Combined Effects of Biochar and Inhibitors on Greenhouse Gas Emissions, Global Warming Potential, and Nitrogen Use Efficiency in the Tobacco Field
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site
2.2. Field Experiments
- (1)
- T1: No fertiliser application (CK);
- (2)
- T2: Single application of special fertiliser for roasted tobacco (F);
- (3)
- T3: Special fertiliser for roasted tobacco (F) + biochar (BC) + nitrification inhibitor (MHPP);
- (4)
- T4: Special fertiliser for roasted tobacco (F) + biochar (BC) + urease inhibitor (NBPT).
2.3. Gas Sampling and Measurements
2.4. Determination of Crop Yield, Nitrogen Use Efficiency, and GWP
2.5. Soil Collection and Analyses
2.6. Data Analyses
3. Results and Discussion
3.1. Effects of BC, MHPP, and NBPT on Soil Physicochemical Properties
3.2. Effects of BC, MHPP, and NBPT on Soil CO2 Emission
3.3. Effects of BC, MHPP, and NBPT on Soil CH4 Emission
3.4. Effects of BC, MHPP, and NBPT on Soil N2O Emission
3.5. GWP and Crop Yield Response to BC, MHPP, and NBPT
3.6. Effects of BC, MHPP, and NBPT on N Uptake and NUE
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowles, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil Warming and Carbon-Cycle Feedbacks to the Climate System. Science 2002, 298, 2173–2176. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.J. World Meteorological Organisation (WMO) Report: Global Greenhouse Gas Concentrations Highest in 800,000 Years. Sci. Prog. 2017, 100, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Saarnio, S.; Heimonen, K.; Kettunen, R. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biol. Biochem. 2013, 58, 99–106. [Google Scholar] [CrossRef]
- Ni, K.; Pacholski, A.; Kage, H. Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors. Agric. Ecosyst. Environ. 2014, 197, 184–194. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Lal, R. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J. Plant Nutr. Soil Sci. 2014, 177, 651–670. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total. Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Y.; Liu, G.; Liu, Q.; Zhu, J.; Tu, C.; Amonette, J.E.; Cadisch, G.; Yong, J.W.H.; Hu, S. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil 2013, 370, 527–540. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Hawthorne, I.; Johnson, M.S.; Jassal, R.S.; Black, T.A.; Grant, N.J.; Smukler, S.M. Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil. J. Environ. Manag. 2017, 192, 203–214. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Bai, S.H.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Dong, Y.; Li, B.; Xiong, Z. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system: Six-year field observation and meta-analysis. Agric. For. Meteorol. 2019, 278, 107625. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; Zhang, T.; Du, Z.; He, Y.; Wang, X.; Shao, J.; Cao, Y.; Xue, S.; Wang, H.; et al. Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. For. Ecol. Manag. 2017, 405, 339–349. [Google Scholar] [CrossRef]
- Majumdar, D.; Kumar, S.; Pathak, H.; Jain, M.; Kumar, U. Reducing nitrous oxide emission from an irrigated rice field of North India with nitrification inhibitors. Agric. Ecosyst. Environ. 2000, 81, 163–169. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Powlson, D.; Min, J.; Shi, W. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Res. 2015, 173, 1–7. [Google Scholar] [CrossRef]
- Dawar, K.; Zaman, M.; Rowarth, J.; Blennerhassett, J.; Turnbull, M. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agric. Ecosyst. Environ. 2011, 144, 41–50. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L.; Blennerhassett, J.D.; Quin, B.F. Reducing NH3, N2O and NO3—N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biol. Fertil. Soils 2007, 44, 693–705. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, L.; Hu, S.; Compton, J.E.; Greaver, T.L.; Li, Q. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Chang. Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Suter, H.; Bai, M.; Walker, C.; Davies, R.; Mosier, A.R.; Chen, D. Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Sci. Total. Environ. 2018, 644, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Majumdar, D.; Jain, M. Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere 2003, 51, 181–195. [Google Scholar] [CrossRef]
- Malla, G.; Bhatia, A.; Pathak, H.; Prasad, S.; Jain, N.; Singh, J. Mitigating nitrous oxide and methane emissions from soil in rice–wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere 2005, 58, 141–147. [Google Scholar] [CrossRef]
- Bharati, K.; Mohanty, S.R.; Padmavathi, P.; Rao, V.R.; Adhya, T.K. Influence of Six Nitrification Inhibitors on Methane Production in a Flooded Alluvial Soil. Nutr. Cycl. Agroecosyst. 2000, 58, 389–394. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Xu, H.; Cai, Z.; Yagi, K. Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide. Nutr. Cycl. Agroecosyst. 2009, 85, 31–40. [Google Scholar] [CrossRef]
- Folina, A.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Katsenios, N.; Efthimiadou, A.; Travlos, I.; Roussis, I.; Darawsheh, M.; Papastylianou, P.; et al. Evaluation of Various Nitrogen Indices in N-Fertilizers with Inhibitors in Field Crops: A Review. Agronomy 2021, 11, 418. [Google Scholar] [CrossRef]
- Li, Z.; Xu, P.; Han, Z.; Wu, J.; Bo, X.; Wang, J.; Zou, J. Effect of biochar and DMPP application alone or in combination on nitrous oxide emissions differed by soil types. Biol. Fertil. Soils 2023, 59, 123–138. [Google Scholar] [CrossRef]
- He, T.; Yuan, J.; Luo, J.; Lindsey, S.; Xiang, J.; Lin, Y.; Liu, D.; Chen, Z.; Ding, W. Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field: A three-year study. Sci. Total. Environ. 2020, 743, 140500. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Luo, J.; Lindsey, S.; Bolan, N.; Ding, W. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Sci. Total. Environ. 2018, 628–629, 121–130. [Google Scholar] [CrossRef]
- He, T.; Yuan, J.; Xiang, J.; Lin, Y.; Luo, J.; Lindsey, S.; Liao, X.; Liu, D.; Ding, W. Combined biochar and double inhibitor application offsets NH3 and N2O emissions and mitigates N leaching in paddy fields. Environ. Pollut. 2022, 292, 118344. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Q.; Ma, J.; Liu, L.; Qu, Y.; Gong, Y.; Yang, S.; Luo, T. Heavy Metal(loids) in typical Chinese tobacco-growing soils: Concentrations, influence factors and potential health risks. Chemosphere 2020, 245, 125591. [Google Scholar] [CrossRef]
- Li, D.; Wen, L.; Yang, L.; Luo, P.; Xiao, K.; Chen, H.; Zhang, W.; He, X.; Chen, H.; Wang, K. Dynamics of soil organic carbon and nitrogen following agricultural abandonment in a karst region. J. Geophys. Res. Biogeosci. 2017, 122, 230–242. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wang, Y.H. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv. Atmos. Sci. 2003, 20, 842–844. [Google Scholar]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, 1–9. [Google Scholar] [CrossRef]
- Kroon, P.S.; Hensen, A.; van den Bulk, W.C.M.; Jongejan, P.A.C.; Vermeulen, A. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr. Cycl. Agroecosyst. 2008, 82, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Gao, W.; Cai, K.; Chen, Y.; Li, C.; Lee, X.; Cheng, H.; Zhang, Q.; Cheng, J. Effects of biochar amendment on soil carbon dioxide emission and carbon budget in the karst region of southwest China. Geoderma 2021, 385, 114895. [Google Scholar] [CrossRef]
- Piva, J.T.; Dieckow, J.; Bayer, C.; Zanatta, J.A.; de Moraes, A.; Pauletti, V.; Tomazi, M.; Pergher, M. No-till reduces global warming potential in a subtropical Ferralsol. Plant Soil 2012, 361, 359–373. [Google Scholar] [CrossRef]
- Bah, H.; Ren, X.; Wang, Y.; Tang, J.; Zhu, B. Characterizing Greenhouse Gas Emissions and Global Warming Potential of Wheat-Maize Cropping Systems in Response to Organic Amendments in Eutric Regosols, China. Atmosphere 2020, 11, 614. [Google Scholar] [CrossRef]
- Cheng, J.; Lee, X.; Gao, W.; Chen, Y.; Pan, W.; Tang, Y. Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Appl. Soil Ecol. 2017, 121, 185–192. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.Y.H.; Tan, Y.; Fan, H.; Ruan, H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci. Rep. 2016, 6, 20816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chen, Z.; Ai, Y.; Xiao, J.; Pan, D.; Li, W.; Huang, Z.; Wang, Y. Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China. Sci. Rep. 2015, 5, 14939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawar, K.; Rahman, S.U.; Fahad, S.; Alam, S.S.; Alam Khan, S.; Dawar, A.; Younis, U.; Danish, S.; Datta, R.; Dick, R.P. Influence of variable biochar concentration on yield-scaled nitrous oxide emissions, Wheat yield and nitrogen use efficiency. Sci. Rep. 2021, 11, 16774. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Akiyama, H. Effects of inhibitors and biochar on nitrous oxide emissions, nitrate leaching, and plant nitrogen uptake from urine patches of grazing animals on grasslands: A meta-analysis. Soil Sci. Plant Nutr. 2017, 63, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Deng, B.-L.; Wang, S.-L.; Xu, X.-T.; Wang, H.; Hu, D.-N.; Guo, X.-M.; Shi, Q.-H.; Siemann, E.; Zhang, L. Effects of biochar and dicyandiamide combination on nitrous oxide emissions from Camellia oleifera field soil. Environ. Sci. Pollut. Res. 2019, 26, 4070–4077. [Google Scholar] [CrossRef]
- Kannan, P.; Paramasivan, M.; Marimuthu, S.; Swaminathan, C.; Bose, J. Applying both biochar and phosphobacteria enhances Vigna mungo L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability. Agric. Ecosyst. Environ. 2021, 308, 107258. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Sagrilo, E.; Jeffery, S.; Hoffland, E.; Kuyper, T.W. Emission of CO2from biochar-amended soils and implications for soil organic carbon. GCB Bioenergy 2015, 7, 1294–1304. [Google Scholar] [CrossRef] [Green Version]
- Fidel, R.B.; Laird, D.A.; Parkin, T.B. Impact of Biochar Organic and Inorganic Carbon on Soil CO2 and N2O Emissions. J. Environ. Qual. 2017, 46, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Zhu, L. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total. Environ. 2018, 622–623, 1391–1399. [Google Scholar] [CrossRef]
- Li, J.; Kwak, J.-H.; Chang, S.; Gong, X.; An, Z.; Chen, J. Greenhouse Gas Emissions from Forest Soils Reduced by Straw Biochar and Nitrapyrin Applications. Land 2021, 10, 189. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhan, Y.; Zhu, L. Reduced carbon sequestration potential of biochar in acidic soil. Sci. Total. Environ. 2016, 572, 129–137. [Google Scholar] [CrossRef]
- Yerli, C.; Cakmakci, T.; Sahin, U. CO2 emissions and their changes with H2O emissions, soil moisture, and temperature during the wetting–drying process of the soil mixed with different biochar materials. J. Water Clim. Chang. 2022, 13, 4273–4282. [Google Scholar] [CrossRef]
- Yu, L.; Tang, J.; Zhang, R.; Wu, Q.; Gong, M. Effects of biochar application on soil methane emission at different soil moisture levels. Biol. Fertil. Soils 2013, 49, 119–128. [Google Scholar] [CrossRef]
- Walkiewicz, A.; Kalinichenko, K.; Kubaczyński, A.; Brzezińska, M.; Bieganowski, A. Usage of biochar for mitigation of CO2 emission and enhancement of CH4 consumption in forest and orchard Haplic Luvisol (Siltic) soils. Appl. Soil Ecol. 2020, 156, 103711. [Google Scholar] [CrossRef]
- Wang, E.; Yuan, N.; Lv, S.; Tang, X.; Wang, G.; Wu, L.; Zhou, Y.; Zhou, G.; Shi, Y.; Xu, L. Biochar-Based Fertilizer Decreased Soil N2O Emission and Increased Soil CH4 Uptake in a Subtropical Typical Bamboo Plantation. Forests 2022, 13, 2181. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Xu, H.; Cai, Z.; Yagi, K. Effect of timing of joint application of hydroquinone and dicyandiamide on nitrous oxide emission from irrigated lowland rice paddy field. Chemosphere 2009, 75, 1417–1422. [Google Scholar] [CrossRef]
- Datta, A.; Adhya, T. Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy. Atmos. Environ. 2014, 92, 533–545. [Google Scholar] [CrossRef]
- Jumadi, O.; Hartono, H.; Masniawati, A.; Iriany, R.N.; Makkulawu, A.T.; Inubushi, K. Emissions of nitrous oxide and methane from rice field after granulated urea application with nitrification inhibitors and zeolite under different water managements. Paddy Water Environ. 2019, 17, 715–724. [Google Scholar] [CrossRef]
- Xu, X.; Boeckx, P.; Van Cleemput, O.; Zhou, L. Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production. Nutr. Cycl. Agroecosyst. 2002, 64, 203–211. [Google Scholar] [CrossRef]
- Jiang, Y.; Qian, H.; Huang, S.; Zhang, X.; Wang, L.; Zhang, L.; Shen, M.; Xiao, X.; Chen, F.; Zhang, H.; et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 2019, 5, eaau9038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; van Groenigen, K.J.; Huang, S.; Hungate, B.A.; van Kessel, C.; Hu, S.; Zhang, J.; Wu, L.; Yan, X.; Wang, L.; et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 2017, 23, 4728–4738. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ge, T.; Liu, S.; Hu, Y.; Ye, R.; Xiao, M.; Tong, C.; Kuzyakov, Y.; Wu, J. Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 2018, 116, 369–377. [Google Scholar] [CrossRef]
- Watanabe, I.; Hashimoto, T.; Shimoyama, A. Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants. Biol. Fertil. Soils 1997, 24, 261–265. [Google Scholar] [CrossRef]
- Nie, T.; Huang, J.; Zhang, Z.; Chen, P.; Li, T.; Dai, C. The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years. Agric. Water Manag. 2023, 278, 108163. [Google Scholar] [CrossRef]
- Crill, P.; Martikainen, P.; Nykanen, H.; Silvola, J. Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biol. Biochem. 1994, 26, 1331–1339. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Zou, J.; Liu, S. Optimizing net greenhouse gas balance of a bioenergy cropping system in southeast China with urease and nitrification inhibitors. Ecol. Eng. 2015, 83, 191–198. [Google Scholar] [CrossRef]
- Xu, X.; Boeckx, P.; Wang, Y.; Huang, Y.; Zheng, X.; Hu, F.; Van Cleemput, O. Nitrous oxide and methane emissions during rice growth and through rice plants: Effect of dicyandiamide and hydroquinone. Biol. Fertil. Soils 2002, 36, 53–58. [Google Scholar] [CrossRef]
- Jiang, J.; Hu, Z.; Sun, W.; Huang, Y. Nitrous oxide emissions from Chinese cropland fertilized with a range of slow-release nitrogen compounds. Agric. Ecosyst. Environ. 2010, 135, 216–225. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Kunhikrishnan, A.; Wijesekara, H.; Xu, Y.; Tsang, D.C.; Song, H.; Ok, Y.S.; Hou, D. The potential value of biochar in the mitigation of gaseous emission of nitrogen. Sci. Total. Environ. 2018, 612, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Case, S.D.; McNamara, N.P.; Reay, D.S.; Stott, A.W.; Grant, H.K.; Whitaker, J. Biochar suppresses N2O emissions while maintaining N availability in a sandy loam soil. Soil Biol. Biochem. 2015, 81, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Manunza, B.; Deiana, S.; Pintore, M.; Gessa, C. The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biol. Biochem. 1999, 31, 789–796. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A. 3,4-Dimethylpyrazole phosphate (DMPP)—A new nitrification inhibitor for agriculture and horticulture—An introduction. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I.M. Scope and Strategies for Regulation of Nitrification in Agricultural Systems—Challenges and Opportunities. Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Tang, H.; Liu, J.; Wang, C.; Li, Y.; Ge, T.; Jones, D.L.; Wu, J. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric. Ecosyst. Environ. 2014, 188, 264–274. [Google Scholar] [CrossRef]
- Troy, S.M.; Lawlor, P.G.; Flynn, C.J.O.; Healy, M.G. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biol. Biochem. 2013, 60, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ren, J.; Zhang, Q.; Liu, C. Long-term effects of biochar addition and straw return on N2O fluxes and the related functional gene abundances under wheat-maize rotation system in the North China Plain. Appl. Soil Ecol. 2018, 135, 44–55. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol. 2016, 23, 1917–1925. [Google Scholar] [CrossRef]
- Cavigelli, M.; Robertson, G. Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem. Soil Biol. Biochem. 2001, 33, 297–310. [Google Scholar] [CrossRef]
- Chen, H.; Yin, C.; Fan, X.; Ye, M.; Peng, H.; Li, T.; Zhao, Y.; Wakelin, S.A.; Chu, G.; Liang, Y. Reduction of N2O emission by biochar and/or 3,4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria and nosZI-N2O reducer populations. Sci. Total. Environ. 2019, 694, 133658. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Xie, T.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. Ecotoxicol. Environ. Saf. 2021, 220, 112338. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, B.R.; Kim, T.H. Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward. Anim. Biosci. 2021, 34, 2023–2033. [Google Scholar] [CrossRef]
- Saud, S.; Wang, D.; Fahad, S. Improved Nitrogen Use Efficiency and Greenhouse Gas Emissions in Agricultural Soils as Producers of Biological Nitrification Inhibitors. Front. Plant Sci. 2022, 13, 854195. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Zheng, X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences 2013, 10, 2427–2437. [Google Scholar] [CrossRef] [Green Version]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total. Environ. 2021, 775, 145869. [Google Scholar] [CrossRef]
- Vitkova, J.; Kondrlova, E.; Rodny, M.; Surda, P.; Horak, J. Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil Environ. 2017, 63, 569–573. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.-Y.; et al. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total. Environ. 2022, 808, 152073. [Google Scholar] [CrossRef]
- Ali, M.A.; Kim, P.; Inubushi, K. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils. Sci. Total. Environ. 2015, 529, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, J.M. Recent research on problems in the use of urea as a nitrogen fertilizer. Fertil. Res. 1995, 42, 321–329. [Google Scholar] [CrossRef]
- Wang, D.; Guo, L.; Zheng, L.; Zhang, Y.; Yang, R.; Li, M.; Ma, F.; Zhang, X.; Li, Y. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China. Agric. Water Manag. 2019, 213, 913–921. [Google Scholar] [CrossRef]
- Tanaka, J.P.; Nardi, P.; Wissuwa, M. Nitrification inhibition activity, a novel trait in root exudates of rice. AoB PLANTS 2010, 2010, plq014. [Google Scholar] [CrossRef]
- Qin, S.; Wang, Y.; Hu, C.; Oenema, O.; Li, X.; Zhang, Y.; Dong, W. Yield-scaled N2O emissions in a winter wheat–summer corn double-cropping system. Atmos. Environ. 2012, 55, 240–244. [Google Scholar] [CrossRef]
- Dawar, K.; Khan, H.; Zaman, M.; Muller, C.; Alam, S.S.; Fahad, S.; Alwahibi, M.S.; Alkahtani, J.; Saeed, B.; Saud, S.; et al. The Effect of Biochar and Nitrogen Inhibitor on Ammonia and Nitrous Oxide Emissions and Wheat Productivity. J. Plant Growth Regul. 2021, 40, 2465–2475. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, L.; Tan, Z.; Zhang, L.; Huang, Q. Effects of pyrolysis conditions on migration and distribution of biochar nitrogen in the soil-plant-atmosphere system. Sci. Total. Environ. 2020, 723, 138006. [Google Scholar] [CrossRef]
- Alsewaileh, A.S.; Usman, A.R.; Al-Wabel, M.I. Effects of pyrolysis temperature on nitrate-nitrogen (NO3−-N) and bromate (BrO3−) adsorption onto date palm biochar. J. Environ. Manag. 2019, 237, 289–296. [Google Scholar] [CrossRef]
- He, L.; Shan, J.; Zhao, X.; Wang, S.; Yan, X. Variable responses of nitrification and denitrification in a paddy soil to long-term biochar amendment and short-term biochar addition. Chemosphere 2019, 234, 558–567. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Drulis, P.; Kriaučiūnienė, Z.; Liakas, V. The Effect of Combining N-Fertilization with Urease Inhibitors and Biological Preparations on Maize Biological Productivity. Agronomy 2022, 12, 2264. [Google Scholar] [CrossRef]
- Chen, Z.; Luo, X.; Hu, R.; Wu, M.; Wu, J.; Wei, W. Impact of Long-Term Fertilization on the Composition of Denitrifier Communities Based on Nitrite Reductase Analyses in a Paddy Soil. Microb. Ecol. 2010, 60, 850–861. [Google Scholar] [CrossRef]
- Guo, Y.J.; Di, H.J.; Cameron, K.; Li, B.; Podolyan, A.; Moir, J.; Monaghan, R.M.; Smith, L.C.; O’Callaghan, M.; Bowatte, S.; et al. Effect of 7-year application of a nitrification inhibitor, dicyandiamide (DCD), on soil microbial biomass, protease and deaminase activities, and the abundance of bacteria and archaea in pasture soils. J. Soils Sediments 2013, 13, 753–759. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of Controlled Release Fertilizers and Nitrification Inhibitors to Increase Nitrogen Use Efficiency and to Conserve Air and Water Quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Sun, L.; Li, J.; Fan, C.; Deng, J.; Zhou, W.; Aihemaiti, A.; Yalkun, U.J. The effects of biochar and nitrification inhibitors on reactive nitrogen gas (N2O, NO and NH3) emissions in intensive vegetable fields in southeastern China. Arch. Agron. Soil Sci. 2021, 67, 836–848. [Google Scholar] [CrossRef]
- He, T.; Liu, D.; Yuan, J.; Ni, K.; Zaman, M.; Luo, J.; Lindsey, S.; Ding, W. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agric. Ecosyst. Environ. 2018, 264, 44–53. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Kulhánek, M.; Száková, J.; Tlustoš, P. Co-application of high temperature biochar with 3,4-dimethylpyrazole-phosphate treated ammonium sulphate improves nitrogen use efficiency in maize. Sci. Rep. 2021, 11, 5711. [Google Scholar] [CrossRef]
T1 | T2 | T3 | T4 | |
---|---|---|---|---|
pH | 6.58 ± 0.15 b | 6.47 ± 0.02 b | 7.04 ± 0.09 a | 6.94 ± 0.17 a |
EC (μS/cm) | 151.73 ± 33.42 c | 388.67 ± 74.57 b | 881.67 ± 52.37 a | 895.00 ± 86.26 a |
TC (g/kg) | 19.19 ± 0.89 a | 19.19 ± 1.77 a | 21.49 ± 2.60 a | 20.18 ± 2.34 a |
TN (g/kg) | 1.76 ± 0.12 b | 1.83 ± 0.04 b | 2.26 ± 0.16 a | 2.07 ± 0.10 a |
TP (g/kg) | 0.92 ± 0.06 a | 1.03 ± 0.05 a | 1.07 ± 0.02 a | 0.96 ± 0.03 a |
TK (g/kg) | 13.83 ± 0.83 a | 14.37 ± 0.76 a | 12.17 ± 0.78 b | 11.67 ± 0.71 b |
AN (mg/kg) | 123.08 ± 6.94 b | 146.43 ± 5.91 a | 143.89 ± 19.65 ab | 133.97 ± 11.61 ab |
AP (mg/kg) | 13.14 ± 3.89 b | 23.94 ± 3.40 ab | 27.43 ± 9.72 a | 20.51 ± 5.44 ab |
AK (mg/kg) | 289.29 ± 122.78 b | 467.88 ± 72.14 b | 1382.41 ± 328.31 a | 1042.48 ± 138.50 a |
SOM (g/kg) | 31.20 ± 4.50 b | 29.66 ± 5.91 b | 45.23 ± 2.07 a | 41.48 ± 6.17 a |
Growth Periods | Treatment | SVWC5 | SVWC10 | SVWC20 | ST5 | ST10 | ST20 |
---|---|---|---|---|---|---|---|
REP | T1 | 13.20 ± 0.99 aC | 17.24 ± 1.03 aB | 23.79 ± 1.42 aA | 25.54 ± 0.89 aA | 24.06 ± 0.72 aAB | 22.52 ± 0.64 aB |
T2 | 13.78 ± 0.91 aC | 19.23 ± 0.90 aB | 25.75 ± 1.16 aA | 24.85 ± 1.14 aA | 22.69 ± 0.88 aAB | 21.53 ± 0.73 aB | |
T3 | 13.48 ± 1.03 aC | 18.43 ± 1.15 aB | 24.26 ± 1.08 aA | 24.12 ± 0.96 aA | 22.62 ± 0.76 aA | 21.17 ± 0.67 aA | |
T4 | 13.74 ± 0.88 aC | 18.13 ± 0.84 aB | 23.32 ± 0.94 aA | 24.91 ± 0.70 aA | 23.24 ± 0.64 aA | 22.02 ± 0.66 aA | |
VP | T1 | 20.85 ± 1.14 aC | 25.85 ± 1.17 aB | 31.11 ± 2.67 aA | 24.81 ± 0.41 aA | 23.61 ± 0.37 aA | 22.58 ± 0.22 aA |
T2 | 22.74 ± 1.24 aC | 26.73 ± 0.99 aB | 33.13 ± 2.09 aA | 24.28 ± 0.50 aA | 22.90 ± 0.35 aA | 22.04 ± 0.29 aA | |
T3 | 22.20 ± 1.15 aC | 27.58 ± 1.33 aB | 31.68 ± 2.37 aA | 23.94 ± 0.57 aA | 22.63 ± 0.43 aAB | 21.68 ± 0.32 aB | |
T4 | 21.40 ± 1.03 aC | 26.91 ± 1.06 aB | 31.23 ± 2.29 aA | 23.83 ± 0.54 aA | 22.90 ± 0.36 aA | 22.38 ± 0.28 aA | |
MP | T1 | 15.84 ± 0.75 aC | 18.85 ± 0.73 aB | 22.22 ± 0.78 aA | 25.93 ± 0.69 aA | 25.24 ± 0.61 aA | 24.68 ± 0.64 aA |
T2 | 15.48 ± 0.60 aC | 17.97 ± 0.57 aB | 20.84 ± 0.81 aA | 24.18 ± 0.69 bA | 23.93 ± 0.62 bA | 23.80 ± 0.63 bA | |
T3 | 15.33 ± 0.71 aC | 18.53 ± 0.86 aB | 21.50 ± 1.01 aA | 24.32 ± 0.71 bA | 24.14 ± 0.57 bA | 23.76 ± 0.51 bA | |
T4 | 15.01 ± 0.43 aC | 18.82 ± 0.65 aB | 20.90 ± 0.98 aA | 23.99 ± 0.43 bA | 23.61 ± 0.28 bA | 23.28 ± 0.37 bA |
Treatments | Soil Depths | ||
---|---|---|---|
5 cm | 10 cm | 20 cm | |
T1 | F = 199.14e−0.023We0.040T (R2 = 0.506) | F = 196.96e−0.022We0.045T (R2 = 0.611) | F = 197.55e−0.024We0.054T (R2 = 0.826) |
T2 | F = 180.91e−0.020We0.049T (R2 = 0.517) | F = 108.09e−0.019We0.076T (R2 = 0.727) | F = 83.60e−0.013We0.087T (R2 = 0.836) |
T3 | F = 136.46e−0.012We0.063T (R2 = 0.701) | F = 106.27e−0.010We0.077T (R2 = 0.788) | F = 88.77e−0.005We0.084T (R2 = 0.786) |
T4 | F = 147.53e−0.012We0.059T (R2 = 0.689) | F = 105.32e−0.010We0.076T (R2 = 0.763) | F = 90.74e−0.011We0.088T (R2 = 0.835) |
Growth Periods | T1 | T2 | T3 | T4 |
---|---|---|---|---|
Cumulative N2O flux (kg/ha) | ||||
REP | 0.58 ± 0.00 c | 2.60 ± 0.00 b | 3.13 ± 0.00 a | 2.44 ± 0.00 b |
VP | 0.42 ± 0.00 d | 4.79 ± 0.00 a | 2.15 ± 0.00 b | 1.88 ± 0.00 c |
MP | 0.03 ± 0.00 b | 0.32 ± 0.00 a | 0.39 ± 0.00 a | 0.26 ± 0.00 a |
Total | 1.03 ± 0.00 d | 7.72 ± 0.00 a | 5.67 ± 0.00 b | 4.58 ± 0.00 c |
EFN2O (%) | ||||
REP | / | 1.35 ± 0.00 b | 1.70 ± 0.00 a | 1.24 ± 0.00 b |
VP | / | 2.08 ± 0.00 a | 0.82 ± 0.00 b | 0.69 ± 0.00 b |
MP | / | 0.14 ± 0.00 a | 0.17 ± 0.00 a | 0.11 ± 0.00 a |
Total | / | 3.17 ± 0.00 a | 2.20 ± 0.00 b | 1.69 ± 0.00 c |
T1 | T2 | T3 | T4 | |
---|---|---|---|---|
CO2 (kg/ha) | 11,536.58 ± 0.23 c | 12,507.42 ± 0.33 b | 14,886.81 ± 0.64 a | 14,683.24 ± 0.50 a |
CH4 (g/ha) | 66.16 ± 20.05 b | 105.34 ± 17.40 a | 20.79 ± 19.27 c | 120.38 ± 21.20 a |
N2O (g/ha) | 1030.54 ± 0.02 d | 7716.30 ± 0.07 a | 5666.31 ± 0.04 b | 4583.23 ± 0.03 c |
GWP (tCO2-eq/ha) | 11.85 ± 0.00 c | 14.81 ± 0.00 b | 16.58 ± 0.00 a | 16.05 ± 0.00 a |
CO2 contribution (%) | 97.39 ± 0.00 a | 84.46 ± 0.00 c | 89.81 ± 0.00 b | 91.47 ± 0.00 b |
CH4 contribution (%) | 0.01 ± 0.00 a | 0.02 ± 0.00 a | 0.00 ± 0.00 a | 0.02 ± 0.00 a |
N2O contribution (%) | 2.59 ± 0.00 d | 15.53 ± 0.00 a | 10.19 ± 0.00 b | 8.51 ± 0.00 c |
Crop yield (t/ha) | 1.96 ± 0.15 c | 3.62 ± 0.14 b | 4.83 ± 0.35 a | 5.03 ± 0.24 a |
Yield-Scaled GWP (tCO2-eq/t) | 6.04 ± 0.00 a | 4.10 ± 0.01 b | 3.43 ± 0.00 c | 3.19 ± 0.00 c |
Growth Periods | Treatment | Dry Weight Accumulation (kg/ha) | Amount of N Uptake (kg/ha) | NUE (%) |
---|---|---|---|---|
REP | T1 | 198.38 ± 29.15 b | 6.84 ± 1.01 b | / |
T2 | 503.91 ± 27.74 a | 17.38 ± 0.96 a | 7.03 ± 0.03 a | |
T3 | 527.21 ± 84.35 a | 18.19 ± 2.91 a | 7.56 ± 0.58 a | |
T4 | 428.48 ± 54.22 a | 14.78 ± 1.87 a | 5.29 ± 0.29 b | |
VP | T1 | 353.03 ± 8.23 c | 12.18 ± 0.32 b | / |
T2 | 453.03 ± 13.02 b | 15.63 ± 0.42 b | 1.64 ± 0.00 b | |
T3 | 842.47 ± 15.12 a | 29.07 ± 0.48 a | 8.02 ± 0.02 a | |
T4 | 847.47 ± 11.12 a | 29.24 ± 0.40 a | 8.10 ± 0.00 a | |
MP | T1 | 1408.18 ± 107.87 c | 48.58 ± 3.72 c | / |
T2 | 2659.23 ± 100.99 b | 91.74 ± 3.48 b | 20.49 ± 0.03 b | |
T3 | 3458.60 ± 255.84 a | 119.32 ± 8.83 a | 33.59 ± 0.54 a | |
T4 | 3754.34 ± 176.94 a | 129.52 ± 6.10 a | 38.43 ± 0.25 a | |
Total | T1 | 1959.60 ± 149.14 a | 67.61 ± 5.15 c | / |
T2 | 3616.16 ± 140.84 a | 124.76 ± 4.86 b | 27.14 ± 0.03 b | |
T3 | 4828.28 ± 354.16 a | 166.58 ± 12.22 a | 46.99 ± 0.75 a | |
T4 | 5030.30 ± 243.29 a | 173.55 ± 8.39 a | 50.30 ± 0.34 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Tang, Y.; Gao, W.; Lee, X.; Li, H.; Hu, W.; Cheng, J. Combined Effects of Biochar and Inhibitors on Greenhouse Gas Emissions, Global Warming Potential, and Nitrogen Use Efficiency in the Tobacco Field. Sustainability 2023, 15, 6100. https://doi.org/10.3390/su15076100
Zhang T, Tang Y, Gao W, Lee X, Li H, Hu W, Cheng J. Combined Effects of Biochar and Inhibitors on Greenhouse Gas Emissions, Global Warming Potential, and Nitrogen Use Efficiency in the Tobacco Field. Sustainability. 2023; 15(7):6100. https://doi.org/10.3390/su15076100
Chicago/Turabian StyleZhang, Tongkun, Yuan Tang, Weichang Gao, Xinqing Lee, Huan Li, Wei Hu, and Jianzhong Cheng. 2023. "Combined Effects of Biochar and Inhibitors on Greenhouse Gas Emissions, Global Warming Potential, and Nitrogen Use Efficiency in the Tobacco Field" Sustainability 15, no. 7: 6100. https://doi.org/10.3390/su15076100
APA StyleZhang, T., Tang, Y., Gao, W., Lee, X., Li, H., Hu, W., & Cheng, J. (2023). Combined Effects of Biochar and Inhibitors on Greenhouse Gas Emissions, Global Warming Potential, and Nitrogen Use Efficiency in the Tobacco Field. Sustainability, 15(7), 6100. https://doi.org/10.3390/su15076100