The Influence of Characteristics of Mobile Live Commerce on Purchase Intention
Abstract
:1. Introduction
2. Literature Review
2.1. Mobile Live Commerce
2.2. Service Characteristics of Mobile Live Commerce
2.3. Information Source Characteristics of Mobile Live Commerce
2.4. System Characteristics of Mobile Live Commerce
2.5. Value of Consumption
2.6. Purchase Intention
3. Research Model and Hypothesis Testing
3.1. Research Model
3.2. Hypothesis Development
3.2.1. Relationship between Characteristics of Mobile Live Commerce and Hedonic Value
3.2.2. Relationship between Attributes of Mobile Live Commerce and Perceived Value
3.2.3. Relationship between Hedonic and Perceived Values
3.2.4. Relationship between Shopping Value and Purchase Intention
3.2.5. Operational Definitions for Variables and Questionnaire
4. Research Model and Results
4.1. Sample Design and Data Collection
4.2. Characteristics of Participants
4.3. Reliability and Feasibility Study
4.3.1. Reliability Analysis
4.3.2. Validity Analysis
4.3.3. Statistical Hypothesis Testing
5. Discussion and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kostat. Online Shopping Trends in September 2020 and Online Overseas Direct Sales and Purchase Trends in the Third Quarter. Available online: https://www.kostat.go.kr/portal/korea/kor_nw/1/1/index.board?bmode=read&aSeq=385947 (accessed on 20 July 2020).
- Lee, J.; Kwon, K.H. Mobile Shopping Beauty Live Commerce Changes in COVID-19 Pandemic Focused on Fun Contents of MZ Generation in Republic of Korea. J. Cosmet. Dermatol. 2022, 21, 2298–2306. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, K.A. The Influence of Influencers on Shopping Value and Product Trust in Live Commerce. In Proceedings of the KMIS 2022: 14th International Conference on Knowledge Management and Information Systems, Valletta, Malta, 24–26 October 2022; pp. 646–651. [Google Scholar]
- Hu, Y.L. Analysis of the Influence of Mobile Live Likeliness and Fashion Shopping Benefit on the Behavior of 20 to 30 Aged Chinese Women Consumers. Master’s Thesis, Kyung Hee University, Seoul, Republic of Korea, 2019. [Google Scholar]
- Sun, Y.; Shao, X.; Li, X.; Guo, Y.; Nie, K. A 2020 Perspective on “How Live Streaming Influences Purchase Intentions in Social Commerce: An IT Affordance Perspective”. Electron. Commer. Res. Appl. 2020, 40, 100958. [Google Scholar] [CrossRef]
- Cai, J.; Wohn, D.Y.; Mittal, A.; Sureshbabu, D. Utilitarian and Hedonic Motivations for Live Streaming Shopping. In Proceedings of the 2018 ACM International Conference on Interactive Experiences for TV and Online Video, New York, NY, USA, 26–28 June 2018. [Google Scholar]
- Cai, J.; Wohn, D.Y. Live Streaming Commerce: Uses and Gratifications Approach to Understanding Consumers’ Motivations. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Grand Wailea, HI, USA, 8–11 January 2019. [Google Scholar]
- Bhattarai, A. The Future of Online Retail Looks a Lot Like QVC, with Live Streams of Influencers, Including Dogs, Doing the Hawking. Washington Post. Available online: https://www.washingtonpost.com/business/2021/07/08/live-stream-shopping/ (accessed on 9 July 2021).
- Morganosky, M.A. Cost-Versus Convenience-Oriented Consumers: Demographic, Lifestyle, and Value Perspectives. Psychol. Mark. 1986, 3, 35–46. [Google Scholar] [CrossRef]
- Park, E.; Kim, K.J. User Acceptance of Long-Term Evolution (LTE) Services: An Application of Extended Technology Acceptance Model. Data Technol. Appl. 2013, 47, 188–205. [Google Scholar] [CrossRef]
- Looney, C.A.; Jessup, L.M.; Valacich, J.S. Emerging Business Models for Mobile Brokerage Services. Commun. ACM 2004, 47, 71–77. [Google Scholar] [CrossRef]
- Siau, K.; Lim, E.P.; Shen, Z. Mobile Commerce: Promises, Challenges and Research Agenda. J. Database Manag. 2001, 12, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Lombard, M.; Snyder-Duch, J. Interactive Advertising and Presence: A Framework. J. Interact. Advert. 2001, 1, 56–65. [Google Scholar] [CrossRef]
- Lee, K.M. Presence, Explicated. Commun. Theory 2004, 14, 27–50. [Google Scholar] [CrossRef]
- Biocca, F.; Harms, C.; Burgoon, J.K. Toward a More Robust Theory and Measure of Social Presence: Review and Suggested Criteria. Presence Teleoper. Virtual Environ. 2003, 12, 456–480. [Google Scholar] [CrossRef]
- Erdogan, B.Z.; Baker, M.J.; Tagg, S. Selecting Celebrity Endorsers: The Practitioner’s Perspective. J. Advert. Res. 2001, 41, 39–48. [Google Scholar] [CrossRef]
- Kahle, L.R.; Homer, P.M. Physical Attractiveness of the Celebrity Endorser: A Social Adaptation Perspective. J. Consum. Res. 1985, 11, 954–961. [Google Scholar] [CrossRef]
- McGuire, W.J. Attitudes and Attitude Change. In The Handbook of Social Psychology; Lindzey, G., Aronson, E., Eds.; Random House: New York, NY, USA, 1985; Volume 2, pp. 233–346. [Google Scholar]
- Kelman, H.C. Compliance, Identification, and Internalization Three Processes of Attitude Change. J. Confl. Resolut. 1958, 2, 51–60. [Google Scholar] [CrossRef]
- Nisbett, R.E.; Ross, L. Human Inference: Strategies and Shortcomings of Social Judgment; Prentice-Hall: Hoboken, NJ, USA, 1980; pp. 1621–1636. [Google Scholar]
- Newman, M.E.J. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef] [Green Version]
- Ohanian, R. Construction and Validation of a Scale to Measure Celebrity Endorser‘s Perceived Expertise, Trustworthiness, and Attractiveness. J. Advert. 1990, 19, 39–52. [Google Scholar] [CrossRef]
- Birnbaum, M.H.; Stegner, S.E. Source Credibility in Social Judgment: Bias, Expertise, and the Judge’s Point of View. J. Pers. Soc. Psychol. 1979, 37, 48–74. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. Information Systems Success: The Quest for the Dependent Variable. Inf. Syst. Res. 1992, 3, 60–95. [Google Scholar] [CrossRef] [Green Version]
- Ahn, T.; Ryu, S.; Han, I. The Impact of the Online and Offline Features on the User Acceptance of Internet Shopping Malls. Electron. Commer. Res. Appl. 2004, 3, 405–420. [Google Scholar] [CrossRef]
- Mentzer, J.T.; Flint, D.J.; Kent, J.L. Developing a Logistics Service Quality Scale. J. Bus. Logist. 1999, 20, 9–32. [Google Scholar]
- Park, I.S.; Ahn, H.C. A Study on the User Acceptance Model of Mobile Credit Card Service Based on UTAUT. e-Bus. Stud. 2012, 13, 551–574. [Google Scholar] [CrossRef]
- Schiertz, P.G.; Schilke, O.; Wirtz, B.W. Understanding Consumer Acceptance of Mobile Payment Services: An Empirical Analysis. Electron. Commer. Res. Appl. 2010, 9, 209–216. [Google Scholar] [CrossRef]
- Westbrook, R.A.; Black, W.C. A Motivation-Based Shopper Typology. J. Retail. 1985, 61, 78–103. [Google Scholar]
- Bloch, P.H.; Ridgway, N.M.; Dawson, S.A. The Shopping Mall as Consumer Habitat. J. Retail. 1994, 70, 23–42. [Google Scholar] [CrossRef]
- Babin, B.J.; Darden, W.R.; Griffin, M. Work and/or Fun: Measuring Hedonic and Utilitarian Shopping Value. J. Consum. Res. 1994, 20, 644–656. [Google Scholar] [CrossRef]
- Overby, J.W.; Lee, E.J. The Effects of Utilitarian and Hedonic Online Shopping Value on Consumer Preference and Intentions. J. Bus. Res. 2006, 59, 1160–1166. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Service Quality, Profitability, and the Economic Worth of Customers: What We Know and What We Need to Learn. J. Acad. Mark. Sci. 2000, 28, 67–85. [Google Scholar] [CrossRef] [Green Version]
- Zeithaml, V.A. Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Kim, H.W.; Chan, H.C.; Gupta, S. Value-Based Adoption of Mobile Internet: An Empirical Investigation. Decis. Support Syst. 2007, 43, 111–126. [Google Scholar] [CrossRef]
- Blackwell, R.D.; Miniard, P.W.; Engel, J.F. Consumer Behavior, 9th ed.; Harcourt: New York, NY, USA, 2001. [Google Scholar]
- Engel, J.F.; Blackwell, R.D.; Miniard, P.W. Consumer Behavior, 8th ed.; Dryden Press: Hinsdale, IL, USA, 1995. [Google Scholar]
- Boulding, W.; Kalra, A.; Staelin, R.; Zeithaml, V.A. A Dynamic Process Model of Service Quality: From Expectations to Behavioral Intentions. J. Mark. Res. 1993, 30, 7–27. [Google Scholar] [CrossRef]
- Poddar, A.; Donthu, N.; Wei, Y. Web Site Customer Orientations, Web Site Quality, and Purchase Intentions: The Role of Web Site Personality. J. Bus. Res. 2009, 62, 441–450. [Google Scholar] [CrossRef]
- Siekpe, J.S. An Examination of the Multidimensionality of Flow Construct in a Computer-Mediated Environment. J. Electron. Commer. Res. 2005, 6, 31–43. [Google Scholar]
- Bellenger, D.N.; Steinberg, E.; Stanton, W.W. The Congruence of Store Image and Self Image. J. Retail. 1976, 52, 17–32. [Google Scholar]
- Holbrook, M.B.; Hirschman, E.C. The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. J. Consum. Res. 1982, 9, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Sherry, J.F., Jr. A Sociocultural Analysis of a Midwestern American Flea Market. J. Consum. Res. 1990, 17, 13–30. [Google Scholar] [CrossRef]
- Fischer, E.; Arnold, S.J. More than a Labor of Love: Gender Roles and Christmas Gift Shopping. J. Consum. Res. 1990, 17, 333–345. [Google Scholar] [CrossRef]
- Hassanein, K.; Head, M. The Impact of Infusing Social Presence in the Web Interface: An Investigation Across Product Types. Int. J. Electron. Commer. 2005, 10, 31–55. [Google Scholar] [CrossRef]
- Holbrook, M.B. Consumer Value. In A Framework for Analysis and Research; Routledge: New York, NY, USA, 1999. [Google Scholar]
- Tao, M.Y.; Wang, P.C.; Yoon, J.H. The Effect of the Perceived Value of Chinese Live Commerce Viewers on Purchase Intention from the Social Presence: Focusing on the S-O-R Model. KJHT 2022, 31, 129–146. [Google Scholar] [CrossRef]
- Rupp, W.T.; Smith, A.D. Mobile Commerce: New Revenue Machine or Black Hole? Bus. Horiz. 2002, 45, 26–29. [Google Scholar] [CrossRef]
- Pascoe, J.S.; Sunderam, V.S.; Varshney, U.; Loader, R.J. Middleware Enhancements for Metropolitan Area Wireless Internet Access. Future Gener. Comput. Syst. 2002, 18, 721–735. [Google Scholar] [CrossRef]
- Wu, J.H.; Wang, S.C. What Drives Mobile Commerce: An Empirical Evaluation of the Revised Technology Acceptance Model. Inf. Manag. 2005, 42, 719–729. [Google Scholar] [CrossRef]
- Haas, A.; Kenning, P. Utilitarian and Hedonic Motivators of Shoppers’ Decision to Consult with Salespeople. J. Retail. 2014, 90, 428–441. [Google Scholar] [CrossRef]
- Childers, T.L.; Carr, C.L.; Peck, J.; Carson, S. Hedonic and Utilitarian Motivations for Online Retail Shopping Behavior. J. Retail. 2001, 77, 511–535. [Google Scholar] [CrossRef]
- Carpenter, J.M. Consumer Shopping Value, Satisfaction and Loyalty in Discount Detailing. J. Retail. Consum. Serv. 2008, 15, 358–363. [Google Scholar] [CrossRef]
- Hong, B.S.; Na, Y.K. The Effect of the Perceived Hedonic Value, Usefulness and Ease of use on Attitude Toward Using in Internet Shopping Mall and Purchase Intention of the Fashion Merchandise. J. Korean Soc. Cloth. Text. 2008, 32, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Grönroos, C. Value Driven Relational Marketing: From Products to Resources and Competencies. J. Mark. Manag. 1997, 13, 407–419. [Google Scholar] [CrossRef]
- Park, S.J.; Han, J.W.; Kim, M.S. The Impact of Golf Apparel Consumers’ Shopping Value on Store Loyalty: The Moderating Role of Consumers’ Need for Uniqueness and a Store Type. Korean J. Phys. Educ. 2012, 51, 197–210. [Google Scholar]
- Dawson, S.; Bloch, P.H.; Ridgway, N.M. Shopping Motives, Emotional States, and Retail Outcomes. J. Retail. 1990, 66, 408–428. [Google Scholar]
- Patterson, P.G.; Spreng, R.A. Modelling the Relationship between Perceived Value, Satisfaction and Repurchase Intentions in a Business-to-Business, Services Context: An Empirical Examination. Int. J. Serv. Ind. Manag. 1997, 8, 414–434. [Google Scholar] [CrossRef]
- Cronin Jr, J.J.; Brady, M.K.; Hult, G.T.M. Assessing the Effects of Quality, Value, and Customer Satisfaction on Consumer Behavioral Intentions in Service Environments. J. Retail. 2000, 76, 193–218. [Google Scholar] [CrossRef]
- Kuo, Y.F.; Wu, C.M.; Deng, W.J. The Relationships among Service Quality, Perceived Value, Customer Satisfaction, and Post-Purchase Intention in Mobile Value-Added Services. Comput. Hum. Behav. 2009, 25, 887–896. [Google Scholar] [CrossRef]
- Zhang, G.Y. The Effect of Evaluation Characteristics of Online Shopping Mall on Purchasing Intention of 2030 Users: Focusing on the Moderating Effect of Internet Familiarity and Service Usage. Master’s Thesis, Pukyong National University, Pusan, Republic of Korea, 2022. [Google Scholar]
- Seiders, K.; Voss, G.B.; Godfrey, A.L.; Grewal, D. SERVCON: Development and Validation of a Multidimensional Service Convenience Scale. J. Acad. Mark. Sci. 2007, 35, 144–156. [Google Scholar] [CrossRef]
- Kim, C.; Mirusmonov, M.; Lee, I. An Empirical Examination of Factors Influencing the Intention to Use Mobile Payment. Comput. Hum. Behav. 2010, 26, 310–322. [Google Scholar] [CrossRef]
- Durlacher Research Ltd. Mobile Commerce Report, Gatian, A.W. Is User Satisfaction a Valid Measure of Systems Effectiveness? Inf. Manag. 1999, 26, 119–131. [Google Scholar]
- Hwang, H.S.; Lombard, M. Understanding Instant Messaging: Gratifications and Social Presence. In Proceedings of the 10th International Workshop on Presence, Barcelona, Spain, 25–27 October 2007; pp. 50–56. [Google Scholar]
- Nowak, K. Defining and Differentiating Copresence, Social Presence and Presence as Transportation. In Proceedings of the Presence 2001 Conference, Philadelphia, PA, USA, 21–23 May 2001; pp. 686–710. [Google Scholar]
- McCroskey, J.C.; McCain, T.A. The Measurement of Interpersonal Attraction. Speech Monogr. 1974, 41, 261–266. [Google Scholar] [CrossRef]
- Braunstein, J.R.; Zhang, J.J. Dimensions of Athletic Star Power Associated with Generation Y Sports Consumption. J. Mark. Spon. 2005, 6, 242–267. [Google Scholar] [CrossRef]
- Hakim, C. Erotic Capital. Eur. Sociol. Rev. 2010, 26, 499–518. [Google Scholar] [CrossRef] [Green Version]
- Coyle, J.R.; Thorson, E. The Effects of Progressive Levels of Interactivity and Vividness in Web Marketing Sites. JAR 2001, 30, 65–77. [Google Scholar] [CrossRef]
- Liu, M.J.; Park, J.Y.; Lee, H.E. Technology Acceptance Model in Live Commerce Context: The Effect of Para-social Interactivity and Source Characteristics on Consumers Shopping Intention on Live Commerce Platform. J. Korea Contents Assoc. 2001, 21, 138–154. [Google Scholar]
- Palmer, J.W. Web Site Usability, Design, and Performance Metrics. Inf. Syst. Res. 2002, 13, 151–167. [Google Scholar] [CrossRef]
- Ranganathan, C.; Ganapathy, S. Key Dimensions of Business-to-consumer Web Sites. Inf. Manag. 2002, 39, 457–465. [Google Scholar] [CrossRef]
- Lee, D.G. A Study on the Influences of the Usage Environmental Characteristics of NFC on User’s Attitude and Resistance: Focused on Mobile Payment Services. Ph.D. Thesis, Graduate School of Soongsil University, Seoul, Republic of Korea, 2015. [Google Scholar]
- Sweeney, J.C.; Soutar, G.N. Consumer Perceived Value: The Development of a Multiple Item Scale. J. Retail. 2001, 77, 203–220. [Google Scholar] [CrossRef]
- Sanchez, J.; Callarisa, L.; Rodriguez, R.M.; Moliner, M.A. Perceived Value of the Purchase of a Tourism Product. Tour Manag. 2006, 27, 394–409. [Google Scholar] [CrossRef]
- Cengiz, E.; Kirkbir, F. Customer Perceived Value: The Development of a Multiple Item Scale in Hospitals. Probl. Perspect. Manag. 2007, 5, 252–268. [Google Scholar]
- Agarwal, S.; Teas, R.K. Perceived Value: Mediating Role of Perceived Risk. J. Mark. Theory Pract. 2001, 9, 1–14. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, H.; Yu, B. Understanding Perceived Risks in Mobile Payment Acceptance. Ind. Manag. Data Syst. 2015, 115, 253–269. [Google Scholar] [CrossRef]
- Taylor, S.A.; Baker, T.L. An Assessment of the Relationship between Service Quality and Customer Satisfaction in the Formation of Consumers’ Purchase Intentions. J. Retail. 1994, 70, 163–178. [Google Scholar] [CrossRef]
- Kim, I.S.; Park, C.W. The Effect of Interaction on Flow, Trust and the Intention to Play in On-line Game Portal Sites. Korean Soc. Comput. Game 2012, 25, 33–45. [Google Scholar]
- Nunnally, J.C. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the Evaluation of Structural Equation Models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.W. A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated Example. Commun. Assoc. Inf. Syst. 2005, 16, 91–109. [Google Scholar] [CrossRef] [Green Version]
Category | Sub-Category | Frequency | % |
---|---|---|---|
Gender | Female | 135 | 47.7 |
Male | 148 | 52.3 | |
Age | 20–29 | 89 | 31.4 |
30–39 | 86 | 30.4 | |
40–49 | 88 | 31.1 | |
Over 50 | 20 | 7.1 | |
Occupation | Office workers | 205 | 72.4 |
Self-employed | 9 | 3.2 | |
Students | 36 | 12.7 | |
Housewives | 13 | 4.6 | |
Unemployed | 7 | 2.5 | |
Others | 13 | 4.6 |
MVs | Cronbach’s Alpha | DG-rho | Eig. 1st | |
---|---|---|---|---|
Convenience | 4 | 0.680 | 0.807 | 2.047 |
Ubiquity | 4 | 0.688 | 0.810 | 2.069 |
Social Presence | 3 | 0.601 | 0.790 | 1.669 |
Attractiveness | 3 | 0.616 | 0.796 | 1.699 |
Vividness | 3 | 0.656 | 0.813 | 1.778 |
Expertise | 4 | 0.672 | 0.803 | 2.036 |
Information Quality | 3 | 0.602 | 0.791 | 1.671 |
Compatibility | 4 | 0.736 | 0.835 | 2.235 |
Hedonic Value | 4 | 0.738 | 0.836 | 2.249 |
Perceived Value | 4 | 0.716 | 0.825 | 2.162 |
Purchase Intention | 4 | 0.774 | 0.855 | 2.386 |
CON | UBI | SOP | ATT | VIV | EXP | INQ | COM | HEV | PEV | PUI | AVE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | 0.712 | 0.507 | ||||||||||
UBI | 0.483 | 0.717 | 0.514 | |||||||||
SOP | 0.320 | 0.417 | 0.744 | 0.554 | ||||||||
ATT | 0.401 | 0.360 | 0.388 | 0.752 | 0.566 | |||||||
VIV | 0.426 | 0.372 | 0.425 | 0.520 | 0.769 | 0.592 | ||||||
EXP | 0.372 | 0.334 | 0.413 | 0.493 | 0.580 | 0.712 | 0.507 | |||||
INQ | 0.463 | 0.495 | 0.461 | 0.448 | 0.542 | 0.518 | 0.746 | 0.556 | ||||
COM | 0.516 | 0.437 | 0.431 | 0.382 | 0.500 | 0.507 | 0.471 | 0.747 | 0.558 | |||
HEV | 0.443 | 0.453 | 0.474 | 0.508 | 0.529 | 0.457 | 0.492 | 0.457 | 0.749 | 0.562 | ||
PEV | 0.426 | 0.386 | 0.503 | 0.541 | 0.589 | 0.592 | 0.580 | 0.532 | 0.549 | 0.735 | 0.540 | |
PUI | 0.446 | 0.455 | 0.490 | 0.522 | 0.598 | 0.533 | 0.560 | 0.525 | 0.725 | 0.677 | 0.772 | 0.596 |
Hypothesis | Path | Original | Mean. Boot | Std. Error | t-Value | p-Value | Result | |
---|---|---|---|---|---|---|---|---|
H1 | H1-a | CON → HEV | 0.122 | 0.124 | 0.054 | 2.248 | 0.025 * | Accept |
H1-b | UBI → HEV | 0.149 | 0.153 | 0.055 | 2.679 | 0.008 ** | Accept | |
H1-c | SOP → HEV | 0.181 | 0.181 | 0.051 | 3.564 | 0.000 *** | Accept | |
H1-d | ATT → HEV | 0.194 | 0.195 | 0.055 | 3.520 | 0.001 *** | Accept | |
H1-e | VIV → HEV | 0.200 | 0.199 | 0.057 | 3.493 | 0.001 *** | Accept | |
H1-f | EXP → HEV | 0.076 | 0.076 | 0.071 | 1.069 | 0.286 | Reject | |
H2 | H2-a | CON → PEV | 0.016 | 0.019 | 0.059 | 0.275 | 0.784 | Reject |
H2-b | UBI → PEV | −0.040 | −0.041 | 0.052 | −0.766 | 0.444 | Reject | |
H2-c | SOP → PEV | 0.129 | 0.135 | 0.051 | 2.534 | 0.012 * | Accept | |
H2-d | ATT → PEV | 0.147 | 0.145 | 0.057 | 2.597 | 0.010 ** | Accept | |
H2-e | VIV → PEV | 0.134 | 0.135 | 0.057 | 2.326 | 0.021 * | Accept | |
H2-f | EXP → PEV | 0.181 | 0.177 | 0.055 | 3.268 | 0.001 * | Accept | |
H2-g | INQ → PEV | 0.180 | 0.180 | 0.057 | 3.171 | 0.002 * | Accept | |
H2-h | COM → PEV | 0.129 | 0.130 | 0.050 | 2.584 | 0.010 * | Accept | |
H3 | HEV → PEV | 0.123 | 0.122 | 0.058 | 2.130 | 0.034 * | Accept | |
H4 | H4-a | HEV → PUI | 0.506 | 0.507 | 0.043 | 11.823 | 0.000 *** | Accept |
H4-b | PEV → PUI | 0.399 | 0.400 | 0.045 | 8.934 | 0.000 *** | Accept |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.H.; Lee, H.N.; Choi, J.I. The Influence of Characteristics of Mobile Live Commerce on Purchase Intention. Sustainability 2023, 15, 5757. https://doi.org/10.3390/su15075757
Lee CH, Lee HN, Choi JI. The Influence of Characteristics of Mobile Live Commerce on Purchase Intention. Sustainability. 2023; 15(7):5757. https://doi.org/10.3390/su15075757
Chicago/Turabian StyleLee, Chae Hyun, Han Na Lee, and Jeong Il Choi. 2023. "The Influence of Characteristics of Mobile Live Commerce on Purchase Intention" Sustainability 15, no. 7: 5757. https://doi.org/10.3390/su15075757
APA StyleLee, C. H., Lee, H. N., & Choi, J. I. (2023). The Influence of Characteristics of Mobile Live Commerce on Purchase Intention. Sustainability, 15(7), 5757. https://doi.org/10.3390/su15075757