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Abstract: The digital economy is fundamentally altering human productivity and lifestyles, gradually
becoming a new engine that drives energy technology transformation and optimizes the energy con-
sumption structure. This paper examines the impact of the digital economy on upgrading the energy
consumption structure using panel data from 30 Chinese provinces from 2013 to 2019. The empirical
findings indicate that the digital economy’s development can help to improve energy consumption
structure, and this impact can have a threshold effect. Heterogeneity analysis reveals that upgrading
the energy consumption structure affected by the digital economy is more significant in lower digital
divide regions, the eastern and central regions, and provinces with high economic development levels.
Moreover, the findings of a mechanism analysis demonstrate that the digital economy primarily
influences green technology innovation, and government environmental regulation affects the major
upgrades of the energy consumption structure.

Keywords: digital economy; energy consumption structure; threshold effect; green technology
innovation; environmental regulation

1. Introduction

Energy is the fundamental guarantor of economic growth and human well-being.
Global energy-related CO2 emissions hit a new high in 2021. A coal-based energy con-
sumption structure would significantly increase carbon emissions and reduce sustainable
economic growth [1]. With fossil energy supply becoming increasingly tight, ecological
and environmental problems have attracted widespread global attention. Optimizing the
energy consumption structure is a major issue that needs to be considered.

At present, the digital economy is growing rapidly, and it is expanding in scale. The
digital economy is a new social quality efficiency and global economic growth engine, and
it also provides new possibilities for the structure of energy use. The deep integration of
digital technology and traditional industries supports the intelligent transformation of
traditional industries, and the deep integration with the energy industry supports energy
efficiency improvement and technological innovation. Additionally, research revealed
that the digital economy had shown a strong impetus for the optimization of the indus-
trial chain [2–4], green consumption [5–7], green production [8], and green government
affairs [9]. Therefore, in theory, the digital economy is essential for enhancing energy
consumption structure and fostering the development of a green economy.

Scholars have focused extensively on the link between energy challenges and eco-
nomic development. Many factors affect the optimization and upgrading of the energy
consumption structure, including the state of the environment, social conditions, rate
of economic development, industrial organization, and governmental regulations. As
a precursor to both the technology and industrial revolutions, the digital economy has
also become an effective way to improve energy consumption [10,11]. First of all, energy
efficiency can be greatly increased through the digital economy. The adoption of digital
technology, for instance, can change consumer behavior to lower household electricity
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consumption [12], can help to automate production to reduce energy consumption [13,14],
and can promote the upgrading of buildings [15], hotels [16], transportation [17], and other
sectors of society. Second, the digital economy has the obvious potential to promote the
use of renewable energy and the high-quality development of the energy industry. The
digitalization of energy has increased the level of energy innovation [18], the transition to
green energy [19,20], and the efficient allocation of energy [21], and has spurred a reduction
in fuel intensity [22,23]. Third, the convergence of digitalization and everyday life has
given rise to new consumption patterns and changed energy consumption patterns [24].
For example, online shopping, online education, and digital healthcare are typical digital
consumption patterns. They change the traditional way of energy consumption and reduce
energy consumption through dematerialized information transmission modes. Summariz-
ing the existing research from the perspective of energy consumption, most of them discuss
the influencing factors of energy consumption efficiency and energy consumption, but the
existing research has not given a systematic answer to the question of whether the digital
economy is conducive to the upgrading of the energy consumption structure.

The following are some of this paper’s potential contributions to the literature: (1) a
thorough examination of the internal theoretical logic of a digital economy as it affects
the energy consumption structure, confirming that it has a threshold effect on upgrading
the energy consumption structure and that it also has network effects that promote the
upgrading of the energy consumption structure, and (2) an exploration of the role of green
technology innovation and environmental regulation in the intermediary mechanism, as
it offers a new mechanism explanation for comprehending how the growth of the digital
economy influences energy consumption.

This is the rest of the paper: the second section is the mechanism analysis and puts
forward the research hypothesis; the third section explains the research model and sample
data; the fourth section gives the empirical results and the robustness test regression results;
the fifth section is the heterogeneity test; the sixth section is the mechanism test; and the
last section is the conclusion and implications.

2. Theoretical Analysis and Research Hypothesis
2.1. The Effects of Digital Economy on Energy Consumption Structure

Modernizing the energy consumption structure aims to improve traditional energy
efficiency while increasing the use of new energy. One aspect of the digital economy
is to promote and accelerate technological innovation, which can both improve energy
efficiency and support the production and use of new energy sources. On the other hand,
by strengthening the government’s environmental rules and guidance, the digital economy
can optimize the energy consumption structure.

First, the digital economy promotes technological progress in the energy field, pro-
motes the creation and use of new energy, improves traditional energy efficiency, and
optimizes the energy consumption structure. In terms of energy efficiency improvement,
first of all, the digital economy optimizes the accuracy of business management decisions
and market forecasting. Through the intelligent transformation of the energy production
process, enterprises can collect, detect, transmit, and analyze energy data flow in real time.
Moreover, manufacturing methods and technologies have been innovated, and energy effi-
ciency has been improved through the use of intelligent devices [25,26]. In addition, the role
of information, communication technologies, and services in economic development have
been emphasized in the digital economy. Real-time information can be better used in the
digital economy to advocate for flexible production models; these can prevent unnecessary
energy waste and can significantly improve energy efficiency [27,28]. In terms of research,
development, and the utilization of new energy on one hand, digital technology helps to
accelerate the research, development, and utilization of new energy. The digital economy,
with big data and cloud computing as typical features, squeezes traditional high-pollution
and high-energy-consuming enterprises. These can efficiently integrate talents, capital,
technology, knowledge, and other innovative elements quickly and effectively, supporting
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the innovation of green technology. On this basis, the acceleration of R&D and the utiliza-
tion of green energy [20,29] are byproducts. On the other hand, digital technology will
help develop and improve energy consumption patterns, accelerate the increase in demand
for new energy consumption in various industries, and usher in a green era of energy. In
addition, the digital economy can also use digital media to spread the concept of green life
to consumers, guide the public to protect the environment, save resources, improve the
public’s awareness of green innovation, and force the green transformation of energy from
the consumption side.

Also, as the digital economy grows, the government will be better able to monitor and
manage energy use, which will improve the way that it is consumed. To start, because the
digital economy is rapidly expanding, governments now have access to a wide range of
digital surveillance tools. By constructing digital platforms, advanced digital applications
enable governments to collect and analyze routine information from massive amounts of
data, as well as to establish energy consumption feedback mechanisms. Governments have
improved their refinement and their responsiveness in energy consumption control, and
this has led to cleaner energy consumption and the decarbonization of regional develop-
ment [30,31]. In addition, the digital economy offers the potential to improve the efficiency
of energy information exchange and to enable the real-time sharing of energy supply and
demand data between governments and market participants. The problem of information
asymmetry between government departments, between governments and businesses, and
among the public has been addressed. This allows government decision making to become
more scientific and refined. Expanding the reach and scope of the application of environ-
mental supervision regulations is facilitated by expanding corporate publicity and public
environmental oversight channels through digital media. Additionally, the digital economy
has the joint role of integrating the market and stimulating market vitality. Big data and
other technologies can assist governments in identifying future energy development paths
and market needs, allowing them to make sound environmental decisions. Finally, the
cross-spatial, cross-field, and cross-time characteristics of the digital economy foster the
smooth flow of production factors. Examples include using digital government to improve
regional government cooperation, coordinating policy formulation to guide the greening
of social production, and expanding the space for the promotion and utilization of new
energy sources [32].

Accordingly, the following hypothesis is proposed.

Hypothesis 1 (H1). The digital economy has a positive impact on the upgrading of the energy
consumption structure.

2.2. Digital Economy’s Threshold Effect on Energy Consumption Structure

Unique laws, such as Moore’s Law and Metcalfe’s Law, regulate the advancement of
digital technology, which forms the basis of the digital economy [33,34]. The network effects
are theoretically present in the digital economy’s compensation system, as well. This is in
stark contrast to traditional economic inputs, which are governed by the law of diminishing
marginal benefits. As more people participate, the digital economy will expand in size
and value, which will, in turn, lure more individuals to join. This demonstrates that as the
digital economy grows in size, its marginal impact on the energy consumption structure
will grow as well.

Specifically, in the early days of the digital economy, digital networks were small, as
were the number of consumers and producers who participated in the digital economy.
Therefore, the marginal impact of the digital economy on the energy consumption structure
at this time will be minimal. Then, with the acceleration in the scale of the digital economy,
the optimal allocation of resource elements such as knowledge, technology, capital, and
talents will further reduce the cost of technology circulation. Metcalfe’s law states that
the value of a network is proportional to the square of the number of connected users.
This means that the more users a network has, the more valuable it is [35]. As the digital
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economy grows and expands, more people will be drawn into the digital world, and the
marginal role of the digital economy will grow rapidly [36]. In addition, once the digital
economy develops to a certain extent, network users will break through a certain threshold
and will trigger a positive feedback mechanism to achieve explosive growth in network
value. At that time, the marginal effect of the digital economy on upgrading the energy
consumption structure will be significantly improved.

Accordingly, the following hypothesis is proposed.

Hypothesis 2 (H2). The digital economy has a threshold effect on the upgrading of the energy
consumption structure.

3. Model Construction and Data Description
3.1. Metrology Model Setting

The digital economy opens up new possibilities for the optimization and upgrading
of the energy consumption structure. To determine whether this impact exists significantly,
model (1) is constructed:

ECSit = α0 + α1DIGit + αjΣXjit + vt + ηt + εit, (1)

where t stands for the year, i for the province, ECSit stands for the energy consumption
structure, DIGit marks the degree to which each province’s digital economy has developed,
Xjit is a series of control variables, vt is the time fixed effect, ηt is the provincial fixed effect,
and εit is the random perturbation term. When the regression coefficient, α1, is significantly
negative, it indicates that the digital economy helps to optimize energy consumption
structure, and H1 is verified.

Further testing is needed to determine whether the digital economy has a nonlinear
effect on the energy consumption structure and whether there are threshold conditions.
That is, tests are needed to determine whether a certain level of the digital economy
will considerably alter the marginal influence on the structure of energy use. This paper
draws on the practices of Hansen [37] and Tran et al. [38] to set the panel threshold model.
Assuming only one threshold point, a single threshold model (2) is used.

ECSit = ϕ0 + ϕ1DIGit × I(DIGit ≤ ω) + ϕ2DIGit × I(DIGit > ω) + ϕjΣXjit+
vt + ηt + εit

(2)

In this formula, DIG is a threshold dependent variable and is also the core explanatory
variable, ω is the threshold value, I(.) represents an indicative function, if the conditions
in parentheses match the actual situation, the value is 1; if they do not, the value of the
indicated function is 0. ϕ0 is the constant term, ϕ1 and ϕ2 are the parameters to be estimated,
ϕ1 is the influence coefficient of the digital economy on consumption structure upgrading
at DIG ≤ ω, ϕ2 is the influence coefficient of the digital economy on the consumption
structure upgrading at DIG > ω.

If there are two thresholds, extend the model (2) to a double threshold model (3).

ECSit = ρ0 + ρ1DIGit × I(DIGit ≤ ω1) + ρ2DIGit × I(ω1 < DIGit < ω2)
+ρ3DIGit ∗ I(DIGit ≥ ω2) + ρjΣXjit + vt + ηt + εit

(3)

Among them, ω1 and ω2 are two thresholds, and ω1 < ω2, these two thresholds divide
the total sample into 3 intervals; ρ1, ρ2 and ρ3 are the regression coefficients of DIG of three
core explanatory variables in different intervals, and if there are three or more thresholds,
this method can be used to establish a multi-threshold model.

3.2. Variable Selection

The energy consumption structure (ECS) is the dependent variable, affected by the
characteristics of China’s energy resource endowment of “more coal, less oil and lack of
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gas”. Coal still dominates the energy consumption structure [39]. The fundamental purpose
of optimizing energy consumption structure is to decrease the proportion of fossil energy,
such as coal, in total energy consumption. Based on this, this paper refers to Wu et al. [40],
Sun and Ren [41], and Xue et al. [42] to sort out and use the ratio of total coal consumption
to total energy consumption as a proxy variable. The data are collected from the China
Energy Statistical Yearbook.

The Digital Economy Index (DIG) is the independent variable. At present, there is still
great controversy in the academic community about how to comprehensively measure the
digital economy in various provinces. Considering that the digital economy is not only
reflected in digital infrastructure construction but also in the digital transactions, this paper
refers to the views of Wang and Xu [43] and Li et al. [44] to incorporate the indicators of
the three major aspects of information development, Internet development, and digital
transaction development into the measurement index system. The data are collected from
the China Statistical Yearbook, the China Science and Technology Statistical Yearbook,
and Provincial Statistical Yearbooks. As shown in Table 1, in the specific calculation, the
relevant data are standardized, and the weights of each index in the assessment system are
determined using the entropy approach. Then, the multi-objective linear weighted function
method is used to weight the index. Finally, the digital economy index of each province is
obtained, expressed as DIG.

Table 1. Digital Economy Index (DIG).

Primary Indicators Secondary Indicators Measurement Indicators

Informatization development
Indicators

The level of investment in
informatization construction

Ratio of the length of the optical cable to the area
(6.19%)

Ratio of the number of mobile phone base stations to
the area (6.93%)

Ratio of employees in information transmission,
software and information technology services to

total employment (3.77%)

The output level of informatization
construction Total telecom services (10.24%)

Software business revenue (15.96%)

Internet development indicators The level of Internet fixed broadband
terminal construction Internet access port density (7.33%)

The level of Internet mobile terminal
construction

Ratio of the number of mobile phones to the total
population (1.95%)

The output of Internet fixed
broadband terminal construction

Ratio of fixed broadband subscribers to the total
population (4.56%)

The output of Internet mobile
terminal construction

Ratio of mobile Internet users to the total population
(2.17%)

Digital transaction development
indicators

The level of Digital transaction
construction

Ratio of the number of company’s website to the
number of enterprises (0.73%)

Ratio of the number of computers used by the
enterprise to the number of enterprises (3.27%)

Ratio of enterprises with e-commerce transaction
activities in the total number of enterprises (5.8%)

The output level of digital transaction E-commerce sales (13.04%)

Online retail sales (18.06%)

The selection of control variables in the model refers to previous studies [29,42,45], and
the data is collected from the China Statistical Yearbook and Provincial Statistical Yearbooks.
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Control variables include the level of economic development (lnGDP), industrial structure
(IS), foreign direct investment (FDI), human capital (HC), urbanization rate (UR), and
infrastructure (BI). In addition, set the annual dummy variable (Year) and the province
dummy variable (Province) to control the impacts of the year and individual effects. Table 2
displays the specific variable names and measurement methods.

Table 2. Main variable measurement methods.

Variable Description

Dependent variable
ECS Energy consumption structure. Usage of coal as a percentage of total energy consumption.
Independent variable

DIG Digital economy index. The indicators are weighted using a multi-objective linear weighting function
method, and then each region’s digital economy index is obtained.

Control variable
lnGDP Level of economic development. The gross regional product logarithm.

IS Industrial structure. The proportion of the tertiary industry’s added value to the secondary industry’s
contributed value.

FDI Foreign direct investment. The ratio of the amount of foreign capital actually deployed in each region to
regional GDP is used.

HC Human capital. The number of students in tertiary education in each region as a proportion of the
district population.

UR Rate of urbanization. The ratio of urban to regional population is employed.
BI Infrastructure. The local road miles logarithm.
Year The year effect.
Province The province effect.

3.3. Data Sources

This paper analyzes panel data from 30 provinces in China from 2013 to 2019 to ensure
data accessibility and consistency throughout time. The exclusion of Tibet, Hong Kong,
Macao, and Taiwan owes to missing data in some years. The primary sources of the data
are the China Statistical Yearbook, the China Energy Statistical Yearbook, the China Science
and Technology Statistical Yearbook, and Provincial Statistical Yearbooks. The data on
digital financial inclusion are obtained from the Digital Finance Research Center of Peking
University.

Table 3 shows the descriptive statistics. To make the estimation more intuitive, this
paper uses ArcGIS software to show the energy consumption structure of 30 provinces
in China in the form of maps in 2013 and 2019 (shown in Figure 1). It can be clearly seen
that compared with 2013, the proportion of coal consumption in total energy consumption
in 2019 has decreased significantly, and there are obvious differences between different
provinces, which laid a good foundation for the regression test below.

Table 3. Descriptive statistics.

Variable N Max Min Mean Median Std. Dev.

ECS 210 0.666 0.012 0.379 0.397 0.144
DIG 210 0.701 0.073 0.206 0.184 0.112

lnGDP 210 11.59 7.446 9.834 9.918 0.868
IS 210 5.234 0.665 1.365 1.192 0.729

FDI 210 1.22 0.001 0.201 0.181 0.178
HC 210 0.039 0.009 0.02 0.019 0.005
UR 210 0.942 0.365 0.588 0.571 0.119
BI 210 33.71 1.26 15.299 15.875 8.008
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Figure 1. Energy consumption structure in China in 2013 (Left) and 2019 (Right).

4. Empirical Results
4.1. Baseline Regression and Endogenous Problem Treatment

Table 4 displays the statistical baseline findings of the effect of the digital economy
(DIG) on the energy consumption structure (ECS). The fixed-effects model is chosen in
this study based on the findings of the Hausman test, where the p-value is 0.0000. Hence,
the outcomes of the two-way fixed-effect model are used in the discussion that follows.
Column (1) of Table 4 demonstrates the impact of the DIG on the ECS. The DIG regression
coefficient is −0.3638 and is significant at the 1% level. For every percentage increase in
the digital economy, the proportion of coal consumption in total energy consumption will
decrease by 0.3638 percent. This shows that the digital economy will help the upgrading of
energy consumption structure. Hypothesis H1 is confirmed.

Considering that provinces with a more reasonable energy consumption structure
may attach more importance to the development of the digital economy, the reverse
causal relationship between the DIG and ECS brings endogenous problems. In this paper,
the lagging one-stage independent variable and the instrumental variable were used for
endogenous testing. First, this paper uses lagging one-stage independent variables to
further test hypothesis 1. Column (2) of Table 4 shows that the impact coefficient of the
DIG on the ECS in the lagging period is −0.4826. It is still significantly negative at the 1%
level. For every unit increase in the digital economy, the proportion of coal consumption
will decrease by 0.4826 percent. H1 is still robust.

Table 4. Baseline regression and endogenous test results.

Variable
Bidirectional Fixed Effect Lag One-Stage Independent Variable 2SLS

(1) ECS (2) ECS (3) ECS

DIG −0.3638 ***
(−4.0085)

L.DIG −0.4826 ***
(−4.0975)

RDLS −2.1181 ***
(−4.4135)

lnGDP 0.0783 * 0.0898 0.1441 ***
(1.7102) (1.6537) (3.2231)

IS −0.0013 0.0094 −0.0051
(−0.0611) (0.3813) (−0.2089)

FDI 0.0236 0.0163 −0.1679 ***
(1.2237) (0.7509) (−3.3109)
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Table 4. Cont.

Variable
Bidirectional Fixed Effect Lag One-Stage Independent Variable 2SLS

(1) ECS (2) ECS (3) ECS

HC −7.3082 *** −8.0679 ** −8.1520 *
(−2.7034) (−2.6049) (−1.9332)

UR −0.1989 −0.3151 0.2682 *
(−0.8997) (−1.1890) (1.7158)

BI −0.0127 *** −0.0115 *** −0.0046
(−3.8125) (−3.0667) (−1.5948)

_cons 0.1318 0.0823 −0.5997 *
(0.2836) (0.1491) (−1.7942)

Year Control Control Control
Province Control Control

N 210 180 210
R2 0.688 0.684 0.494

Note: The value of T in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

Second, this paper uses instrumental variables to solve endogenous problems so
as to ensure more stable and reliable estimation results. Referring to Duflo [46] and
Ivus et al. [47], the product of topographic undulations and dummy variables by year
(RDLS) was selected as the instrumental variable for this study. The two-stage least squares
(2SLS) method is used for regression. The logic of selecting instrumental variables is as
follows: on the one hand, the terrain undulations reflect the complexity of the terrain,
and the complexity of the terrain will directly affect the installation and commissioning
of the digital infrastructure. Therefore, the more undulating the terrain, the greater the
cost and challenge of building digital infrastructure and the less developed the digital
economy. On the other hand, topographic undulations as a natural factor are not directly
related to other factors. The details of the instrumental variables’ regression findings are
presented in Column (3) of Table 4. After taking into account the endogeneity issue, the
effect of the DIG on the ECS is notably negative. This suggests that Hypothesis H1 still
holds. For every unit increase in the digital economy, the proportion of coal consumption
will decrease by 2.1181 percent. Under-identification is not a problem, as evidenced by
the under-identification test’s LM statistic value of 13.083, which corresponds to a p-value
of 0.0000, which is less than 0.05. There is no weak instrumental variable in the equation,
according to the Cragg-Donald Wald F value of 13.022 in the weak identification test, which
is higher than the empirical value of 10 for the relevant instrumental variable suggested by
Staiger et al. [48].

4.2. Robustness Test

Based on the robustness of the endogenous testing, this paper also adopts the method
of substituting the independent variable and the dependent variable to test the robustness.

(1) Change the DIG’s measurement. This paper builds on the methods of Gao et al. [49]
to create a comprehensive digital economy development level index (DIG1) from the dual
dimensions of Internet development [50] and digital inclusive finance [51]. To establish a
comprehensive digital economy development index as an explanatory variable for robust-
ness testing, this study uses principal component analysis to normalize, downscale, and
finally standardize the data of the five indicators of Internet development and digital inclu-
sive finance. For the development of digital finance, the China Digital Financial Inclusion
Index is used, which is jointly compiled by the Digital Finance Research Center of Peking
University and Ant Financial Services Group. Other data are collected from the Provincial
Statistical Yearbooks.

Column (1) of Table 5 shows a coefficient of −0.0535 for DIG1 and a significant 1%
level. The share of coal consumption will decrease by 0.0535 percent for every unit increase
in the digital economy, indicating that hypothesis 1 remains robust.
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Table 5. Replace the key variable robustness test results.

Variable (1)
ECS

(2)
EL

DIG1 −0.0535 *** 1.5044 ***
(−2.8095) (5.2817)

lnGDP 0.0830 * −0.5276 ***
(1.7107) (−3.6721)

IS 0.0141 −0.0090
(0.6232) (−0.1366)

FDI 0.0149 −0.0354
(0.7620) (−0.5852)

HC −4.8146 * 13.4861
(−1.7969) (1.5897)

UR 0.0276 −0.1282
(0.1294) (−0.1848)

BI −0.0121 *** 0.0301 ***
(−3.5607) (2.8876)

_cons −0.1338 9.8474 ***
(−0.2709) (6.7526)

Year Control Control
Province Control Control

N 210 210
R2 0.674 0.720

Note: The value of T in parentheses. *** p < 0.01, * p < 0.1.

(2) Change the ECS’s measurement. This study tests the robustness of the ECS using
the low-carbon level index (EL) of each province’s energy consumption pattern as a proxy
variable. The data are collected from the China Energy Statistical Yearbook.

The exact calculation procedure is as follows:

EL = arccos(cos(θ1))
3 + arccos(cos(θ2))

2 + arccos(cos(θ3))

cos θ1=
√

α
α2+β2+γ2 cos θ2=

√
β

α2+β2+γ2 cos θ3=
√

γ
α2+β2+γ2

Among them, α, β and γ are the ratios of coal, oil, and other energy consumption to
the total energy consumption in each province. The higher the indicator of the low-carbon
index, the more reasonable the energy consumption structure. Column (2) of Table 5 shows
the regression coefficient of DIG is 1.5044 and significant at the level of 1%. For every
percentage increase in the digital economy, the energy decarbonization index will increase
by 1.5044 percent. It is assumed that H1 remains robust.

4.3. Threshold Effect Regression

Before the threshold effect analysis, the threshold model needs to be tested for signifi-
cance to determine both the threshold number and whether there is a significant threshold
effect. This paper uses “self-sampling” to repeat the estimate 300 times. Table 6 shows
the p value obtained after the threshold effect test of the impact of the digital economy on
energy consumption structure under three assumptions: with a single threshold, a double
threshold, and three thresholds. Based on Table 6, there is a significant single threshold, and
there is not a significant double or triple threshold. When the single threshold point is that
the digital economy is equal to 0.173, there is a significant difference between the marginal
effects of the digital economy on the structure of the energy consumption before and after
the single threshold value of 0.173. Figure 2 is the threshold estimation test chart; the part
where the curve falls below the reference line indicates that the single threshold value is
significant. The threshold model will be constructed based on the single threshold later.
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Table 6. Threshold effect existence test.

Model F-Value p-Value Threshold Estimates

Different Significance
Cut-Offs

1% 5% 10%

Single threshold 23.69 0.020 ** 0.173 27.044 16.838 14.425
Double threshold 5.19 0.677 0.245 23.565 16.051 13.452
Triple threshold 4.00 0.747 0.423 18.762 12.763 10.617

Note: ** p < 0.05.
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Figure 2. Threshold variable estimation.

When the digital economy level is less than 0.173, seeing in Table 7, the DIG regression
coefficient is −0.167, which is significant at the 5% level. The marginal impact coefficient of
DIG on ECS rises to −0.341 and the significance level to 1% when the digital economy level
exceeds the threshold. It can be seen that the digital economy plays a role in upgrading
energy consumption structure when it is at a low level, and when the digital economy
reaches a high level, its promotion effect is multiplied, and the significance of the impact is
also significantly improved.

Table 7. Single sill panel regression results.

Variable Coefficient SD T P 95% CI

DIG (DIG ≤ 0.173) −0.167 ** 0.080 −2.090 0.038 (−0.326, −0.009)
DIG (DIG > 0.173) −0.341 *** 0.074 −4.580 0.000 (−0.487, −0.194)

lnGDP 0.060 * 0.035 1.700 0.090 (−0.010, 0.130)
IS 0.003 0.017 0.150 0.882 (−0.031, 0.036)

FDI 0.004 0.019 0.200 0.840 (−0.033, 0.041)
HC −5.355 ** 2.399 −2.230 0.027 (−10.091, −0.619)
UR −0.153 0.169 −0.900 0.368 (−0.486, 0.181)
BI −0.009 *** 0.003 −2.730 0.007 (−0.015, −0.002)

Cons 0.176 0.292 0.600 0.549 (−0.401, 0.753)

N 210

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

The rationale is that “Metcalfe’s law” is essentially how the digital economy develops.
Due to the limitations of the institutional environment, the infrastructure level, human
capital, and other constraints in the early stages, the network effect brought by it cannot
be effectively exerted. The digital economy is less integrated with the energy consump-
tion structure. However, as the digital economy develops further, the marginal costs of
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innovation and research and development continue to decline, and the energy industry
sector gradually produces economies of scale. It can take full advantage of the benefits of
digitalization, introduce advanced energy production technologies, and better improve the
structure of energy consumption. Thus, the threshold effect of the level of digital economic
growth is confirmed, the hypothesis H2 is validated.

5. Heterogeneity Analysis

To make the regional heterogeneity division more intuitive, this paper uses ArcGIS
software to show the digital economy in 30 provinces in China in the form of maps in
2013 and 2019 (shown in Figure 3). Figure 3 demonstrates that there are very noticeable
regional differences in the process of the development of the digital economy. For instance,
the level of the digital economy has been relatively high in China’s eastern coastal region,
and it has also recently experienced rapid growth in the central and western regions.
Additionally, taking into account that different regions of China have varying levels of
economic development models and digital infrastructure construction. The heterogeneity
of the digital divide, regional heterogeneity, and economic development level heterogeneity
is used in this study to assess how the digital economy has affected energy consumption
structure.
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5.1. Heterogeneity of Digital Divide Levels

The digital economy is based on digital technologies. Due to the large differences
in the application of information and network technology in different regions, the digital
divide will inevitably be reflected in the digital economy. It will also have varying effects
on the upgrading of the energy consumption structure. Drawing on the methodology
of the China Digital Divide Report 2013 of the National Network Center to construct a
comprehensive relative gap index (DD) of the digital divide among provinces in China
from 2013 to 2019, reflecting the gap between different provinces in the ownership and
use of major information technology products (Comprehensive relative gap index = 0.25 *
Internet penetration relative gap index + 0.25 * home computer ownership relative gap
index + 0.25 * home TV ownership relative gap index + 0.125 * fixed telephone penetration
rate relative gap index + 0.125 * mobile phone penetration relative gap index. Among
them, the Internet penetration relative gap index = (national average Internet penetration
rate—regional Internet penetration rate)/national average Internet penetration rate, and so
on for other relative gap indicators. All raw data are measured from the official website
of the National Bureau of Statistics). Provinces with a comprehensive relative gap index
greater than zero are classified as areas with a lower digital divide, and provinces with less
than zero are classified as areas with a high digital divide.
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Furthermore, China has seen the leading development of economically backward
provinces in the development of the digital economy, such as China’s Guizhou Province,
which continues to consolidate its digital infrastructure and strive to seize new opportu-
nities in the implementation of the digital economy strategy. In the White Paper on the
Development of China’s Digital Economy (2022), Guizhou’s digital economy grew at a rate
of 20.6% in 2021, 4.4 percent higher than the national average, and the province ranked first
in the country for seven consecutive years. As a result, this paper considers whether the
digital economy can hasten the improvement of energy consumption structure from the
standpoint of the digital divide between regions.

Columns (1) and (2) of Table 8 show the influence of the DIG on the ECS is significantly
negative at the level of 1% in provinces with a low digital divide, but not in provinces with
high levels of the digital divide. The results show that the role of the digital economy in
upgrading the energy consumption structure is selective, and the precondition is that the
regional digital technology level is high.

Table 8. Three heterogeneous regression results.

High DD Low DD Eastern Central Western Low GDP High GDP
Variable (1) (2) (3) (4) (5) (6) (7)

ECS ECS ECS ECS ECS ECS ECS

DIG −0.1389 −0.8313 *** −0.3652 *** −1.6204 *** −0.4280 −0.2638 −0.2571 **
(−1.2599) (−3.8425) (−3.9032) (−3.0077) (−1.0440) (−0.6145) (−2.2854)

lnGDP 0.1640 0.1395 *** 0.3347 *** 0.2508 *** −0.1411 0.0692 0.1959 *
(1.4390) (2.6383) (3.8406) (3.3346) (−1.1004) (1.2334) (1.9032)

IS −0.0746 ** 0.0702 ** −0.0267 0.1446 *** −0.0558 0.0479 −0.0345
(−2.3020) (2.3849) (−0.9344) (3.5577) (−0.9735) (1.6000) (−1.0421)

FDI 0.0015 −0.0297 −0.0253 0.0653 −0.2133 0.0422* 0.0081
(0.0524) (−0.4989) (−1.1314) (0.9582) (−1.4058) (1.9276) (0.1072)

HC 7.7720 −9.7131 *** −8.5066 −10.0041 ** −4.8391 −15.5866 *** −5.7537
(0.9524) (−3.4296) (−1.2711) (−2.3709) (−0.9229) (−3.6340) (−1.1411)

UR −0.8093 ** −0.9155 ** −0.3927 1.5902 ** −1.7305 ** −1.7474 *** −0.0193
(−2.1598) (−2.3477) (−1.2496) (2.3407) (−2.6028) (−3.5437) (−0.0599)

BI −0.0060 −0.0130 *** 0.0060 −0.0083 * −0.0145 * −0.0069 −0.0171 ***
(−0.7636) (−3.3409) (0.5927) (−1.8088) (−1.7502) (−1.0375) (−4.0063)

_cons (−0.6348) (−0.0074) −2.5634 *** −2.4250 *** 2.9660 *** 1.0667 * −1.1266
−0.1389 −0.8313 *** (−2.6732) (−3.7183) (2.8135) (1.8405) (−1.0405)

Year Control Control Control Control Control Control Control
Province Control Control Control Control Control Control Control

N 60 150 77 56 77 105 105
R2 0.811 0.713 0.797 0.898 0.735 0.690 0.750

Note: The value of T in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

5.2. Regional Heterogeneity

Given China’s vast territory and the potential differences in the geospatial, economic
development model and information openness of the eastern, central, and western regions,
referring to the research of relevant scholars [52,53], this paper divides the sample into
eastern, central, and western regions by province, and uses the benchmark regression
model (1) for regression.

Columns (3), (4), and (5) of Table 8 show the influence of the DIG on the ECS is
significantly negative at the level of 1% in the eastern and central regions but not in the
western regions. The reason for this could be that the eastern and central provinces have an
advantage in terms of economic development, information openness, geographical space,
and the digital economy has a greater impact on the eastern and central provinces. The
western region, on the other hand, has long relied on traditional resources, and the digital
economy has had little impact on upgrading its energy consumption structure. Further-
more, the central provinces have always been an important industrial and energy base in
China, and the digital economy has promoted the upgrading of high-energy-consuming in-



Sustainability 2023, 15, 5968 13 of 18

dustries in the central provinces, making significant contributions to upgrading the energy
consumption structure.

5.3. Heterogeneity of Economic Development Levels

The structure of energy consumption is closely related to the level of economic devel-
opment. Changes in social production and lifestyle and the change of energy consumption
concepts under the economic background directly affect the restructuring and moderniza-
tion of the energy consumption pattern. According to the median gross domestic product
(GDP), this paper is divided into the group with a low economic development level and
the group with a high economic development level.

Columns (6) and (7) of Table 8 display that the DIG regression coefficient of the
low economic development level group is negative but not significant, whereas the DIG
regression coefficient of the high economic development level group is negative and
significant at the 5% level. This demonstrates that the impact of the digital economy on
the upgrading of the energy consumption structure is more pronounced in provinces with
high levels of economic development.

The shift to a stage of high-quality economic development may be a significant fac-
tor since it alters the structure of the demand for energy use. The industrial model of
“high energy consumption, high pollution, and high emissions” cannot be the founda-
tion for good-quality economic growth, and the expansionary growth of “high resource
consumption, high environmental pollution, and cheap labor costs” must be abandoned.

6. Mechanism Verification

To further open the black box of the impact mechanism of the digital economy on the
upgrading of energy consumption structure, this paper employs an intermediary model
to verify. Specifically, the practice of Baron and Kenny [54] and Shahbaz et al. [45] is
borrowed, and the hierarchical regression method is used for verification. In terms of
mechanism testing, this paper combines the actual availability of variables and data and
still follows the analysis logic of main regression from “digital economy-green technology
innovation-energy consumption structure” and “digital economy-government environmen-
tal regulation-energy consumption structure”.

6.1. Mediating Mechanism of Green Technology Innovation

The regression model of this study uses green technology innovation as a mediating
variable. Referring to Chen et al. [55], Feng et al. [56], and Su et al. [57], the number of green
invention patents (PGP) per capita obtained in a given year was used as a proxy variable
for green technology innovation. The China Research Data Service Platform’s Green Patent
Database serves as the source of the green patent information (GPRD). Models (3) and
(4) are based on Model (1), with PGP standing for Green Technology Innovation. The
remaining variables are identical to those found in the benchmark regression model (1).

PGPit = θ0 + θ1DIGit + θjΣXjit + vt + ηt + εit (4)

CESit = π0 + π1DIGit + π2PGPit + πjΣXjit + vt + ηt + εit (5)

When θ1 is significantly positive, π2 is significantly negative, and π1 < α1, PGP is the
mediating variable between the development of the DIG and the ECS.

Column (2) of Table 9 displays that the DIG regression coefficient is 0.7690, which is 1%
significant. This suggests that the digital economy can encourage businesses to innovate in
the field of green technology. The regression coefficient of PGP is −0.0905 in the regression
findings in column (3), which is 1% significant. DIG’s regression coefficient is −0.2942,
which is 1% significant. Therefore, green technology innovation has played an intermediary
role in the impact of the digital economy on energy consumption structure.
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Table 9. Regression results of the mediating role of green technology innovation.

Variable (1) (2) (3) (4) (5) (6)

ECS PGP ECS ECS PGP ECS

DIG −0.3638 *** 0.7690 *** −0.2942 ***
(−4.0085) (2.6303) (−3.3105)

L.DIG −0.4826 *** 0.8087 ** −0.4115 ***
(−4.0975) (2.3000) (−3.5404)

PGP −0.0905 *** −0.0879 ***
(−3.9290) (−3.1834)

lnGDP 0.0783 * 0.5379 *** 0.1270 *** 0.0898 0.4944 *** 0.1333 **
(1.7102) (3.6467) (2.7827) (1.6537) (3.0492) (2.4525)

IS −0.0013 0.5164 *** 0.0455 * 0.0094 0.4631 *** 0.0502 *
(−0.0611) (7.6263) (1.9420) (0.3813) (6.2634) (1.8452)

FDI 0.0236 0.0836 0.0312 * 0.0163 0.0442 0.0201
(1.2237) (1.3456) (1.6755) (0.7509) (0.6842) (0.9591)

HC −7.3082 *** −14.3551 −8.6080 *** −8.0679 ** −12.1233 −9.1337 ***
(−2.7034) (−1.6484) (−3.2923) (−2.6049) (−1.3112) (−3.0263)

UR −0.1989 −2.3690 *** −0.4134 * −0.3151 −2.4818 *** −0.5333 **
(−0.8997) (−3.3263) (−1.8876) (−1.1890) (−3.1369) (−2.0074)

BI −0.0127 *** −0.0180 * −0.0143 *** −0.0115 *** −0.0140 −0.0127 ***
(−3.8125) (−1.6818) (−4.4477) (−3.0667) (−1.2496) (−3.4855)

_cons 0.1318 −3.8517 ** −0.2170 0.0823 −3.4229 ** −0.2186
(0.2836) (−2.5730) (−0.4773) (0.1491) (−2.0767) (−0.4026)

Year Control Control Control Control Control Control
Province Control Control Control Control Control Control

N 210 210 210 180 180 180
R2 0.688 0.683 0.715 0.684 0.662 0.706

Note: The value of T in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The lag period of DIG is incorporated into the mediation model at the same time.
Table 9 columns (4), (5), and (6) show the test results, and the mediation results are reliable.

6.2. Mediating Mechanism of Government Environmental Regulation

In this paper, environmental regulation is included as a mediating variable in the re-
gression model. Referring to Morgenstern et al. [58], environmental regulation is measured
by the proportion of investment in industrial pollution control in each province to the
secondary industry. Models (6) and (7) were further established on the basis of model (1),
where NERIit represents the level of environmental regulation.

NERIit = β0 + β1DIGit + β jΣXjit + vt + ηt + εit (6)

CESit = δ0 + δ1DIGit + δ2NERIit + δjΣXjit + vt + ηt + εit (7)

When β1 is significantly positive, δ2 is significantly negative, and δ1 < α1, environ-
mental regulation is the intermediary variable between the development of the DIG and
the ECS.

Column (2) of Table 10 shows the DIG’s regression coefficient is 0.0171 and is signifi-
cant at the 5% level, indicating that the digital economy can strengthen the government’s
environmental regulation. Column (3) shows that the regression coefficient of environmen-
tal regulation is −3.8951 and is significant at the 1% level. The regression coefficient of the
DIG is −0.2970 and is significant at the 1% level. Therefore, government environmental
regulation has played intermediary role in the impact of the digital economy on the energy
consumption structure.
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Table 10. Results of regression of the mediating effect of environmental regulation.

Variable (1) (2) (3) (4) (5) (6)
ECS NERI ECS ECS NERI ECS

DIG −0.3638 *** 0.0171 ** −0.2970 ***
(−4.0085) (2.6023) (−3.3346)

L.DIG −0.4826 *** 0.0191 ** −0.4106 ***
(−4.0975) (2.0847) (−3.5773)

NERI −3.8951 *** −3.7649 ***
(−3.7988) (−3.5906)

lnGDP 0.0783 * 0.0012 0.0831 * 0.0898 0.0030 0.1010 *
(1.7102) (0.3724) (1.8864) (1.6537) (0.7004) (1.9341)

IS −0.0013 0.0048 *** 0.0173 0.0094 0.0063 *** 0.0332
(−0.0611) (3.1301) (0.8325) (0.3813) (3.2701) (1.3458)

FDI 0.0236 0.0006 0.0259 0.0163 0.0010 0.0200
(1.2237) (0.4281) (1.3971) (0.7509) (0.5922) (0.9624)

HC −7.3082 *** 0.1190 −6.8446 *** −8.0679 ** 0.0565 −7.8550 ***
(−2.7034) (0.6065) (−2.6288) (−2.6049) (0.2344) (−2.6427)

UR −0.1989 0.0057 −0.1769 −0.3151 0.0207 −0.2371
(−0.8997) (0.3524) (−0.8313) (−1.1890) (1.0033) (−0.9291)

BI −0.0127 *** 0.0003 −0.0117 *** −0.0115 *** 0.0003 −0.0102 ***
(−3.8125) (1.0800) (−3.6327) (−3.0667) (1.1569) (−2.8288)

_cons 0.1318 −0.0243 0.0373 0.0823 −0.0513 −0.1109
(0.2836) (−0.7195) (0.0832) (0.1491) (−1.1930) (−0.2082)

Year Control Control Control Control Control Control
Province Control Control Control Control Control Control

N 210 210 210 180 180 180
R2 0.688 0.367 0.713 0.684 0.362 0.711

Note: The value of T in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The lag period of the DIG is incorporated into the mediation model at the same time.
Table 10 columns (4), (5), and (6) show the test results, and the mediation results are reliable.

7. Conclusions and Implications

This paper puts forward research conclusions based on the research content and policy
implications based on the research conclusions. The exploration of how the digital economy
has influenced the energy consumption structure has led to the following conclusions: First,
the digital economy directly reduces the proportion of coal in total energy consumption,
which has a positive impact on upgrading the energy consumption structure. Second, the
digital economy has a threshold effect on upgrading the energy consumption structure.
The higher the level of the digital economy, the more obvious the upgrade effect on the
energy consumption structure. Third, the impact of the digital economy on the upgrading
of the energy consumption structure is heterogeneous in different regions. Specifically,
this role is more pronounced in provinces with low levels of digital divide, the eastern
and central provinces, and high levels of economic development. Fourth, environmental
regulation and green technology innovation play an intermediary role in the impact of the
digital economy on the energy consumption structure. Specifically, the digital economy
affects environmental regulation and green technology innovation, which in turn affects
the energy consumption structure.

Based on the research results, the following recommendations are made. First, acceler-
ate the development of the digital economy and the construction of digital infrastructure,
increase the application of digital technology in the energy field, and provide new momen-
tum for the upgrading of energy consumption structure, especially in provinces with a
higher level of the digital divide, the western provinces, and provinces with a lower level
of economic development. Based on the results of heterogeneity analysis, it is necessary to
accelerate the construction of digital technology infrastructure and promote the application
of digital technology in various fields, such as production, life, transportation and energy
consumption, in these regions. Additionally, the formulation of digital economy develop-
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ment policies should be tilted towards these regions, and the development of the digital
economy in these regions can be promoted by formulating preferential taxation and active
fiscal policies.

Second, take advantage of the development of the digital economy to improve the
government’s environmental regulation capabilities. Studies show that environmental
supervision plays an intermediary role in the digital economy and energy consumption
structure upgrading, so it is necessary to use digital technology to establish a more scientific
and systematic environmental regulation system to optimize the energy consumption
structure and improve environmental governance capabilities.

Third, use digital technology to strengthen scientific and green technology and pro-
mote the development of green technology innovation. The research shows that green
technology innovation plays an intermediary role in the digital economy and the energy
consumption structure. Therefore, with the help of the rapid development of the digital
economy and digital technology, we should accelerate the research, development, and
innovation of green technologies to continuously improve energy efficiency and promote
the upgrading of energy consumption structure.

The research in this paper also has certain shortcomings, which provide certain en-
lightenment for future research. First, the perspective of the energy consumption structure
research can be multi-dimensional. This paper is only from the perspective of primary
energy consumption, combined with the energy resource endowment characteristics of
China’s “more coal, less oil and gas shortage”, focusing on the change of the proportion
of unsustainable coal energy in total energy consumption. In the future, the impact of the
digital economy on the energy consumption structure can be further explored from the per-
spectives of energy consumers, industry energy utilization, and new energy development.
Second, the impact of the digital economy on different industries and digital industries in
the process of development is different, and further detailed research can be carried out in
the future in combination with the energy consumption structure.
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