Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting Scenarios
2.2. Overview of Industrial Countermeasures
2.3. Method of Calculating Flow Amount
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galloway, J.N.; Cowling, E.B. Reactive Nitrogen and The World: 200 Years of Change. AMBIO: A J. Hum. Environ. 2002, 31, 64–71. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochem 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level 2010–2010/International Fertilizer Industry Association. 2013, Paris. Available online: https://www.fertilizer.org/images/library_downloads/agcom.13.39%20-%20fubc%20assessment%202010.pdf (accessed on 27 February 2023).
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [Green Version]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef] [Green Version]
- Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 2014, 5, 3858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNEP. Colombo Declaration. 2019. Available online: https://www.inms.international/sites/inms.international/files/Colombo%20Declaration_Final.pdf (accessed on 27 February 2023).
- NECD. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants, Amending Directive 2003/35/EC and Repealing Directive 2001/81/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016L2284&from=EN (accessed on 27 February 2023).
- IEA/IRENA Renewables Policies Database. Three-Year Action Plan for Cleaner Air. Available online: https://www.iea.org/policies/8508-three-year-action-plan-for-cleaner-air-also-called-the-blue-sky-war (accessed on 28 February 2023).
- The Government of Japan. Cabinet Decision, 11 June 2019. Available online: https://www.env.go.jp/content/900502258.pdf (accessed on 27 February 2023).
- de Vries, W.; Kros, J.; Kroeze, C.; Seitzinger, S.P. Assessing planetary and regional nitrogen boundaries related to food se-curity and adverse environmental impacts. Curr. Opin. Environ. Sustain. 2013, 5, 392–402. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.Q.; Qiao, S.C.; Huang, G.R.; et al. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.L.; Davis, C.; Moll, H.C.; Nonhebel, S. Impacts of biogas production on nitrogen flows on Dutch dairy system: Multiple level assessment of nitrogen indicators within the biogas production chain. J. Ind. Ecol. 2019, 24, 665–680. [Google Scholar] [CrossRef] [Green Version]
- Neset, T.-S.S.; Bader, H.-P.; Scheidegger, R. Food Consumption and Nutrient Flows: Nitrogen in Sweden Since the 1870s. J. Ind. Ecol. 2008, 10, 61–75. [Google Scholar] [CrossRef]
- Hayashi, K.; Shibata, H.; Oita, A.; Nishina, K.; Ito, A.; Katagiri, K.; Shindo, J.; Winiwarter, W. Nitrogen budgets in Japan from 2000 to 2015: Decreasing trend of nitrogen loss to the environment and the challenge to further reduce nitrogen waste. Environ. Pollut. 2021, 286, 117559. [Google Scholar] [CrossRef] [PubMed]
- Shindo, J.; Okamoto, K.; Kawashima, H. Prediction of the environmental effects of excess nitrogen caused by increasing food demand with rapid economic growth in eastern Asian countries, 1961–2020. Ecol. Model. 2006, 193, 703–720. [Google Scholar] [CrossRef]
- Gu, B.; Chang, J.; Min, Y.; Ge, Y.; Zhu, Q.; Galloway, J.N.; Peng, C. The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Sci. Rep. 2013, 3, 2579. [Google Scholar] [CrossRef] [Green Version]
- AMA. Agricultural Mechanization in Asia, Africa and Latin America; Farm Machinery Industrial Research Corp.: Tokyo, Japan, 2020; Volume 51. [Google Scholar]
- Borowski, P.F.; Barwicki, J. Efficiency of Utilization of Wastes for Green Energy Production and Reduction of Pollution in Rural Areas. Energies 2022, 16, 13. [Google Scholar] [CrossRef]
- Nanba, T.; Masukawa, S.; Uchisawa, J.; Obuchi, A. Highly selective NH3 formation in a NO-CO-H2O reaction over Pt/TiO2. Chem. Lett. 2008, 37, 710–711. [Google Scholar] [CrossRef]
- Kobayashi, K.; Atsumi, R.; Manaka, Y.; Matsumoto, H.; Nanba, T. Effect of the TiO2 crystal structure on the activity of TiO2-supported platinum catalysts for ammonia synthesis via the NO-CO-H2O reaction. Catal. Sci. Technol. 2019, 9, 2898–2905. [Google Scholar] [CrossRef]
- Xue, M.; Lin, B.-L.; Tsunemi, K.; Minami, K.; Nanba, T.; Kawamoto, T. Life Cycle Assessment of Nitrogen Circular Econo-my-Based NOx Treatment Technology. Sustainability 2021, 13, 7826. [Google Scholar] [CrossRef]
- Navarro, R.R.; Hori, T.; Inaba, T.; Matsuo, K.; Habe, H.; Ogata, A. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning. Water Res. 2016, 94, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Inaba, T.; Hori, T.; Aizawa, H.; Ogata, A.; Habe, H. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors. Npj Biofilms Microbiomes 2017, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoyagi, T.; Morishita, F.; Sugiyama, Y.; Ichikawa, D.; Mayumi, D.; Kikuchi, Y.; Ogata, A.; Muraoka, K.; Habe, H.; Hori, T. Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. ISME J. 2018, 12, 2376–2388. [Google Scholar] [CrossRef] [Green Version]
- Parajuli, D.; Noguchi, H.; Takahashi, A.; Tanaka, H.; Kawamoto, T. Prospective Application of Copper Hexacyanoferrate for Capturing Dissolved Ammonia. Ind. Eng. Chem. Res. 2016, 55, 6708–6715. [Google Scholar] [CrossRef]
- National Institute of Advanced Industrial Science and Technology. Novel Nitrogen Circulation System. Available online: https://www.n-cycle.jp/en/greeting-en/ (accessed on 27 February 2023).
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
- Hojito, M.; Ikeguchi, A.; Kohyama, K.; Shimada, K.; Ogino, A.; Mishima, S.; Kaku, K. Estimation of Nitrogen Loading in Japanese Prefectures and Scenario Testing of Abatement Strategies. Jpn. J. Soil Sci. Plant Nutr. 2003, 74, 467–474. [Google Scholar]
- IPCC. Climate Change 1995, the Science of Climate Change, Second Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 1–63. [Google Scholar]
- IPCC. Climate Change 2001, the Scientific Basis, Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: New York, NY, USA, 2001; pp. 1–881. [Google Scholar]
- O’Connor, S.; Ehimen, E.; Pillai, S.C.; Black, A.; Tormey, D.; Bartlett, J. Biogas production from small-scale anaerobic diges-tion plants on European farms. Renew. Sustain. Energy Rev. 2021, 139, 110580. [Google Scholar] [CrossRef]
Year | 2010 | 2050 | 2050 | 2050 | 2050 | |
---|---|---|---|---|---|---|
Scenario | BAU | Agricultural Measures | Industrial Measures | Agricultural + Industrial Measures | ||
Reactive N production | ||||||
Haber–Bosch process | 120 | 165 | 86 | 137 | 65 | |
Nitrogen fixing by cultivation | 60 | 77 | 50 | 77 | 50 | |
Use of reactive N | ||||||
Fertilizer from Haber–Bosch | 100 | 137 | 58 | 137 | 80 | |
Industrial use | 20 | 28 | 28 | 28 | 28 | |
Food | 34 | 46 | 31 | 46 | 33 | |
Industrial product | 18 | 25 | 25 | 25 | 25 | |
Waste generation of reactive N | ||||||
Crop and feed waste | 38 | 51 | 19 | 51 | 26 | |
Livestock effluent (liquid) | 37 | 50 | 23 | 50 | 22 | |
Industry wastewater | 2 | 3 | 3 | 3 | 3 | |
Household wastewater | 21 | 27 | 27 | 27 | 27 | |
Waste treatment and recycling of reactive N | ||||||
Waste water treatment | 12 | 16 | 10 | 40 | 26 | |
Recycling of waste water | - | - | - | 40 | 26 | |
Recycling of agriculture and food processing waste | - | - | 14 | - | 15 | |
Recycling of livestock effluent | - | - | - | 17 | 10 | |
Recycling of gas effluent from fossil fuel combustion | - | - | - | 51 | 28 | |
Environmental emissions of reactive N | ||||||
Livestock effluent vaporized (air) | 25 | 33 | 15 | 17 | 8 | |
Fertilizer loss (water) | 26 | 35 | 20 | 35 | 21 | |
Incineration (air) | 51 | 70 | 23 | 35 | 13 | |
Fossil fuel combustion 2 (air) | 30 | 52 | 52 | 26 | 26 | |
Waste water treatment (water) | 2 | 3 | 2 | 0 | 0 | |
No treatment of waste water (water) | 48 | 64 | 42 | 40 | 26 | |
Total emissions of reactive N | ||||||
Atmospheric emissions | 106 | 155 | 90 | 78 | 47 | |
Hydrospheric emissions | 77 | 102 | 64 | 75 | 47 | |
Total environmental emissions | 183 | 257 | 154 | 153 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsunemi, K.; Kawamoto, T.; Matsumoto, H. Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures. Sustainability 2023, 15, 6042. https://doi.org/10.3390/su15076042
Tsunemi K, Kawamoto T, Matsumoto H. Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures. Sustainability. 2023; 15(7):6042. https://doi.org/10.3390/su15076042
Chicago/Turabian StyleTsunemi, Kiyotaka, Tohru Kawamoto, and Hideyuki Matsumoto. 2023. "Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures" Sustainability 15, no. 7: 6042. https://doi.org/10.3390/su15076042
APA StyleTsunemi, K., Kawamoto, T., & Matsumoto, H. (2023). Estimation of the Potential Global Nitrogen Flow in a Nitrogen Recycling System with Industrial Countermeasures. Sustainability, 15(7), 6042. https://doi.org/10.3390/su15076042