The Alien Invader, Rhus typhina L., Outperforms Its Native Competitor in the Scenario of Nitrogen Deposition and Arbuscular Mycorrhizal Fungi (AMF) Inoculation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Experiment Set-Up
2.3. Harvest and Measurement
2.3.1. Aboveground Traits
2.3.2. AMF Colonization Rate
2.3.3. Belowground Traits
2.3.4. Statistical Analysis
3. Results
3.1. Inter-Specific Competition
3.2. Nitrogen Deposition
3.3. AMF Inoculation
4. Discussion
4.1. R. typhina “Lured” a Greater AMF Colonization and Showed Advantage in Body Size When Facing Competition
4.2. Nitrogen Deposition Did Not Shrink the Body Size of R. typhina Compared to A. truncatum
4.3. AMF Inoculation Boosted the Root Growth of Both Species under Mono-Planting Condition but Weakened That of A. truncatum in Mix-Planting
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Li, S.P.; Ge, Y.; Wang, X.Y.; Gao, S.; Chen, T.; Yu, F.H. Darwin’s naturalization conundrum reconciled by changes of species interactions. Ecology 2023, 104, e3850. [Google Scholar] [CrossRef] [PubMed]
- Leishman, M.R.; Haslehurst, T.; Ares, S.; Baruch, Z. Leaf trait relationships of native and invasive plants: Community- and global-scale comparisons. New Phytol. 2007, 176, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Van Kleunen, M.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef]
- Liu, Y.J.; Oduor, A.M.O.; Zhang, Z.; Manea, A.; Tooth, I.M.; Leishman, M.R.; Xu, X.L.; van Kleunen, M. Do invasive alien plants benefit more from global environmental change than native plants? Global Change Biol. 2017, 23, 3363–3370. [Google Scholar] [CrossRef] [Green Version]
- Mathakutha, R.; Steyn, C.; le Roux, P.C.; Blom, I.J.; Chown, S.L.; Daru, B.H.; Ripley, B.S.; Louw, A.; Greve, M. Invasive species differ in key functional traits from native and non-invasive alien plant species. J. Veg. Sci. 2019, 30, 994–1006. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Davis, M.A.; Grime, J.P.; Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 2000, 88, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Valliere, J.M.; Irvine, I.C.; Santiago, L.; Allen, E.B. High N, dry: Experimental nitrogen deposition exacerbates native shrub loss and nonnative plant invasion during extreme drought. Global Change Biol. 2017, 23, 4333–4345. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Hu, J.T.; Gao, Y.Y.; Yu, D.; Liu, C.H. Disturbance, trait similarities, and trait advantages facilitate the invasion success of Alternanthera philoxeroides (Mart.) Griseb. CLEAN-Soil Air Water. 2017, 45, 1600437. [Google Scholar] [CrossRef]
- Luo, X.; Xu, X.Y.; Zheng, Y.; Guo, H.; Hu, S.J. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica. Biol. Invasions. 2019, 21, 2679–2692. [Google Scholar] [CrossRef]
- Dangremond, E.M.; Simpson, L.T.; Osborne, T.Z.; Feller, I.C. Nitrogen enrichment accelerates mangrove range expansion in the temperate–tropical ecotone. Ecosystems 2020, 23, 703–714. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Traits Associated with Invasiveness in Alien Plants: Where Do We Stand? In Biological Invasions. Ecological Studies; Nentwig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 193, pp. 97–125. [Google Scholar] [CrossRef]
- Montesinos, D. Fast invasives fastly become faster: Invasive plants align largely with the fast side of the plant economics spectrum. J. Ecol. 2022, 110, 1010–1014. [Google Scholar] [CrossRef]
- Hawkins, B.J. Nitrogen uptake over entire root systems of tree seedlings. Tree Physiol. 2014, 34, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricroch, A.; Chopra, S.; Fleischer, S. Plant Biotechnology: Experience and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Van Kleunen, M.; Dawson, W.; Maurel, N. Characteristics of successful alien plants. In Invasion Genetics: The Baker and Stebbins Legacy; Barrett, S.C.H., Colautti, R.I., Dlugosch, K.M., Rieseberg, L.H., Eds.; Wiley: Chichester, UK, 2017; pp. 40–56. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Elsevier Science Ltd.: London, UK, 2008. [Google Scholar] [CrossRef]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [Green Version]
- Frew, A.; Powell, J.R.; Johnson, S.N. Aboveground resource allocation in response to root herbivory as affected by the arbuscular mycorrhizal symbiosis. Plant Soil. 2020, 447, 463–473. [Google Scholar] [CrossRef]
- Jiang, Y.N.; Wang, W.X.; Xie, Q.J.; Liu, N.; Liu, L.X.; Wang, D.P.; Zhang, X.W.; Yang, C.; Chen, X.Y.; Tang, D.Z.; et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017, 356, 1172–1175. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.J.; Ma, L.N.; He, W.M. Arbuscular mycorrhizal fungi help explain invasion success of Solidago canadensis. Appl. Soil Ecol. 2021, 157, 103763. [Google Scholar] [CrossRef]
- Lamit, L.J.; Giovati, A.S.; Jo, I.; Frank, D.A.; Fridley, J.D. Woody invaders are more highly colonized by arbuscular mycorrhizal fungi than congeneric native species. Am. J. Bot. 2022, 109, 655–663. [Google Scholar] [CrossRef]
- Sun, D.S.; Yang, X.P.; Wang, Y.; Fan, Y.; Ding, P.C.; Song, X.E.; Yuan, X.Y.; Yang, X.F. Stronger mutualistic interactions with arbuscular mycorrhizal fungi help Asteraceae invaders outcompete the phylogenetically related natives. New Phytol. 2022, 236, 1487–1496. [Google Scholar] [CrossRef]
- Cheng, J.K.; Yue, M.F.; Yang, H.R.; Chen, B.M.; Xing, G.R. Do arbuscular mycorrhizal fungi help the native species Bidens biternata resist the invasion of Bidens alba? Plant Soil. 2019, 444, 443–455. [Google Scholar] [CrossRef]
- Bunn, R.A.; Ramsey, P.W.; Lekberg, Y. Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? A meta-analysis. J. Ecol. 2015, 103, 1547–1556. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.M.; Jiang, G.M.; Yu, S.L.; Li, Y.H.; Liu, H. Invasion possibility and potential effects of Rhus typhina on Beijing municipality. J. Integr. Plant Biol. 2008, 50, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.L.; Zhong, S.S.; Yu, Y.L.; Wang, Y.Y.; Cheng, H.Y.; Du, D.L.; Wang, C.Y. Rhus typhina L. triggered greater allelopathic effects than Koelreuteria paniculata Laxm under ammonium fertilization. Sci Hortic-Amsterdam. 2023, 309, 111703. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Guo, W.H.; Ding, W.J.; Du, N.; Luo, Y.J.; Liu, J.; Xu, F.; Wang, R.Q. Competitive interaction between the exotic plant Rhus typhina L. and the native tree Quercus acutissima Carr. in Northern China under different soil N:P ratios. Plant Soil. 2013, 372, 389–400. [Google Scholar] [CrossRef]
- Guo, X.; Xu, Z.W.; Li, M.Y.; Ren, X.H.; Liu, J.; Guo, W.H. Increased soil moisture aggravated the competitive effects of the invasive tree Rhus typhina on the native tree Cotinus coggygria. BMC Ecol. 2020, 20, 17. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, M.Y.; Eller, F.; Luo, Y.J.; Nong, Y.L.; Xing, L.J.; Xu, Z.W.; Li, H.M.; Lu, H.C.; Guo, X. Trait value and phenotypic integration contribute to the response of exotic Rhus typhina to heterogeneous nitrogen deposition: A comparison with native Rhus chinensis. Sci. Tot. Env. 2022, 844, 157199. [Google Scholar] [CrossRef]
- Han, Y.F.; Feng, J.G.; Han, M.G.; Zhu, B. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. Global Change Biol. 2020, 26, 7229–7241. [Google Scholar] [CrossRef]
- Kang, F.R.; Yang, B.; Wujisiguleng; Yang, X.; Wang, L.; Guo, J.X.; Sun, W.; Zhang, Q.; Zhang, T. Arbuscular mycorrhizal fungi alleviate the negative effect of nitrogen deposition on ecosystem functions in meadow grassland. Land Degrad. Dev. 2020, 31, 748–759. [Google Scholar] [CrossRef]
- Liu, R.J.; Luo, X.S. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytol. 2010, 128, 89–92. [Google Scholar] [CrossRef]
- Galloway, I.; Dentener, F.; Capone, D.; Boyer, E.; Howarth, R.; Seitzinger, S.G.; Cleveland, C.; Green, P.; Holland, E.; Karl, D.; et al. Nitrogen cycles: Past, present, andfuture. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- He, L.; Liang, C.; Xin, Q.; Xue, S. Effects of Simulated Nitrogen Deposition on Soil Soluble Nitrogen Content and Organic Functional Group Characteristics of Pinus tabulae formis. Res. Soil Wateronserwat1on 2018, 25, 36–40. [Google Scholar]
- Wang, T.; Hu, J.T.; Wang, R.Q.; Liu, C.H.; Yu, D. Trait convergence and niche differentiation of two exotic invasive free-floating plant species in China under shifted water nutrient stoichiometric regimes. Environ. Sci. Pollut. R. 2019, 26, 35779–35786. [Google Scholar] [CrossRef]
- Liu, R.J.; Chen, Y.L. Mycorrhizology; Science Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Shen, K.P.; Cornelissen, J.H.C.; Wang, Y.J.; Wu, C.B.; He, Y.J.; Ou, J.; Tan, Q.Y.; Xia, T.T.; Kang, L.L.; Guo, Y.; et al. AM fungi alleviate phosphorus limitation and enhance nutrient competitiveness of invasive plants via mycorrhizal networks in karst areas. Front. Ecol. Evol. 2020, 8, 125. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, W.W.; Qi, S.S.; Cheng, H.; Li, Q.; Ran, Q.; Dai, Z.C.; Du, D.L.; Thomas, S.E.T. Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant Wedelia trilobata. J. Appl. Microbiol. 2021, 130, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.W.; Guo, X.; Caplan, J.S.; Li, M.Y.; Guo, W.H. Novel plant-soil feedbacks drive adaption of invasive plants to soil legacies of native plants under nitrogen deposition. Plant Soil. 2021, 467, 47–65. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.L. No evidence that modification of soil microbiota by woody invader facilitates subsequent invasion by herbaceous species. Ecol. Appl. 2023, e2807. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010. [Google Scholar]
- Li, D.J.; Mo, J.M.; Fang, Y.T.; Peng, S.L.; Gundersen, P. Impact of nitrogen deposition on forest plants. Acta Ecol. Sin. 2003, 23, 18911900, (In Chinese with English abstract). [Google Scholar]
- Huang, Z.Q.; Liu, B.; Davis, M.; Sardans, J.; Peñuelas, J.; Billings, S. Long-term nitrogen deposition linked to reduced water use efficiency in forests with low phosphorus availability. New Phytol. 2016, 210, 430–442. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, A.; Sanders, T.G.M.; Bolte, A.; Bussotti, F.; Dirnbock, T.; Johnson, J.; Penuelas, J.; Pollastrini, M.; Prescher, A.; Sardans, J.; et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ. Pollut. 2019, 244, 980–994. [Google Scholar] [CrossRef]
Nitrogen Treatment (g m−2 Year−1) | Solution Composition | Concentration (mol L−1) |
---|---|---|
0 | K2SO4 | 3.80 × 10−4 |
8 | (NH4)2SO4 | 1.52 × 10−4 |
KNO3 | 1.52 × 10−4 | |
K2SO4 | 2.28 × 10−4 | |
KCl | 1.52 × 10−4 | |
20 | (NH4)2SO4 | 3.80 × 10−4 |
KNO3 | 3.80 × 10−4 | |
KCl | 3.80 × 10−4 |
Planting Pattern (P) | Nitrogen Deposition (N) | P × N | |
---|---|---|---|
R. typhina | 981.118 *** | 21.063 *** | 32.751 *** |
A. truncatum | 42.203 *** | 0.904 ns | 2.635 ns |
AMF Inoculation (A) | Planting Pattern (P) | Nitrogen Deposition (N) | A × P | A × N | P × N | A × P × N | |
---|---|---|---|---|---|---|---|
R. typhina | |||||||
Height | 0.160 ns | 7.154 * | 27.113 *** | 0.043 ns | 0.305 ns | 0.729 ns | 0.208 ns |
Crown area | 0.073 ns | 17.930 *** | 4.956 * | 0.039 ns | 0.095 ns | 0.119 ns | 0.547 ns |
A | 346.458 *** | 6.731 * | 944.958 *** | 53.538 *** | 2.356 ns | 19.181 *** | 0.226 ns |
Chlorophyll content | 2.289 ns | 1.290 ns | 68.462 *** | 3.591 ns | 12.732 *** | 4.852 * | 3.461 * |
A. truncatum | |||||||
Height | 3.207 ns | 473.578 *** | 25.163 *** | 0.447 ns | 4.956 * | 2.413 ns | 9.761 *** |
Crown area | 4.516 * | 740.433 *** | 18.173 *** | 1.331 ns | 2.294 ns | 0.292 ns | 13.151 *** |
A | 10.649 ** | 3.474 ns | 20.586 *** | 1.829 ns | 4.661 * | 0.874 ns | 2.218 ns |
Chlorophyll content | 0.022 ns | 19.243 *** | 40.275 *** | 4.887 * | 0.038 ns | 0.491 ns | 0.061 ns |
AMF Inoculation (A) | Planting Pattern (P) | Nitrogen Deposition (N) | A × P | A × N | P × N | A × P × N | |
---|---|---|---|---|---|---|---|
R. typhina | |||||||
Root length | 133.528 *** | 8.256 ** | 21.747 *** | 48.508 *** | 3.072 ns | 15.767 *** | 10.735 *** |
Root surface area | 41.524 *** | 12.565 ** | 6.776 ** | 4.208 * | 2.572 ns | 0.466 ns | 4.340 * |
Root volume | 22.502 *** | 29.057 *** | 63.420 *** | 3.857 ns | 0.202 ns | 1.319 ns | 1.429 ns |
Root tip number | 2.246 ns | 64.494 *** | 34.906 *** | 1.172 ns | 8.582 ** | 1.592 ns | 0.014 ns |
Number of root tip branches | 51.012 *** | 1.686 ns | 3.010 ns | 3.675 ns | 1.201 ns | 4.319 * | 1.059 ns |
Root cross number | 7.669 ** | 3.217 ns | 68.090 *** | 14.696 *** | 4.589 * | 3.379 * | 19.564 *** |
A. truncatum | |||||||
Root length | 70.921 *** | 3386.634 *** | 17.924 *** | 328.094 *** | 0.276 ns | 28.437 *** | 0.234 ns |
Root surface area | 5.850 * | 932.307 *** | 13.149 *** | 165.633 *** | 1.703 ns | 11.582 *** | 1.072 ns |
Root volume | 21.700 *** | 538.551 ** | 1.034 ns | 64.479 *** | 0.024 ns | 0.119 ns | 0.336 ns |
Root tip number | 2.275 ns | 79.349 *** | 124.938 *** | 21.218 *** | 7.105 ** | 45.599 *** | 16.902 *** |
Number of root tip branches | 26.933 *** | 2108.211 *** | 68.770 *** | 265.475 *** | 0.260 ns | 44.744 *** | 1.492 ns |
Root cross number | 223.437 *** | 12,835.811 *** | 80.174 *** | 998.432 *** | 13.230 *** | 14.100 *** | 35.184 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wang, T.; Li, Y.; Li, M.; Huang, X. The Alien Invader, Rhus typhina L., Outperforms Its Native Competitor in the Scenario of Nitrogen Deposition and Arbuscular Mycorrhizal Fungi (AMF) Inoculation. Sustainability 2023, 15, 6082. https://doi.org/10.3390/su15076082
Zhao X, Wang T, Li Y, Li M, Huang X. The Alien Invader, Rhus typhina L., Outperforms Its Native Competitor in the Scenario of Nitrogen Deposition and Arbuscular Mycorrhizal Fungi (AMF) Inoculation. Sustainability. 2023; 15(7):6082. https://doi.org/10.3390/su15076082
Chicago/Turabian StyleZhao, Xianhui, Tong Wang, Yuwu Li, Mingyan Li, and Xuanrui Huang. 2023. "The Alien Invader, Rhus typhina L., Outperforms Its Native Competitor in the Scenario of Nitrogen Deposition and Arbuscular Mycorrhizal Fungi (AMF) Inoculation" Sustainability 15, no. 7: 6082. https://doi.org/10.3390/su15076082
APA StyleZhao, X., Wang, T., Li, Y., Li, M., & Huang, X. (2023). The Alien Invader, Rhus typhina L., Outperforms Its Native Competitor in the Scenario of Nitrogen Deposition and Arbuscular Mycorrhizal Fungi (AMF) Inoculation. Sustainability, 15(7), 6082. https://doi.org/10.3390/su15076082