Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Ash Sample and Analysis Testing
2.2. Bubbling Experiments for the Washing Solution of Fly Ash
3. Results and Discussion
3.1. Removal of Target Pollutants in the Washing Solution of FA
3.2. Kinetics Study Analysis
3.3. Carbonation Mechanism
3.4. Characteristics of Obtained Particle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhang, Y.; Chen, L.; Guo, B.; Tan, Y.; Sasaki, K.; Tsang, D.C.W. Designing Novel Magnesium Oxysulfate Cement for Stabilization/Solidification of Municipal Solid Waste Incineration Fly Ash. J. Hazard. Mater. 2022, 423, 127025. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, S.; Lin, X.; Li, X. Decomposition and Reformation Pathways of PCDD/Fs during Thermal Treatment of Municipal Solid Waste Incineration Fly Ash. J. Hazard. Mater. 2020, 394, 122526. [Google Scholar] [CrossRef] [PubMed]
- Le, N.H.; Razakamanantsoa, A.; Nguyen, M.L.; Phan, V.T.; Dao, P.L.; Nguyen, D.H. Evaluation of Physicochemical and Hydromechanical Properties of MSWI Bottom Ash for Road Construction. Waste Manag. 2018, 80, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhang, Y.; Yi, Y.; Fang, M. Carbonation of Municipal Solid Waste Gasification Fly Ash: Effects of Pre-Washing and Treatment Period on Carbon Capture and Heavy Metal Immobilization. Environ. Pollut. 2022, 308, 119662. [Google Scholar] [CrossRef]
- Jozewicz, W.; Chang, J.C.S.; Sedman, C.B. Bench–Scale Evaluation of Calcium Sorbents for Acid Gas Emission Control. Environ. Prog. 1990, 9, 137–142. [Google Scholar] [CrossRef]
- Zhang, T.A.; Zhao, H.; Liu, Y.; Dou, Z.; Lv, G.; Zhao, Q.; Li, Y. Recent Advances in Carbon Dioxide Mineralization to Nano-Size Calcium Carbonate Utilizing Wastewater. In Energy Technology 2014; Wang, C.W., de Bakker, J., Belt, C.K., Jha, A., Neelameggham, N.R., Pati, S., Prentice, L.H., Tranell, G., Brinkman, K.S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 103–110. [Google Scholar] [CrossRef]
- IEA. Global Energy Review: CO2 Emissions in 2021—Analysis. Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2 (accessed on 18 December 2022).
- Gu, Q.; Wang, T.; Wu, W.; Wang, D.; Jin, B. Influence of Pretreatments on Accelerated Dry Carbonation of MSWI Fly Ash under Medium Temperatures. Chem. Eng. J. 2021, 414, 128756. [Google Scholar] [CrossRef]
- Zdeb, J.; Howaniec, N.; Smolinski, A. Experimental Study on Combined Valorization of Bituminous Coal Derived Fluidized Bed Fly Ash and Carbon Dioxide from Energy Sector. Energy 2023, 265, 126367. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, Y.; Wang, T.; Wang, J. Characterization of Heavy Metals in Fly Ash Stabilized by Carbonation with Supercritical CO2 Coupling Mechanical Force. J. CO2 Util. 2023, 67, 102308. [Google Scholar] [CrossRef]
- Abe, M.; Tanaka, S.; Noguchi, M.; Yamasaki, A. Investigation of Mineral Carbonation with Direct Bubbling into Concrete Sludge. ACS Omega 2021, 6, 15564–15571. [Google Scholar] [CrossRef]
- Liu, W.; Teng, L.; Rohani, S.; Qin, Z.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.; Liang, B. CO2 Mineral Carbonation Using Industrial Solid Wastes: A Review of Recent Developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Tamilselvi Dananjayan, R.R.; Kandasamy, P.; Andimuthu, R. Direct Mineral Carbonation of Coal Fly Ash for CO2 Sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- Chen, J.; Fu, C.; Mao, T.; Shen, Y.; Li, M.; Lin, X.; Li, X.; Yan, J. Study on the Accelerated Carbonation of MSWI Fly Ash under Ultrasonic Excitation: CO2 Capture, Heavy Metals Solidification, Mechanism and Geochemical Modelling. Chem. Eng. J. 2022, 450, 138418. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Sun, Y.; Fang, G.; Li, Y. Release of Soluble Ions and Heavy Metal during Fly Ash Washing by Deionized Water and Sodium Carbonate Solution. Chemosphere 2022, 307, 135860. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shen, Y.; Chen, Z.; Fu, C.; Li, M.; Mao, T.; Xu, R.; Lin, X.; Li, X.; Yan, J. Accelerated Carbonation of Ball-Milling Modified MSWI Fly Ash: Migration and Stabilization of Heavy Metals. J. Environ. Chem. Eng. 2023, 11, 109396. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Zhang, R.; French, D.; Grigore, M.; Yu, B.; Wang, X.; Yu, J.; Zhao, S. Effects of Fly Ash Properties on Carbonation Efficiency in CO2 Mineralisation. Fuel Process. Technol. 2019, 188, 79–88. [Google Scholar] [CrossRef]
- Tian, S.; Jiang, J. Sequestration of Flue Gas CO2 by Direct Gas–Solid Carbonation of Air Pollution Control System Residues. Environ. Sci. Technol. 2012, 46, 13545–13551. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Wang, Y.; Wang, Y.; Ji, L.; Yan, S. Regenerable Glycine Induces Selective Preparation of Vaterite CaCO3 by Calcium Leaching and CO2 Mineralization from Coal Fly Ash. Chem. Eng. J. 2023, 459, 141536. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R. Fixation of CO2 by Carbonating Calcium Derived from Blast Furnace Slag. Energy 2008, 33, 1461–1467. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, J.; Wei, Y.; Li, K.; Yu, H.; Wang, X.; Ji, L.; Yan, S. Glycine-Mediated Leaching-Mineralization Cycle for CO2 Sequestration and CaCO3 Production from Coal Fly Ash: Dual Functions of Glycine as a Proton Donor and Receptor. Chem. Eng. J. 2022, 440, 135900. [Google Scholar] [CrossRef]
- Kunzler, C.; Alves, N.; Pereira, E.; Nienczewski, J.; Ligabue, R.; Einloft, S.; Dullius, J. CO2 Storage with Indirect Carbonation Using Industrial Waste. Energy Procedia 2011, 4, 1010–1017. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.M.; Murnandari, A.; Youn, M.H.; Lee, W.; Park, K.T.; Kim, Y.E.; Kim, H.J.; Kang, S.P.; Lee, J.H.; Jeong, S.K. Energy-Efficient Chemical Regeneration of AMP Using Calcium Hydroxide for Operating Carbon Dioxide Capture Process. Chem. Eng. J. 2018, 335, 338–344. [Google Scholar] [CrossRef]
- Li, W.; Huang, Y.; Wang, T.; Fang, M.; Li, Y. Preparation of Calcium Carbonate Nanoparticles from Waste Carbide Slag Based on CO2 Mineralization. J. Clean. Prod. 2022, 363, 132463. [Google Scholar] [CrossRef]
- Kodama, S.; Nishimoto, T.; Yamamoto, N.; Yogo, K.; Yamada, K. Development of a New PH-Swing CO2 Mineralization Process with a Recyclable Reaction Solution. Energy 2008, 33, 776–784. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, M.J. CO2 Storage and CaCO3 Production Using Seawater and an Alkali Industrial By-Product. Chem. Eng. J. 2019, 378, 122180. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, Y.; Yi, Y.; Fang, M. Carbonation Treatment of Gasification Fly Ash from Municipal Solid Waste Using Sodium Carbonate and Sodium Bicarbonate Solutions. Environ. Pollut. 2022, 299, 118906. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Son, J.; Yoo, Y.; Park, S.; Huh, I.S.; Park, J. Heavy-Metal Reduction and Solidification in Municipal Solid Waste Incineration (MSWI) Fly Ash Using Water, NaOH, KOH, and NH4OH in Combination with CO2 Uptake Procedure. Chem. Eng. J. 2020, 380, 122534. [Google Scholar] [CrossRef]
- Ju, Y.; Zhang, K.; Yang, T.; Deng, D.; Qiao, J.; Wang, P.; You, Y.; Du, L.; Chen, G.; Kołodyńska, D.; et al. The Influence of a Washing Pretreatment Containing Phosphate Anions on Single-Mode Microwave-Based Detoxification of Fly Ash from Municipal Solid Waste Incinerators. Chem. Eng. J. 2020, 387, 124053. [Google Scholar] [CrossRef]
- Deng, D.; Qiao, J.; Liu, M.; Kołodyńska, D.; Zhang, M.; Dionysiou, D.D.; Ju, Y.; Ma, J.; Chang, M.-b. Detoxification of Municipal Solid Waste Incinerator (MSWI) Fly Ash by Single-Mode Microwave (MW) Irradiation: Addition of Urea on the Degradation of Dioxin and Mechanism. J. Hazard. Mater. 2019, 369, 279–289. [Google Scholar] [CrossRef]
- Ju, Y.; Deng, D.; Li, H.; You, Y.; Qiao, J.; Su, L.; Xing, W.; Liang, M.; Dionysiou, D.D. Rapid Detoxification of Dioxin and Simultaneous Stabilization of Targeted Heavy Metals: New Insight into a Microwave-Induced Pyrolysis of Fly Ash. Chem. Eng. J. 2022, 429, 131939. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, Z.; Hills, C.; Xue, G.; Tyrer, M. Precipitation of Heavy Metals from Wastewater Using Simulated Flue Gas: Sequent Additions of Fly Ash, Lime and Carbon Dioxide. Water Res. 2009, 43, 2605–2614. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Q.; Jamro, I.A.; Lia, R.D.; Baloch, H.A. Accelerated Co-Precipitation of Lead, Zinc and Copper by Carbon Dioxide Bubbling in Alkaline Municipal Solid Waste Incinerator (MSWI) Fly Ash Wash Water. RSC Adv. 2016, 6, 20173–20186. [Google Scholar] [CrossRef]
- Dal Pozzo, A.; Armutlulu, A.; Rekhtina, M.; Müller, C.R.; Cozzani, V. CO2 Uptake Potential of Ca-Based Air Pollution Control Residues over Repeated Carbonation–Calcination Cycles. Energy Fuels 2018, 32, 5386–5395. [Google Scholar] [CrossRef]
- Han, S.J.; Im, H.J.; Wee, J.H. Leaching and Indirect Mineral Carbonation Performance of Coal Fly Ash-Water Solution System. Appl. Energy 2015, 142, 274–282. [Google Scholar] [CrossRef]
- Ni, P.; Xiong, Z.; Tian, C.; Li, H.; Zhao, Y.; Zhang, J.; Zheng, C. Influence of Carbonation under Oxy-Fuel Combustion Flue Gas on the Leachability of Heavy Metals in MSWI Fly Ash. Waste Manag. 2017, 67, 171–180. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, Y.; Zhao, Y.; Zhou, T. Carbon Reclamation from Biogas Plant Flue Gas for Immobilizing Lead and Neutralizing Alkalis in Municipal Solid Waste Incineration Fly Ash. Chem. Eng. J. 2022, 435, 134812. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, Y.; Liu, Z.; Zhou, J.; Yue, Y.; Qian, G. Environmental and Economic Performances of Municipal Solid Waste Incineration Fly Ash Low-Temperature Utilization: An Integrated Hybrid Life Cycle Assessment. J. Clean. Prod. 2022, 340, 130680. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Gui, H.; Xia, D.; Wang, Y. Physiochemical Properties, Heavy Metal Leaching Characteristics and Reutilization Evaluations of Solid Ashes from Municipal Solid Waste Incinerator Plants. Waste Manag. 2022, 138, 49–58. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Liu, Z.; Chen, L.; Wang, Y. Harmless Treatment of Municipal Solid Waste Incinerator Fly Ash through Shaft Furnace. Waste Manag. 2021, 124, 110–117. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, S.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Effect of Water-Washing on the Co-Removal of Chlorine and Heavy Metals in Air Pollution Control Residue from MSW Incineration. Waste Manag. 2017, 68, 221–231. [Google Scholar] [CrossRef]
- GB8978-1996; Integrated Wastewater Discharge Standard. State Environmental Protection Agency: Beijing, China, 1996.
- Carroll, J.J.; Slupsky, J.D.; Mather, A.E. The Solubility of Carbon Dioxide in Water at Low Pressure. J. Phys. Chem. Ref. Data 1991, 20, 1201–1209. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, S.; Qiao, J.; Kołodyńska, D.; Ju, Y.; Zhang, M.; Cai, M.; Deng, D.; Dionysiou, D.D. Malic Acid-Enhanced Chitosan Hydrogel Beads (MCHBs) for the Removal of Cr(VI) and Cu(II) from Aqueous Solution. Chem. Eng. J. 2018, 353, 225–236. [Google Scholar] [CrossRef]
- Zhou, N.; Luther, G.W.; Chan, C.S. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile Sideroxydans Lithotrophicus. Environ. Sci. Technol. 2021, 55, 9362–9371. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.J.; Tse, E.C.M.; Shang, C.; Guo, Z. Nucleation and Growth in Solution Synthesis of Nanostructures—From Fundamentals to Advanced Applications. Prog. Mater. Sci. 2022, 123, 100821. [Google Scholar] [CrossRef]
- Van Gerven, T.; Moors, J.; Dutré, V.; Vandecasteele, C. Effect of CO2 on Leaching from a Cement-Stabilized MSWI Fly Ash. Cem. Concr. Res. 2004, 34, 1103–1109. [Google Scholar] [CrossRef]
- Trushina, D.B.; Bukreeva, T.V.; Kovalchuk, M.V.; Antipina, M.N. CaCO3 Vaterite Microparticles for Biomedical and Personal Care Applications. Mater. Sci. Eng. C 2014, 45, 644–658. [Google Scholar] [CrossRef] [PubMed]
- Trushina, D.B.; Bukreeva, T.V.; Antipina, M.N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles. Cryst. Growth Des. 2016, 16, 1311–1319. [Google Scholar] [CrossRef]
- Fernandez-Martinez, A.; Hu, Y.; Lee, B.; Jun, Y.S.; Waychunas, G.A. In Situ Determination of Interfacial Energies between Heterogeneously Nucleated CaCO3 and Quartz Substrates: Thermodynamics of CO2 Mineral Trapping. Environ. Sci. Technol. 2013, 47, 102–109. [Google Scholar] [CrossRef]
- Jia, K.; Feng, Q.; Zhang, G.; Ji, W.; Zhang, W.; Yang, B. The Role of S(II) and Pb(II) in Xanthate Flotation of Smithsonite: Surface Properties and Mechanism. Appl. Surf. Sci. 2018, 442, 92–100. [Google Scholar] [CrossRef]
- Zhang, S.; Wen, S.; Xian, Y.; Zhao, L.; Feng, Q.; Bai, S.; Han, G.; Lang, J. Lead Ion Modification and Its Enhancement for Xanthate Adsorption on Smithsonite Surface. Appl. Surf. Sci. 2019, 498, 143801. [Google Scholar] [CrossRef]
- Chiang, K.Y.; Hu, Y.H. Water Washing Effects on Metals Emission Reduction during Municipal Solid Waste Incinerator (MSWI) Fly Ash Melting Process. Waste Manag. 2010, 30, 831–838. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, M.; Zhang, Y.; Xu, X. Pb Stabilization in Fresh Fly Ash from Municipal Solid Waste Incinerator Using Accelerated Carbonation Technology. J. Hazard. Mater. 2009, 161, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Ukwattage, N.L.; Ranjith, P.G.; Yellishetty, M.; Bui, H.H.; Xu, T. A Laboratory-Scale Study of the Aqueous Mineral Carbonation of Coal Fly Ash for CO2 Sequestration. J. Clean. Prod. 2015, 103, 665–674. [Google Scholar] [CrossRef]
- Liu, W.; Su, S.; Xu, K.; Chen, Q.; Xu, J.; Sun, Z.; Wang, Y.; Hu, S.; Wang, X.; Xue, Y.; et al. CO2 Sequestration by Direct Gas–Solid Carbonation of Fly Ash with Steam Addition. J. Clean. Prod. 2018, 178, 98–107. [Google Scholar] [CrossRef]
- Yuan, Q.; Yang, G.; Zhang, Y.; Wang, T.; Wang, J.; Romero, C.E. Supercritical CO2 Coupled with Mechanical Force to Enhance Carbonation of Fly Ash and Heavy Metal Solidification. Fuel 2022, 315, 123154. [Google Scholar] [CrossRef]
- Chen, J.; Lin, X.; Li, M.; Mao, T.; Li, X.; Yan, J. Heavy Metal Solidification and CO2 Sequestration from MSWI Fly Ash by Calcium Carbonate Oligomer Regulation. J. Clean. Prod. 2022, 359, 132044. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Nie, Y.; Li, R. Recycling of Municipal Solid Waste Incineration Fly Ash for Ordinary Portland Cement Production: A Real-Scale Test. Resour. Conserv. Recycl. 2010, 54, 1428–1435. [Google Scholar] [CrossRef]
- Tong, Z.; Ma, G.; Zhou, D.; Yang, G.; Peng, C. The Indirect Mineral Carbonation of Electric Arc Furnace Slag Under Microwave Irradiation. Sci. Rep. 2019, 9, 7676. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.T.; Yao, Q.Z.; Fu, S.Q.; Guan, Y.B. Controlled Crystallization of Unstable Vaterite with Distinct Morphologies and Their Polymorphic Transition to Stable Calcite. Eur. J. Mineral. 2010, 22, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.S.; Hadiko, G.; Fuji, M.; Takahashi, M. Factors Affecting the Phase and Morphology of CaCO3 Prepared by a Bubbling Method. J. Eur. Ceram. Soc. 2006, 26, 843–847. [Google Scholar] [CrossRef]
- Dang, H.C.; Yuan, X.; Xiao, Q.; Xiao, W.X.; Luo, Y.K.; Wang, X.L.; Song, F.; Wang, Y.Z. Facile Batch Synthesis of Porous Vaterite Microspheres for High Efficient and Fast Removal of Toxic Heavy Metal Ions. J. Environ. Chem. Eng. 2017, 5, 4505–4515. [Google Scholar] [CrossRef]
- Lin, P.Y.; Wu, H.M.; Hsieh, S.L.; Li, J.S.; Dong, C.; Chen, C.W.; Hsieh, S. Preparation of Vaterite Calcium Carbonate Granules from Discarded Oyster Shells as an Adsorbent for Heavy Metal Ions Removal. Chemosphere 2020, 254, 126903. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, G.; Su, X.; Li, S.; Wang, Q.; Zhao, Y.; Liu, Y.; Luo, J.; Li, Y.; Li, C.; et al. Zebrafish: A Promising Model for Evaluating the Toxicity of Carbon Dot-Based Nanomaterials. ACS Appl. Mater. Interfaces 2020, 12, 49012–49020. [Google Scholar] [CrossRef] [PubMed]
Cations | Temp. | Rates (sccm) | CO2% Ratio | Kd | ∆G0 (kJ/mol) |
Pb(II) | 10 | 33 | 4.622 | −3.795 | |
25 °C | 15 | 15 | 127.833 | −12.024 | |
33 | 45.706 | −8.680 | |||
10 | 33 | 3.185 | −3.113 | ||
50 °C | 15 | 15 | 3.369 | −3.264 | |
33 | 8.547 | −5.764 | |||
10 | 33 | 2.166 | −2.269 | ||
80 °C | 15 | 15 | 1.895 | −1.877 | |
33 | 3.572 | −3.738 | |||
Temp. | Rates (sccm) | CO2% Ratio | ∆H0 (kJ/mol) | ∆S0 (J/mol·K) | R2 |
25 °C | 10 | 33 | −10.571 | −23 | 0.989 |
50 °C | 15 | 15 | −30.568 | −76 | 0.997 |
80 °C | 15 | 33 | −56.742 | −158 | 0.881 |
Entry | System | CaO Fraction (wt %) | Reaction Parameters | Solidification Efficiency | CO2 Sequestration Efficiency ** | Obtained CaCO3 | Ref. |
---|---|---|---|---|---|---|---|
Gas–liquid–solid | MSWI FA−CO2−water (China) | CaO: 38.8%, | Dry ash and ash with 20% H2O; CO2 content: 10%, 50%, 100%; Time: 2 h | Pb: 40% (final pH: 11) | 3% (w/w) CO2 | NA | [54] |
Coal FA−CO2−water (Australia) | CaO: 12.5–24.8% | PCO2: 3 MPa; T: 20–80 °C; L/S ratios of 0.1–0.5 | NA | 27.05 kg CO2/t FA | NA | [55] | |
Circulating fluid bed (CFB) FA−CO2−steam addition (China) | CaO: 28.42%, | T: 300–800 °C; CO2 content: 5%, 10%, 15%, 20%, 100% (vol%); H2O content: 5%, 10%, 20%; Time: 1 h | NA | 60 g CO2/kg FA (28.74%) | NA | [56] | |
Coal FA−Supercritical CO2 coupled with mechanical force-water (China) | CaO: 25.8 wt %, | T: 20–80 °C; PCO2: 1–8 Mpa; L/S = 1–300 mL/g; Time: 1–25 h; Stirring rate: 100–800 rpm; L/S = 1–300 mL/g | Pb: 43.4%, Cr: 98%, Cd: 60.3% | 42.3 mg CO2/kg FA (1 MPa); 54 mg CO2/kg FA (8 MPa) | NA | [57] | |
MSWI FA−oxy-fuel combustion flue gas−calcium carbonate oligomer regulation-water (China) | CaO: 47.3% * | T: 20 °C; PCO2: 0.1 Mpa; L/S = 10 L/kg; Flow rate: 200 mL/min; Time: 60 min; Stirring rate: 600 rpm | Pb:100%, Cu: 91.3%, Zn: 99.1% | 13.8% | C | [58] | |
FA washing solution−CO2 (China) | CaO: 53 wt % (FA) | Room temperature; Stirring rate: 63 rpm; Flow rate: 10 mL/min | Pb: 99%, Cu: 95%, Zn: 96% | NA | NA | [59] | |
Electric arc furnace steelmaking slags−CO2−NH4Cl (China) | CaO: 39.04 wt % | T: 12–65 °C; L/S = 20 mL/g; MW irradiation = 90–270 W | NA | NA | C+V | [60] | |
MSWI FA−simulated exhaust gas (China) | NA | T: 25 -80 °C; L/S = 8 mL/g; Flow rates: 10, 15, 30, 45, and 61 sccm | Pb: 97.9–99.2% (final pH: 6–8) | NA | C+V | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Tang, Y.; Gong, Y.; Shao, X.; Lin, X.; Xu, W.; Zhu, Y.; Ju, Y.; Shi, L.; Kołodyńska, D. Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism. Sustainability 2023, 15, 5873. https://doi.org/10.3390/su15075873
Wang L, Tang Y, Gong Y, Shao X, Lin X, Xu W, Zhu Y, Ju Y, Shi L, Kołodyńska D. Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism. Sustainability. 2023; 15(7):5873. https://doi.org/10.3390/su15075873
Chicago/Turabian StyleWang, Lei, Yuemei Tang, Yu Gong, Xiang Shao, Xiaochen Lin, Weili Xu, Yifan Zhu, Yongming Ju, Lili Shi, and Dorota Kołodyńska. 2023. "Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism" Sustainability 15, no. 7: 5873. https://doi.org/10.3390/su15075873
APA StyleWang, L., Tang, Y., Gong, Y., Shao, X., Lin, X., Xu, W., Zhu, Y., Ju, Y., Shi, L., & Kołodyńska, D. (2023). Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism. Sustainability, 15(7), 5873. https://doi.org/10.3390/su15075873