA Environmental Sanitary Engineering Centre: Sardinia, Italy, 2005. [Google Scholar]
- Yamaguchi, E. Emissions from Open Tire Fires. 2000. Available online: https://www.p2pays.org/ref/11/I0504/html/intro/openfire.htm (accessed on 13 October 2000).
- Naveen, B.P.; Mahapatra, D.M.; Sitharam, T.G.; Sivapullaiah, P.V.; Ramachandra, T.V. Physicochemical and biological characterization of urban municipal landfill leachate. Environ Pollut. 2017, 220, 1–12. [Google Scholar] [CrossRef]
- Mishra, H.; Karmakar, S.; Kumar, R.; Kadambala, P. A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner systems. Environ. Sci. Pollut. Res. 2018, 25, 2911–2923. [Google Scholar] [CrossRef]
- Mikalsen, R.; Lonnermark, A.; Glansberg, K.; McNamee, M.; Storesund, K. Fires in waste facilities: Challenges and solutions from a Scandinavian perspective. Fire Saf. J. 2021, 120, 103023. [Google Scholar] [CrossRef]
- Rim-Rukeh, A. An assessment of the contribution of municipal solid waste dump sites fire to atmospheric pollution. Open J. Air Pollut. 2014, 3, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Obeid, A.; Kamarudin, S.; Zahirasri, M.; Tohir, M. Fire risk and health impact assessment of a malaysian landfill fire. Perintis eJ. 2020, 10, 68–83. [Google Scholar]
- US EPA National Emission Standards for Hazardous Air Pollutants for Source Categories. Cem. Manuf. Ind. Fed. Regist. 1999, 64, 113.
- EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook; EEA: Copenhagen, Denmark, 2016.
- Pope, C.A.; Schwartz, J.; Ransom, M.R. Daily Mortality and PM 10 Pollution in Utah Valley. Arch. Environ. Health Int. J. 1992, 47, 211–217. [Google Scholar] [CrossRef]
- Schwartz, J.; Spix, C.; Wichmann, H.E.; Malin, E. Air pollution and acute respiratory illness in five german communities. Environ. Res. 1991, 56, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Spurny, K.R. Chemical mixtures in atmospheric aerosols and their correlation to lung diseases and lung cancer occurence in the general population. Toxicol. Lett. 1996, 88, 271–277. [Google Scholar] [CrossRef]
- Hudak, P.F. Spontaneous combustion of shale spoils at a sanitary landfill. Waste Manag. 2002, 22, 687–688. [Google Scholar] [CrossRef]
- Cook, A.; Kemm, J. Proposal to substitute chopped tyres for some of the coal as fuel in cement kiln. Health Impact Assess. Rep. 2001, 24, 207–216. [Google Scholar] [CrossRef]
- Porkat, V. Burning Tyres in Urhesky Brod. 2007. Available online: http://web.archive.org/web/20070701154427 (accessed on 19 January 2023).
- Seidelt, S.; Muller-Hagedorn, A.; Bockhorn, H. Description of tire pyrolysis by thermal degradation behaviour of main components. J. Anal. Appl. Pyrolysis 2006, 75, 11–18. [Google Scholar] [CrossRef]
- Ifemeje, J.; Udedi, S.; Lukong, C.; Okechukwu, A.; Egbuna, C. Distribution of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Soils from Municipal Solid Waste Landfill. Br. J. Appl. Sci. Technol. 2014, 36, 5058–5071. [Google Scholar] [CrossRef]
- Lentech Water Treatment. Chemical Properties. Health and Environment Effects of Cobalt. Lentech Water Treatment and Purification Holding B.V., 2009. Available online: https://www.lenntech.com/periodic/elements/cu.htm (accessed on 19 January 2023).
- Martin, S.; Griswold, W. Human Health Effect of Heavy Metals Environment, Science and Technology Brief for Citizens; Centre for Hazardous Substances Research Kansas State University, Ward Hall: Kentucky, KY, USA, 2009; pp. 1–6. [Google Scholar]
- Arain, M.B.; Kazi, T.G.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Baig, J.A. Speciation of heavy metals in sediment byconventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. J. Hazard. Mater. 2008, 154, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Delay, M.; Lager, T.; Schulz, H.; Frimmel, F. Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Manag. 2007, 27, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Hesbach, P.A.; Kim, A.G.; Abel, A.; Lamey, S. Serial batch leaching procedure for characterization of coal fly ash. Environ. Monit. Assess. 2010, 168, 523–545. [Google Scholar] [CrossRef] [PubMed]
- Hassett, D.J.; Pflughoeft-Hassett, D.F.; Heebink, L.V. Leaching of CCBs: Observations from over 25 years of research. Fuel 2005, 84, 1378–1383. [Google Scholar] [CrossRef]
- Kalembkiewicz, J.; Sitarz-Palczak, E. Efficiency of leaching tests in the context of the influence of the fly ash on the environment. J. Ecol. Eng. 2015, 16, 1. [Google Scholar] [CrossRef]
- Kim, A.G.; Hesbach, P. Comparison of fly ash leaching methods. Fuel 2009, 88, 926–937. [Google Scholar] [CrossRef]
- Kosson, D.S.; van der Sloot, H.A.; Garrabrants, A.C.; Seignette, P. Leaching Test Relationships, Laboratory To-Field Comparisons and Recommendations for Leaching Evaluation Using the Leaching Environmental Assessment Framework (LEAF); EPA 600/R-14/061; EPA: Washington, DC, USA, 2014.
- Menghini, M.J.; Hornberger, R.J.; Dalberto, A.D. The use of Leachate Data Factors in Evaluating CCB’s for Placement at Coal Mine Site in Pennsylvania. In Proceedings of the World of Coal Ash, Lexington, Kentucky, 11–15 April 2005; pp. 117–123. [Google Scholar]
- Xu, Q.; Qin, J.; Ko, J. Municipal solid waste landfill performance with different biogas collection practices: Biogas and leachate generations. J. Clean. Prod. 2019, 222, 446–454. [Google Scholar] [CrossRef]
- Yao, J.; Li, W.; Kong, Q.; Wu, Y.; He, R.; Shen, D. Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel 2010, 89, 616–622. [Google Scholar] [CrossRef]
- Townsend, T.; Tolaymat, T.; Solo-Gabriele, H.; Dubey, B.; Stook, K.; Wadanambi, L. Leaching of CCA-treated wood: Implications for waste disposal. J. Hazard. Mater. 2014, 114, 75–91. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, L.; Song, W.; Meng, Y.; Yamada, N.; Sato, A.; Ninomiya, Y. Effect of inorganic particulates on the condensation behavior of lead and zinc vapors upon flue gas cooling. Proc. Combust. Inst. 2013, 34, 2821–2829. [Google Scholar] [CrossRef]
- Youcai, Z.; Stucki, S.; Ludwig, C.; Wochele, J. Impact of moisture on volatility of heavy metals in municipal solid waste incinerated in a laboratory scale simulated incinerator. Waste Manag. 2004, 24, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, H.; Dahlan, A.V.; Tian, Y.; Shimaoka, T.; Yamamoto, T.; Takahashi, F. Intra- and inter-particle heterogeneity of municipal solid waste incineration fly ash particles. J. Mater. Cycles Waste Manag. 2019, 21, 925–941. [Google Scholar] [CrossRef]
- Kitamura, H.; Dahlan, A.V.; Tian, Y. Application of micro-scale correlation analysis to estimate metal speciation and the matrix in municipal solid waste incineration fly ash. J. Mater. Cycles Waste Manag. 2020, 22, 1081–1093. [Google Scholar] [CrossRef]
- Sakanakura, H. Formation and durability of dithiocarbamic metals in stabilized air pollution control residue from municipal solid waste incineration and melting processes. Environ. Sci. Technol. 2007, 41, 1717–1722. [Google Scholar] [CrossRef]
- Akinci, G.; Guven, D.E. Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination 2010, 268, 221–226. [Google Scholar] [CrossRef]
- Mishra, D.; Rhee, Y.H. Current research trends of microbiological leaching for metal recovery from industrial wastes. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1289–1292. [Google Scholar]
- Fedje, K.; Ekberg, C.; Skarnemark, G.; Pires, E.; Steenari, B. Initial studies of the recovery of Cu from MSWI fly ash leachates using solvent extraction. Waste Manag. Res. 2012, 30, 1072–1073. [Google Scholar] [CrossRef] [Green Version]
- Morf, L.; Gloor, R.; Haag, O.; Haupt, M.; Skutan, S.; Di Lorenzo, F.; Boni, D. Precious metals and rare earth elements in municipal solid waste—Sources and fate in a Swiss incineration plant. Waste Manag. 2013, 33, 634–644. [Google Scholar] [CrossRef]
- Siddique, R.; Khatib, J.; Kaur, I. Use of recycled plastic in concrete: A review. Waste Manag. 2008, 28, 1835–1852. [Google Scholar] [CrossRef]
- Siddique, R. Use of municipal solid waste ash in concrete. Resour. Conserv. Recycl. 2010, 55, 83–91. [Google Scholar] [CrossRef]
- Fabricius, A.L.; Renner, M.; Voss, M. Municipal waste incineration fly ashes: From a multi-element approach to market potential evaluation. Environ. Sci. Eur. 2020, 32, 88. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Guo, B.; Nakama, S.; Sasaki, K. Distributions and leaching behaviors of toxic elements in fly ash. Acs Omega 2018, 3, 13055–13064. [Google Scholar] [CrossRef]
- Rovira, J.; Dominguez-Morueco, N.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Temporal trend in the levelsof polycyclic aromatic hydrocarbons emitted in a big tire landfill fire in Spain: Risk assessment for human health. J. Environ. Sci. Health A 2018, 53, 222–229. [Google Scholar] [CrossRef]
- Vassiliadou, I.; Papadopoulos, A.; Costopoulou, D.; Vasiliadou, S.; Christoforou, S.; Leondiadis, L. Dioxincontamination after an accidental fire in the municipal landfill of Tagarades, Thessaloniki, Greece. Chemosphere 2009, 74, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Nadal, M.; Rovira, J.; Díaz-Ferrero, J.; Schuhmacher, M.; Domingo, J. Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks. Environ. Int. 2016, 97, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Downard, J.; Singh, A.; Bullard, R.; Jayarathne, T.; Rathnayake, C.M.; Simmons, D.L.; Wels, B.R.; Spak, S.N.; Peters, T.; Beardsley, D. Uncontrolled combustion of shredded tires in a landfill—Part 1: Characterizationof gaseous and particulate emissions. Atmos. Environ. 2015, 104, 195–204. [Google Scholar] [CrossRef]
- Lemieux, P.; Lutes, C.; Santoianni, D. Emissions of organic air toxics from open burning: A comprehensive review. Prog. Energy Combust. Sci. 2004, 30, 1–32. [Google Scholar] [CrossRef]
- Hyks, J.; Astrup, T.; Christensen, T.H. Influence of test conditions on solubility controlled leaching predictions from air-pollution-control residues. Waste Manag. Res. 2007, 25, 457–466. [Google Scholar] [CrossRef]
- Hu, Y.; Hyks, J.; Astrup, T.; Christensen, T.H. Effect of drying on leaching testing of treated municipal solid waste incineration APC-residues. Waste Manag. Res. 2008, 26, 400–405. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Bajpai, S.; Dewangan, U.; Tamrakar, R. Suitability of leaching test methods for fly ash and slag: A review. J. Radiat. Res. Appl. Sci. 2015, 4, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Yao, J.; Qiu, Z.; Shen, D. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill. BioMed Res. Int. 2016, 2016, 9687879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Øygard, J.; Mage, A.; Gjengedal, E.; Svane, T. Effect of an uncontrolled fire and the subsequent fire fight on the chemical composition of landfill leachate. Waste Manag. 2005, 25, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Abiriga, D.; Vestgarden, L.; Klempe, H. Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Sci. Total Environ. 2020, 737, 140307. [Google Scholar] [CrossRef]
- Raudonyte-Svirbutaviciene, E.; Stakeniene, R.; Joksas, K.; Valiulis, D.; Bycenkiene, S.; Zarkow, A. Distribution of polycyclic aromatic hydrocar-bons and heavy metals in soil following a large tire fire incident: A case study. Chemosphere 2022, 286, 131556. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Theisen, H.; Vigil, S.A. Integrated Solid Waste Management: Engineering Principles and Management Issues; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Radosavljevic, J.; Djordjevic, A.; Ristic, G.; Milosevic, L.; Vukadinovic, A. Landfill Fire Prevention. Požární Ochrana 2016, 396, 398. [Google Scholar]
- Ozbay, G.; Jones, M.; Gadde, M.; Isah, S.; Attarwala, T. Design and Operation of Effective Landfills with Minimal Effects on the Environment and Human Health. J. Environ. Public Health 2021, 2021, 6921607. [Google Scholar] [CrossRef]
Environmental Challenges Related to Landfill Fires | Proposal Solutions to Specific Problems of Landfill Fires |
---|---|
Pollution cloud created from infiltration of burnt waste in landfill [96] | Monitoring of the site by means of lysimeters installed in the region of the landfill site [16] |
Damage to the top layer of the landfill [97] | Use of non-combustible materials covering the landfill |
Mobile spread of the fire from the landfill to nearby areas [98] | Safer isolation of the site, inter alia, by means of sand shafts or excavations |
Ignition of accumulated methane in landfill [99] | Accurate monitoring and discharge of collected methane from residual waste [21] |
Production of toxic fumes into the atmosphere by the burning of waste [31] | Monitoring and investigation of the effects of air pollution [33] |
Collection of flammable materials in a single landfill | Better segregation and ungrouping of flammable solid waste |
The formation of wetlands in landfills | Use of terrain scanning to detect temperature rise [20] |
Exposure of the health and life of landfill workers [50] | The right equipment and clothing for safe field work [100] |
Containment of hazardous waste emitting permanent pollution over time [4] | Improving the technology for disposing of potential waste [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabrowska, D.; Rykala, W.; Nourani, V. Causes, Types and Consequences of Municipal Waste Landfill Fires—Literature Review. Sustainability 2023, 15, 5713. https://doi.org/10.3390/su15075713
Dabrowska D, Rykala W, Nourani V. Causes, Types and Consequences of Municipal Waste Landfill Fires—Literature Review. Sustainability. 2023; 15(7):5713. https://doi.org/10.3390/su15075713
Chicago/Turabian StyleDabrowska, Dominika, Wojciech Rykala, and Vahid Nourani. 2023. "Causes, Types and Consequences of Municipal Waste Landfill Fires—Literature Review" Sustainability 15, no. 7: 5713. https://doi.org/10.3390/su15075713
APA StyleDabrowska, D., Rykala, W., & Nourani, V. (2023). Causes, Types and Consequences of Municipal Waste Landfill Fires—Literature Review. Sustainability, 15(7), 5713. https://doi.org/10.3390/su15075713