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Abstract: Vertical drains have been widely used in soil improvement projects to accelerate con-
solidation and improve the strength of soft soil. Previous consolidation models are mainly based
on instantaneous loading, which cannot reflect the actual time-variable loading condition. This
paper presents a set of analytical solutions for consolidation with vertical drains under depth and
time-dependent loading, involving one-step loading, multi-step loading, and cyclic loading. A four-
element model, which is a combination of the Merchant model and Maxwell model, is introduced to
consider the rheological characteristics of the soil. By simulating the results of a consolidation test, it
is found that the four-element model is more accurate than the Merchant model in predicting the
changes in pore pressure and settlement during the clay consolidation process. Based on the solutions
obtained, several factors affecting consolidation behavior are investigated. It has been shown that
the rheological behavior becomes more and more obvious at the later stage of consolidation with
the decrease both in the modulus of the spring in the Kelvin body and the viscosity coefficient of
the independent dashpot. With the increase in the viscosity coefficient of the dashpot in the Kelvin
body, the rate of consolidation becomes faster at an initial stage but slower at a later stage. For cyclic
loading, the consolidation degree in each cycle reaches a maximum at the end of unloading and
reaches a minimum at the beginning of the loading.

Keywords: one-dimensional consolidation; analytical solution; pore pressure; settlement; cyclic loading

1. Introduction

Vertical drains have been widely used to accelerate the consolidation process of soft
clayey soils [1–7]. Accurate prediction of the consolidation process is of great significance
to prevent geological and environmental disasters from occurring on soft soil foundations
(e.g., the deformation and instability of foundation construction). Various consolidation
models have been established to guide the construction of vertical drain projects in soft
soil foundations, which contributes to the sustainable development of underground space.
Since Barron [2] proposed the first solution to investigate radial consolidation for vertical
drains, many studies have been performed to extend consolidation theory for vertical
drains to reflect more realistic engineering problems in the past decades [2–7]. For ex-
ample, based on Barron’s consolidation theory, Hansbo et al. [3] developed an analytical
solution for consolidation with vertical drains taking into consideration the smear effect
and well resistance. Kianfar et al. [6] analyzed the consolidation behavior for vertical
drains by incorporating the effects of vacuum preloading and non-Darcian flow. Deng
et al. [7] proposed an analytical solution to investigate radial consolidation by vertical
drains with the variation of discharge capacity. However, the above studies are based on
instantaneous loading.

In most engineering projects, the surcharge loading is time-variable, the pattern of
loading includes one-step loading, multi-step loading, cyclic loading, and so on. Therefore,
the investigation of consolidation theories with time-dependent loadings is of theoretical
and practical significance [8–12]. Leo [9] derived a series of closed-form solutions for
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the consolidation of vertical drains subjected to ramp loading. Conte and Troncone [11]
presented an analytical solution for radial consolidation with vertical drains and general
time-dependent loading. Lu et al. [12] pointed out that the loading rate and the loading
pattern have great effects on the consolidation behavior of soils with vertical drains. In
the above investigations, soft clay was treated as a linear elastic material, although the
rheological properties of soft soil should be considered.

The rheological properties of soil have important engineering significance. In recent
years, many studies of one-dimensional consolidation considering the rheological prop-
erties of soil were greatly developed [13–15], but there were few studies on consolidation
by vertical drains considering the rheological properties of soil. For consolidation theory
by vertical drains, Liu et al. [16] employed the Merchant model to study the consolidation
theory by vertical drains. Wang and Xie [17] analyzed the consolidation process by vertical
drains in the consideration of the rheological properties of soil under a semi-permeable
boundary. Huang et al. [18] obtained the analytical solutions for consolidation with vertical
drains by incorporating a fractional derivative model. Nevertheless, few of the consolida-
tion theories by vertical drains consider time-dependent loading conditions [16–19], such
as multi-step loading.

Furthermore, the above approaches all assumed that the additional stress caused
by external loads was assumed to be uniform with depth. However, many factors may
lead to the non-uniform distribution of additional stress along the depth under external
loads [14,20–28]. Lu et al. [21] obtained the solution for consolidation by vertical drains
with a linear change of additional stress with depth and analyzed the influence of stress
distribution patterns along the depth on consolidation behavior. Satwik et al. [25] per-
formed a numerical analysis of the consolidation of soft clays subjected to cyclic loading.
Chen et al. [27] developed a consolidation model for multilayered unsaturated ground
under multistage depth-dependent stress. When the effective stress in soft clay remains
unchanged, the deformation of soil does not stop but continues to develop slowly with
time (i.e., rheological characteristics). In addition, the loading condition in the actual
project often varies with time. If the consolidation model does not consider rheological
characteristics and time-dependent loading, it will improperly estimate the consolidation
process of soft clay foundations and may result in an uneven settlement or failure of upper
structures. At present, there is little research on consolidation theory by vertical drains
considering the rheological characteristics and time-dependent stress.

In this paper, the rheological characteristics of soil are considered by using a four-
element model, and the analytical solutions are developed for consolidation by vertical
drains under depth and time-dependent loadings. Using the general solutions, detailed
solutions are provided for several common constitutive models, such as the Merchant
model, Maxwell model, and linear elastic model. Finally, the influence of parameters on
consolidation behaviors is discussed carefully based on the four-element model.

2. Basic Assumptions and Mathematical Modelling

The schematic diagram for the consolidation of saturated clayey soil with a vertical
drain under depth and time-dependent loading is shown in Figure 1. As shown in Figure 1,
H is the thickness of the soil layer; r and z are the radial and vertical coordinates, respec-
tively; t is the time; and the increase in additional stress σ(z, t) can be assumed to vary
arbitrarily with time and linearly with depth, and it is assumed to have the following form:

σ(z, t) =
(

σt +
σb − σt

H
z
)

q(t) (1)

where 0 ≤ q(t) ≤ 1 is a function of time; σt and σb are the maximum additional stress at
z = 0 and z = H, respectively, and the variation pattern of additional stress along depth can
be depicted by the top-to-bottom additional stress ratio (σt/σb). Figure 2 shows the variation
of q(t) with t in different loading conditions, which represents the cases of instantaneous
loading, one-step loading, multi-step loading, and cyclic loading, respectively.
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Figure 2. Loading types: (a) instantaneous loading; (b) one-step loading; (c) multi-step loading; (d) 
cyclic loading. 

As shown in Figure 3a, a four-element model is adopted to simulate the rheological 
characteristics of the clayey soil layer in this paper. An independent spring of modulus 𝐸଴, an independent dashpot of the viscosity coefficient 𝜂଴, a Kelvin body with a spring of 
modulus 𝐸ଵ, and another dashpot of the viscosity coefficient 𝜂ଵ are included in this four-
element model. It can be seen that the model is a combination of the Merchant model 
(shown in Figure 3b) and the Maxwell model (shown in Figure 3c). Figure 3d shows a 
linear elastic model that has been widely used in geotechnical engineering. 
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Figure 2. Loading types: (a) instantaneous loading; (b) one-step loading; (c) multi-step loading;
(d) cyclic loading.

As shown in Figure 3a, a four-element model is adopted to simulate the rheological
characteristics of the clayey soil layer in this paper. An independent spring of modulus
E0, an independent dashpot of the viscosity coefficient η0, a Kelvin body with a spring
of modulus E1, and another dashpot of the viscosity coefficient η1 are included in this
four-element model. It can be seen that the model is a combination of the Merchant model
(shown in Figure 3b) and the Maxwell model (shown in Figure 3c). Figure 3d shows a
linear elastic model that has been widely used in geotechnical engineering.
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Based on the four-element model, the constitutive relationship of clayey soil can be
written as follows:

εv =
σ′v
E0

+
∫ t

0

σ′v
η0

dτ +
∫ t

0

σ′v
η1

e−(E1/η1)(t−τ)dτ (2)

where εv and σ′v are the vertical strain and the vertical effective stress, respectively.
Based on Barron’s theory of equal strain consolidation, the basic assumptions in this

study are listed as follows:

(a) Compressive strain occurs only in the vertical direction, and the radial sections of the
cell remain radial during the consolidation; that is, the equal vertical strain condition
is valid.

(b) Both vertical and radial flows obey Darcy’s law.
(c) The radial flow in the vertical drain is neglected and the radial flow from the soil into

the vertical drain at any depth is equal to the corresponding increase in flow up the
vertical drain.

(d) The constitutive relationship of the soil follows Equation (2).
(e) The radial coefficient of permeability of the smear zone is smaller than that of undis-

turbed soil, but the other physical properties of the soil in the smear zone are the same
as those in the undisturbed zone.

According to the above assumptions, the equation governing the equal strain consoli-
dation of vertical drains can be expressed as follows:−

ks
γw

(
1
r

∂us
∂r + ∂2us

∂r2

)
− kv

γw
∂2u
∂z2 = ∂εv

∂t , rw ≤ r ≤ rs

− kh
γw

(
1
r

∂un
∂r + ∂2un

∂r2

)
− kv

γw
∂2u
∂z2 = ∂εv

∂t , rs ≤ r ≤ re
(3)

where rw, rs, and re are the radius of the vertical drain, the radius of the smear zone, and
the radius of the undisturbed zone, respectively; kv, kh, and ks are the coefficient of vertical
permeability of the soil and the coefficient of radial permeability in the undisturbed zone
and in the smear zone, respectively; γw is the unit weight of water; us and un are the excess
pore water pressure within the smear zone and undisturbed zone at any point and at any
time, respectively; and u is the average excess pore water pressure throughout the entire
soil layer at a given depth, which can be obtained from the following expression:

u =
1

π(r2
e − r2

w)

(∫ rs

rw
2πr·usdr +

∫ re

rs
2πr·undr

)
(4)

According to Terzaghi’s principle of effective stress, the relationship of u and σ′v can
be given by

σ′v(z, t) =
(

σt +
σb − σt

H
z
)

q(t)− u(z, t) (5)

In the vertical flow direction, the top surface of the soil layer can be considered to be
pervious, while the bottom of the layer can be considered to be impervious. In the radial
flow direction, there is no flow occurring across the external surface of the soil cylinder.
Thus, the vertical boundary conditions and the radial external boundary condition for
consolidation with vertical drains can be expressed as follows:

u|z=0 = 0, uw|z=0 = 0 (6)

∂u
∂z

∣∣∣∣
z=H

= 0,
∂uw

∂z

∣∣∣∣
z=H

= 0 (7)

∂un

∂r

∣∣∣∣
r=re

= 0 (8)
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where uw is the excess pore water pressure in the vertical drain.
According to the continuity condition of radial flow and assumption (c), the excess

pore water pressures on both sides of the interface between the vertical drain and the smear
zone are equal, and the radial flow from the soil into the vertical drain at any depth is
equal to the corresponding increase in flow up the vertical drain. Therefore, the continuity
conditions in the interface can be expressed as follows:

us|r=rw
= uw (9)

2ks

rwkw

∂us

∂r

∣∣∣∣
r=rw

= −∂2uw

∂z2 (10)

where kw is the vertical permeability coefficient in the vertical drain.
Combined with the radial boundary conditions, after some mathematical processing,

the partial differential equations containing only u and εv are obtained as follows:

∂2u
∂z2 −

γwr2
e Fa

2kh

∂3εv

∂z2∂t
− kvr2

e Fa
2kh

∂4u
∂z4 +

γw
(
n2 − 1

)
kw

∂εv

∂t
+

kv
(
n2 − 1

)
kw

∂2u
∂z2 = 0 (11)

where Fa = n2
w

n2
w−1

(
ln nw

sw
+ kh

ks
lnsw − 3

4

)
+ s2

w
n2

w−1

(
1− kh

ks

)(
1− s2

w
4n2

w

)
+ kh

ks
1

n2
w−1

(
1− 1

4n2
w

)
,

nw = re/rw, sw = rs/rw.
From Equations (2) and (5), the differential form of εv with t can be expressed as

∂εv

∂t
= − 1

E0

[
∂u
∂t

+ β0u + β1β2

∫ t

0

∂u
∂τ

e−β2(t−τ)dτ − G(z, t)
]

(12)

where β0 = E0/η0, β1 = E0/E1, β2 = E1/η1, and the expression of G(z, t) is given by

G(z, t) =
(

σt +
σb − σt

H
z
)[

dq(t)
dt

+ β0q(t) + β1β2

∫ t

0

dq(τ)
dt

e−β2(t−τ)dτ

]
(13)

By substituting Equation (12) into Equation (11), the governing equation for consolida-
tion with vertical drains can be expressed in the following form:

(1 + Rvw)
∂2u
∂z2 + Rh

[
∂3u

∂z2∂t + β0
∂2u
∂z2 + β1β2

∫ t
0

∂3u
∂z2∂τ

e
−β2(t−τ)

dτ

]
= Rv

∂4u
∂z4 + Rw

[
∂u
∂t + β0u + β1β2

∫ t
0

∂u
∂τ e−β2(t−τ)dτ − G(z, t)

] (14)

where Rvw =
kv(n2

w−1)
kw

, Rh =
γwr2

e Fa
2khE0

, Rv =
kvr2

e Fa
2kh

, and Rw =
γw(n2

w−1)
kwE0

.
The initial condition for consolidation with vertical drains can be written as follows:

u(z, 0) = uw(z, 0) =
(

σt +
σb − σt

H
z
)

q(0) (15)

3. Solutions
3.1. Solutions for Instantaneous Loading
3.1.1. Average Excess Pore Water Pressure under Instantaneous Loading

As shown in Figure 3a, when it is the case of instantaneous loading, q(t) = q(0) = 1,
Equation (14) will become

Rv
∂4u
∂z4 − Rh

∂3u
∂z2∂t − β1β2Rh

∫ t
0

∂3u
∂z2∂τ

e
−β2(t−τ)

dτ − (1 + Rvw + Rhβ0)
∂2u
∂z2

+Rw

[
∂u
∂t + β0u + β1β2

∫ t
0

∂u
∂τ e−β2(t−τ)dτ − β0

(
σt +

σb−σt
H z

)]
= 0

(16)
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According to the vertical boundary conditions, the solution to Equation (16) can be
expressed as

u =
∞

∑
m=1

Tm(t)sin
Mz
H

(17)

where M = (2m− 1)π/2, m = 1, 2, 3 · · · , and Tm(t) is a function of t.
It is obvious that Equation (17) satisfies the boundary conditions of Equations (6) and (7).

If each function Tm(t) satisfies Equation (16), the solution can be obtained:

Rv M4

H4 Tm(t) +
Rh M2

H2 T′m(t) + β1β2
Rh M2

H2

∫ t
0 T′m(τ)e

−β2(t−τ)dτ + (1 + Rvw + Rhβ0)
M2

H2 Tm(t)+

Rw

[
T′m(t) + β0Tm(t) + β1β2

∫ t
0 T′m(τ)e−β2(t−τ)dτ − β0 Im

]
= 0

(18)

where Im =
(

2σt
M +

2(σb−σt)
M2 (−1)m+1

)
.

To obtain the analytical solution, let L[T m(t)] = Fm(s), where L[T m(t)] is the Laplace
transformation of Tm(t), and applying a Laplace transformation to Equation (18) with the
initial condition of Equation (15), the following expression can be obtained:

Fm(s) =
Im

[
Rh M2

H2 + β1β2
s+β2

(
Rh M2

H2 + Rw

)
+ Rw + Rw β0

s

]
[

Rv M4

H4 + Rh M2

H2 s + sβ1β2
s+β2

(
Rh M2

H2 + Rw

)
+ (1 + Rvw + Rhβ0)

M2

H2 + Rw(s + β0)
] (19)

Inverting the Laplace transformation of Equation (19), the expression of Tm(t) can be
obtained as follows:

Tm(t) = Im

[
Am1eλm1t + Am2eλm2t + Cm

]
(20)

where

λm1 =
1

2am

(
−bm −

√
b2

m − 4amcm

)
(21)

λm2 =
1

2am

(
−bm +

√
b2

m − 4amcm

)
(22)

Am1 = (1− Cm)
(λm1 + β2)λm2
(λm2 − λm1)β2

(23)

Am2 = (1− Cm)
(λm2 + β2)λm1
(λm1 − λm2)β2

(24)

Cm =
β0β2Rw

cm
(25)

am = Rw +
Rh M2

H2 (26)

bm =
Rv M4

H4 +
Rh M2β2

H2 + β1β2

(
Rh M2

H2 + Rw

)
+ (1 + Rvw + Rhβ0)

M2

H2 + Rw(β0 + β2) (27)

cm = β2

[
Rv M4

H4 + (1 + Rvw + Rhβ0)
M2

H2 + Rwβ0

]
(28)

Thus, the expression of the average excess pore water pressure u can be written
as follows:

u = ∑∞
m=1 Im

[
Am1eλm1t + Am2eλm2t + Cm

]
sin

Mz
H

(29)
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3.1.2. The Overall Average Degree of Consolidation under Instantaneous Loading

After the expression for average excess pore water pressure u is known, the overall
average degree of consolidation U can be obtained as follows:

U =

∫ H
0 σ(z, t)dz−

∫ H
0 udz

1
2 (σt + σb)H

= 1− 2
(σt + σb)

∑∞
m=1

Im

M

[
Am1eλm1t + Am2eλm2t + Cm

]
(30)

3.2. Solutions for One-Step Loading
3.2.1. Average Excess Pore Water Pressure under One-Step Loading

As shown in Figure 2b, the function of time q(t) for one-step loading can be written
as follows:

q(t) =
{ t

t1
, 0 ≤ t ≤ t1

1, t ≥ t1
(31)

The solution to Equation (14) under the one-step loading condition can be solved by
two methods.

(i) Method 1

As the boundary conditions have not changed, the solution to Equation (14) can also
be expressed as Equation (17). Thus, the following differential equation should be satisfied
for each function Tm(t):

Rv M4

H4 Tm(t) +
Rh M2

H2 T′m(t) + β1β2
Rh M2

H2

∫ t
0 T′m(τ)e

−β2(t−τ)dτ + (1 + Rvw + Rhβ0)
M2

H2 Tm(t)+

Rw

[
T′m(t) + β0Tm(t) + β1β2

∫ t
0 T′m(τ)e−β2(t−τ)dτ − ImQ(t)

]
= 0

(32)

where Q(t) is given by

Q(t) =
dq(t)

dt
+ β0q(t) + β1β2

∫ t

0

dq(τ)
dt

e−β2(t−τ)dτ (33)

Same as before, L[T m(t)] = Fm(s), where L[T m(t)] is the Laplace transformation of
Tm(t), and applying a Laplace transformation to Equation (32) with the initial condition of
Equation (15), the following expression can be obtained:

Fm(s) = ImRwFm1(s)L[Q(t)] (34)

where L[T m(t)] = Fm(s), and the expression of Fm1(s) is as follows:

Fm1(s) =
1[

Rv M4

H4 + Rh M2

H2 s + sβ1β2
s+β2

(
Rh M2

H2 + Rw

)
+ (1 + Rvw + Rhβ0)

M2

H2 + Rw(s + β0)
] (35)

Applying an inverse Laplace transformation to Equation (35), the following expression
can be obtained:

L−1[Fm1(s)] =
(β2 + λm1)

(λm1 − λm2)am
eλm1t +

(β2 + λm2)

(λm2 − λm1)am
eλm2t (36)

where expressions for λm1, λm2, and am are given in Equations (21), (22) and (26), respectively.
Then, applying an inverse Laplace transformation to Equation (34), the following

expression can be obtained:

Tm(t) = L−1[Fm(s)] = ImRw

∫ t

0
L−1[Fm1(s)]Q(t− τ)dτ (37)

Substituting Equations (33), (34), and (36) into Equation (37), expressions for average
excess pore water pressure u will be obtained as follows:
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1. When 0 ≤ t ≤ t1 (loading phase),

Tm(t) =
Im

t1

[
Am1

λm1
[e λm1t − 1

]
+

Am2

λm2
[e λm2t − 1

]
+ Cmt

]
(38)

u = ∑∞
m=1

Im

t1

[
Am1

λm1
[e λm1t − 1

]
+

Am2

λm2
[e λm2t − 1

]
+ Cmt

]
sin

Mz
H

(39)

2. When t ≥ t1 (constant loading phase),

Tm(t) =
Im

t1

[
Am1

λm1

[
eλm1t − eλm1(t−t1)

]
+

Am2

λm2

[
eλm2t − eλm2(t−t1)

]
+ Cmt1

]
(40)

u = ∑∞
m=1

Im

t1

[
Am1

λm1

[
eλm1t − eλm1(t−t1)

]
+

Am2

λm2

[
eλm2t − eλm2(t−t1)

]
+ Cmt1

]
sin

Mz
H

(41)

where expressions for λm1, λm2, Am1, Am2, and Cm are given in Equations (21)–(25),
respectively.

(ii) Method 2

According to Xie et al. [13], the expression for average excess pore water pressure can
be obtained based on the following equation:

ut =
∫ t

0
u(t− τ)

dq(τ)
dτ

dτ (42)

where q(t) is the function of time shown in Equation (31), and u(t) and ut are average
excess pore water pressures under instantaneous loading and under one-step loading,
respectively.

Substituting Equations (29) and (31) into Equation (42), the solution to Equation (14) is
same as Equations (39) and (41). Hence, these two methods can both be used for obtaining
solutions to Equation (14) under the one-step loading condition.

3.2.2. The Overall Degree of Consolidation under One-Step Loading

When the average excess pore water pressure u is known, the overall average degree
of consolidation U can be expressed as follows:

U =

∫ H
0 σ(z, t)dz−

∫ H
0 udz

1
2 (σt + σb)H

(43)

Substituting Equations (1), (31), (39), and (41) into Equation (43), the following expres-
sion can be obtained:

1. When 0 ≤ t ≤ t1 (loading phase),

U =
t
t1
− 2

(σt + σb)
∑∞

m=1
Im

Mt1

[
Am1

λm1
[e λm1t − 1

]
+

Am2

λm2
[e λm2t − 1

]
+ Cmt

]
(44)

2. When t ≥ t1 (constant loading phase),

U = 1− 2
(σt + σb)

∑∞
m=1

Im

Mt1

[
Am1

λm1

[
eλm1t − eλm1(t−t1)

]
+

Am2

λm2

[
eλm2t − eλm2(t−t1)

]
+ Cmt1

]
(45)

3.3. Solutions for Multi-Step Loading

In coastal regions, considering that the strength of soil is usually very small, the rapid
rate of loading may lead to the instability of the ground. Therefore, multi-step loading,
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as shown in Figure 3c, is often employed. For this case, the function of time q(t) can be
written as follows:

q(t) =
{

qi−1 + δi(t− t2i−2), t2i−2 ≤ t ≤ t2i−1
qi, t2i−1 ≤ t ≤ t2i

(46)

where δi = (qi − qi−1)/(t2i−1 − t2i−2),q0 = 0, t0 = 0; i denotes the ith step of loading, i has
the values of 1, 2, . . . i, and q∞ = 1.

3.3.1. Average Excess Pore Water Pressure under Multi-Step Loading

Substituting Equations (29) and (46) into Equation (42), the solution to Equation (14)
can be expressed in the following form:

1. For t2i−2 ≤ t ≤ t2i−1 (loading phase),

u = ∑∞
m=1 Im

[∑i−1
k=1 (∗)

]
+ δi


Am1
λm1
·[e λm1(t−t2i−2) − 1

]
+ Am2

λm2
·

[e λm1(t−t2i−2) − 1
]
+ Cm(t− t2i−2)


sin

Mz
H

(47)

where

(∗) = δk


Am1
λm1
·
[
eλm1(t−t2k−2) − eλm1(t−t2k−1)

]
+ Am2

λm2
·

[e λm2(t−t2k−2) − eλm2(t−t2k−1)
]
+ Cm(t2k−1 − t2k−2)

 (48)

2. For t2i−1 ≤ t ≤ t2i (constant loading phase),

u = ∑∞
m=1 Im

{[
∑i

k=1 (∗)
]}

sin
Mz
H

(49)

where expressions for λm1, λm2, Am1, Am2 and Cm are given in Equations (21)–(25),
respectively; and (∗) is given in Equation (48).

3.3.2. The Overall Degree of Consolidation under Multi-Step Loading

Once the expression for average excess pore water pressure u is found, the overall
average degree of consolidation U can be obtained from Equation (43).

Substituting Equations (1), (46), (47), and (49) into Equation (43), the following expres-
sion can be obtained:

1. For t2i−2 ≤ t ≤ t2i−1 (loading phase),

U = qi−1 + δi(t− t2i−2)− 2
(σt+σb)

∑∞
m=1

Im
M

{[
∑i−1

k=1 (∗)
]
+ δi

{
Am1
λm1
·[e λm1(t−t2i−2) − 1

]
+ Am2

λm2
·[eλm1(t−t2i−2) − 1] + Cm(t− t2i−2)

}}
(50)

2. For t2i−1 ≤ t ≤ t2i (constant loading phase),

U = qi −
2

(σt + σb)
∑∞

m=1
Im

M

{[
∑i

k=1 (∗)
]}

(51)

where (∗) is given in Equation (48).

3.4. Solutions for Cyclic Loading

The function of time q(t) shown in Figure 2d represents the cyclic loading condition,
which can be expressed in the following form:

q(t) =


(
( 1

αt1
)[t − (N − 1)βt1],(N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1

1,[(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1 − α)]t1
)

(
−( q0

αt1
)[t − (N − 1)βt1 − t1],[(N − 1)β + (1 − α)]t1 ≤ t ≤ [(N − 1)β + 1]t1

0,[(N − 1)β + 1]t1 ≤ t ≤ Nβt1
)

(52)
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3.4.1. Average Excess Pore Water Pressure under Cyclic Loading

Substituting Equations (29) and (52) into Equation (42), the solution to Equation (14)
can be expressed in the following form:

1. For (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1 (loading phase),

u = ∑∞
m=1

Im

αt1
· f1(t)·sin

Mz
H

(53)

where

f1(t) =
[
∑N−1

n=1 (∗)
]
+


Am1
λm1
·
[
eλm1t−λm1(N−1)βt1 − 1

]
+ Am2

λm2
·[

eλm2t−λm2(N−1)βt1 − 1
]
+ Cm[t− (N − 1)βt1]

 (54)

(∗) = ∑2
j=1

{
Amj

λmj

[
eλmjt−λmj(n−1)βt1 − eλmjt−λmj [(n−1)β+α]t1

−eλmjt−λmj [(n−1)β+(1−α)]t1 + eλmjt−λmj [(n−1)β+1]t1

]}
(55)

2. For [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1 (constant loading phase),

u = ∑∞
m=1

Im

αt1
· f2(t)·sin

Mz
H

(56)

where

f2(t) =
[
∑N−1

n=1 (∗)
]
+


Am1
λm1
·
[
eλm1t−λm1(N−1)βt1 − eλm1t−λm1[(N−1)β+α]t1

]
+ Am2

λm2
·[

eλm2t−λm2(N−1)βt1 − eλm2t−λm2[(N−1)β+α]t1
]
+ Cmαt1

 (57)

3. For [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1(unloading phase),

u = ∑∞
m=1

Im

αt1
· f3(t)·sin

Mz
H

(58)

where

f3(t) =
[
∑N−1

n=1 (∗)
]
+ ∑2

j=1

{
Amj
λmj

[
eλmjt−λmj(N−1)βt1 − eλmjt−λmj [(N−1)β+α]t1

−eλmjt−λmj [(N−1)β+(1−α)]t1 + 1

]}
+

Cm{[(N − 1)β + 1]t1 − t}
(59)

4. For [(N − 1)β + 1]t1 ≤ t ≤ Nβt1 (zero-loading phase),

u = ∑∞
m=1

Im

αt1
· f4(t)·sin

Mz
H

(60)

where
f4(t) =

[
∑N

n=1(∗)
]

(61)

where expressions for λm1, λm2, Am1, Am2, and Cm are given in Equations (21)–(25),
respectively, and (∗) is given in Equation (55).

3.4.2. The Overall Average Degree of Consolidation under Cyclic Loading

Once the expression for average excess pore water pressure u is found, the overall
average degree of consolidation U can be obtained from Equation (43).

Substituting Equations (1), (52), (53), (56), (58), and (60) into Equation (43), the follow-
ing expression can be obtained:
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1. For (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1 (loading phase),

U =
1

αt1
[t− (N − 1)βt1]−

2
(σt + σb)

∑∞
m=1

Im

Mαt1
· f1(t) (62)

2. For [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1 (constant loading phase),

U = 1− 2
(σt + σb)

∑∞
m=1

Im

Mαt1
· f2(t) (63)

3. For [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1 (unloading phase),

U =
1

αt1
{[(N − 1)β+1]t1 − t} − 2

(σt + σb)
∑∞

m=1
Im

Mαt1
· f3(t) (64)

4. For [(N − 1)β + 1]t1 ≤ t ≤ Nβt1 (zero-loading phase),

U = − 2
(σt + σb)

∑∞
m=1

Im

Mαt1
· f4(t) (65)

4. Special Cases
4.1. Simplification of the Model

It is obvious that the constitutive model shown in Figure 3b–d can be simplified by
the four-element model shown in Figure 3a.

1. If η0 → ∞ (i.e., β0 → 0), the Merchant model is adopted. Hence, the corresponding
coefficients given as Equations (21)–(28) will be simplified as follows:

Am1 =
(λm1 + β2)λm2
(λm2 − λm1)β2

(66)

Am2 =
(λm2 + β2)λm1
(λm1 − λm2)β2

(67)

Cm = 0 (68)

bm =
Rv M4

H4 +
Rh M2β2

H2 + β1β2

(
Rh M2

H2 + Rw

)
+ (1 + Rvw)

M2

H2 + Rwβ2 (69)

cm = β2

[
Rv M4

H4 + (1 + Rvw)
M2

H2

]
(70)

2. If E1 → ∞ (i.e., β1 → 0) or η1 → ∞ (i.e., β2 → 0), the Maxwell model is considered.
Thus, the corresponding coefficients given in Equations (21)–(28) will be simplified
as follows:

λm1 = − bm

am
(71)

λm2 = 0 (72)

Am1 = (1− Cm) (73)

Am2 = 0 (74)

Cm =
β0Rw

bm
(75)

bm =
Rv M4

H4 + (1 + Rvw + Rhβ0)
M2

H2 + Rwβ0 (76)
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3. If η0 → ∞ and E1 → ∞ (i.e., β0 → 0 and β1 → 0) or η0 → ∞ and η1 → ∞ (i.e.,
β0 → 0 and β1 → 0), the linear elastic model is adopted. Hence, the corresponding
coefficients given in Equations (21)–(28) will be simplified as follows:

Am1 = 1 (77)

bm =
Rv M4

H4 + (1 + Rvw)
M2

H2 (78)

4.2. Solutions for Different Constitutive Models and Loading Types

According to the above methods, all the solutions under different constitutive models
and loading types can be obtained. Since the solutions for the four-element model have
been given above under different loading types, only the three other constitutive models as
shown in Figure 3b–d are given here. Tables 1–4 show solutions for different constitutive
models under instantaneous loading, one-step loading, multi-step loading, and cyclic
loading, respectively.

Table 1. Solutions for different constitutive models under instantaneous loading.

Model Average Excess Pore Water Pressure and Overall
Average Degree of Consolidation

Merchant model
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Model Average Excess Pore Water Pressure and Overall Average Degree of 
Consolidation 

Merchant model 

E0

E1

η1

 

𝑢ത = ⎩⎪⎨
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𝑈ഥ =
⎩⎪⎨
⎪⎧௧భ௧ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ ൣeఒ೘మ௧ − eఒ೘మ(௧ି௧భ)൧ቑ ,ஶ௠ୀଵ                𝑡 ≥ 𝑡ଵ          

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in 
Equations (21), (22), (66) and (67), respectively.  

Maxwell model 
E0 η0

 
𝑢ത = ቐ∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + 𝐶௠𝑡ቃ sin ெ௭ுஶ௠ୀଵ ,                0 ≤ 𝑡 ≤ 𝑡ଵ ∑ ூ೘௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+𝐶௠𝑡ଵቅ sin ெ௭ு ,ஶ௠ୀଵ 𝑡 ≥ 𝑡ଵ            

u = ∑∞
m=1 Im

[
Am1eλm1t + Am2eλm2t

]
sin Mz

H

U = 1− 2
(σt+σb)

∑∞
m=1

Im
M

[
Am1eλm1t + Am2eλm2t

]
where expressions for λm1, λm2, Am1 and Am2 are given in

Equations (21), (22), (66) and (67), respectively.

Maxwell model
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E0 η0

 

𝑢ത = ∑ 𝐼௠ൣ𝐴௠ଵeఒ೘భ௧ + 𝐶௠൧sin ெ௭ுஶ௠ୀଵ   𝑈ഥ = 1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൣ𝐴௠ଵeఒ೘భ௧ + 𝐶௠൧ஶ௠ୀଵ   

where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), 
(73), and (75), respectively. 

Linear elastic 
model 

E0

 

𝑢ത = ∑ 𝐼௠𝐴௠ଵeఒ೘భ௧sin ெ௭ுஶ௠ୀଵ   𝑈ഥ = 1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ 𝐴௠ଵeఒ೘భ௧ஶ௠ୀଵ   

where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and 
(77), respectively.  

Table 2. Solutions for different constitutive models under one-step loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of 
Consolidation 

Merchant model 

E0

E1

η1

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃ sin ெ௭ுஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

∑ ூ೘௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ [eఒ೘మ௧ − eఒ೘మ(௧ି௧భ)]ቑ sin ெ௭ு ,ஶ௠ୀଵ               𝑡 ≥ 𝑡ଵ          

𝑈ഥ =
⎩⎪⎨
⎪⎧௧భ௧ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ ൣeఒ೘మ௧ − eఒ೘మ(௧ି௧భ)൧ቑ ,ஶ௠ୀଵ                𝑡 ≥ 𝑡ଵ          

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in 
Equations (21), (22), (66) and (67), respectively.  

Maxwell model 
E0 η0

 
𝑢ത = ቐ∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + 𝐶௠𝑡ቃ sin ெ௭ுஶ௠ୀଵ ,                0 ≤ 𝑡 ≤ 𝑡ଵ ∑ ூ೘௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+𝐶௠𝑡ଵቅ sin ெ௭ு ,ஶ௠ୀଵ 𝑡 ≥ 𝑡ଵ            

u = ∑∞
m=1 Im

[
Am1eλm1t + Cm

]
sin Mz

H

U = 1− 2
(σt+σb)

∑∞
m=1

Im
M

[
Am1eλm1t + Cm

]
where expressions for λm1, Am1 and Cm are given in

Equations (71), (73), and (75), respectively.

Linear elastic model
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Table 2. Solutions for different constitutive models under one-step loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of 
Consolidation 

Merchant model 

E0

E1

η1

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃ sin ெ௭ுஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

∑ ூ೘௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ [eఒ೘మ௧ − eఒ೘మ(௧ି௧భ)]ቑ sin ெ௭ு ,ஶ௠ୀଵ               𝑡 ≥ 𝑡ଵ          

𝑈ഥ =
⎩⎪⎨
⎪⎧௧భ௧ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ
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where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in 
Equations (21), (22), (66) and (67), respectively.  

Maxwell model 
E0 η0

 
𝑢ത = ቐ∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + 𝐶௠𝑡ቃ sin ெ௭ுஶ௠ୀଵ ,                0 ≤ 𝑡 ≤ 𝑡ଵ ∑ ூ೘௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+𝐶௠𝑡ଵቅ sin ெ௭ு ,ஶ௠ୀଵ 𝑡 ≥ 𝑡ଵ            

u = ∑∞
m=1 Im Am1eλm1tsin Mz

H

U = 1− 2
(σt+σb)

∑∞
m=1

Im
M Am1eλm1t

where expressions for λm1 and Am1 are given in
Equations (71) and (77), respectively.

Table 2. Solutions for different constitutive models under one-step loading.

Model Average Excess Pore Water Pressure and Overall
Average Degree of Consolidation

Merchant model
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model 
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Table 2. Solutions for different constitutive models under one-step loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of 
Consolidation 

Merchant model 

E0

E1

η1

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃ sin ெ௭ுஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

∑ ூ೘௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ [eఒ೘మ௧ − eఒ೘మ(௧ି௧భ)]ቑ sin ெ௭ு ,ஶ௠ୀଵ               𝑡 ≥ 𝑡ଵ          

𝑈ഥ =
⎩⎪⎨
⎪⎧௧భ௧ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ ൣeఒ೘మ௧ − eఒ೘మ(௧ି௧భ)൧ቑ ,ஶ௠ୀଵ                𝑡 ≥ 𝑡ଵ          

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in 
Equations (21), (22), (66) and (67), respectively.  

Maxwell model 
E0 η0

 
𝑢ത = ቐ∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + 𝐶௠𝑡ቃ sin ெ௭ுஶ௠ୀଵ ,                0 ≤ 𝑡 ≤ 𝑡ଵ ∑ ூ೘௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+𝐶௠𝑡ଵቅ sin ெ௭ு ,ஶ௠ୀଵ 𝑡 ≥ 𝑡ଵ            

u =
∑∞

m=1
Im
t1

[
Am1
λm1

(eλm1t − 1) + Am2
λm2

(eλm2t − 1)
]
sin Mz

H , 0 ≤ t ≤ t1

∑∞
m=1

Im
t1


Am1
λm1

[
eλm1t − eλm1(t−t1)

]
+ Am2

λm2

[
eλm2t − eλm2(t−t1)

] sin Mz
H , t ≥ t1

U =
t1
t −

2
(σt+σb)

∑∞
m=1

Im
Mt1

[
Am1
λm1

(eλm1t − 1) + Am2
λm2

(eλm2t − 1)
]
, 0 ≤ t ≤ t1

1− 2
(σt+σb)

∑∞
m=1

Im
Mt1


Am1
λm1

[
eλm1t − eλm1(t−t1)

]
+ Am2

λm2

[
eλm2t − eλm2(t−t1)

] , t ≥ t1

where expressions for λm1, λm2, Am1 and Am2 are given in
Equations (21), (22), (66) and (67), respectively.
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Table 2. Cont.

Model Average Excess Pore Water Pressure and Overall
Average Degree of Consolidation
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where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and 
(77), respectively.  

Table 2. Solutions for different constitutive models under one-step loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of 
Consolidation 

Merchant model 

E0

E1

η1

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃ sin ெ௭ுஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

∑ ூ೘௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ [eఒ೘మ௧ − eఒ೘మ(௧ି௧భ)]ቑ sin ெ௭ு ,ஶ௠ୀଵ               𝑡 ≥ 𝑡ଵ          

𝑈ഥ =
⎩⎪⎨
⎪⎧௧భ௧ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + ஺೘మఒ೘మ (eఒ೘మ௧ − 1)ቃஶ௠ୀଵ , 0 ≤ 𝑡 ≤ 𝑡ଵ

1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቐ ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+ ஺೘మఒ೘మ ൣeఒ೘మ௧ − eఒ೘మ(௧ି௧భ)൧ቑ ,ஶ௠ୀଵ                𝑡 ≥ 𝑡ଵ          

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in 
Equations (21), (22), (66) and (67), respectively.  

Maxwell model 
E0 η0

 
𝑢ത = ቐ∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1) + 𝐶௠𝑡ቃ sin ெ௭ுஶ௠ୀଵ ,                0 ≤ 𝑡 ≤ 𝑡ଵ ∑ ூ೘௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧+𝐶௠𝑡ଵቅ sin ெ௭ு ,ஶ௠ୀଵ 𝑡 ≥ 𝑡ଵ            

u =

 ∑∞
m=1

Im
t1

[
Am1
λm1

(eλm1t − 1) + Cmt
]
sin Mz

H , 0 ≤ t ≤ t1

∑∞
m=1

Im
t1

{
Am1
λm1

[
eλm1t − eλm1(t−t1)

]
+Cmt1

}
sin Mz

H ,t ≥ t1

U =
t1
t −

2
(σt+σb)

∑∞
m=1

Im
Mt1

[
Am1
λm1

(
eλm1t − 1

)
+ Cmt

]
, 0 ≤ t ≤ t1

1− 2
(σt+σb)

∑∞
m=1

Im
Mt1

{
Am1
λm1

[
eλm1t − eλm1(t−t1)

]
+ Cmt1

}
,t ≥ t1

where expressions for λm1, Am1 and Cm are given in
Equations (71), (73) and (75), respectively.

Linear elastic model
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𝑢ത = ቐ ∑ ூ೘௧భ ቂ஺೘భఒ೘భ (eఒ೘భ௧ − 1)ቃ sin ெ௭ுஶ௠ୀଵ ,                0 ≤ 𝑡 ≤ 𝑡ଵ ∑ ூ೘௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧ቅ sin ெ௭ு ,ஶ௠ୀଵ 𝑡 ≥ 𝑡ଵ            

𝑈ഥ = ቐ௧భ௧ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቂ஺೘భఒ೘భ ൫eఒ೘భ௧ − 1൯ቃஶ௠ୀଵ ,                0 ≤ 𝑡 ≤ 𝑡ଵ1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧ቅ ,ஶ௠ୀଵ  𝑡 ≥ 𝑡ଵ         

where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and 
(77), respectively.  

Table 3. Solutions for different constitutive models under multi-step loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation 

Merchant model 

E0

E1

η1

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ 𝐼௠ ൞ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ቐ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1] +஺೘మఒ೘మ [eఒ೘భ(௧ି௧మ೔షమ) − 1] ቑൢ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ

∑ 𝐼௠൛ൣ∑ (∗)௜௞ୀଵ ൧ൟsin ெ௭ு ,ஶ௠ୀଵ                                                                 𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

𝑈ഥ =
⎩⎪⎪⎨
⎪⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ⎩⎪⎨

⎪⎧ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ∙ ቐ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1] +஺೘మఒ೘మ [eఒ೘భ(௧ି௧మ೔షమ) − 1] ቑ⎭⎪⎬
⎪⎫ஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟ,ஶ௠ୀଵ                                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in Equations (21), (22), (66) and (67), 
respectively; and  (∗) = ∑ 𝛿௞ ൜஺೘ೕఒ೘ೕ ∙ [eఒ೘ೕ(௧ି௧మೖషమ) − eఒ೘ೕ(௧ି௧మೖషభ)]ൠଶ௝ୀଵ   

Maxwell model 
E0 η0

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ 𝐼௠ ቐൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡቑ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ   
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𝑈ഥ = ⎩⎪⎨
⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൞ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ +𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡൢஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ  

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟஶ௠ୀଵ ,                                                                𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜         

where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), (73) and (75), respectively; and  (∗) = 𝛿௞ ቄ஺೘భఒ೘భ ∙ [eఒ೘భ(௧ି௧మೖషమ) − eఒ೘భ(௧ି௧మೖషభ)] + 𝐶௠(𝑡ଶ௞ିଵ − 𝑡ଶ௞ିଶ)]ቅ  

Linear elastic model 
E0

 

𝑢ത = ቐ∑ 𝐼௠ ቄൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]ቅ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ ∑ 𝐼௠ൣ∑ (∗)௜௞ୀଵ ൧sin ெ௭ு ,ஶ௠ୀଵ                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜      

𝑈ഥ = ⎩⎪⎨
⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൝ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ +𝛿௜ ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]ൡஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟஶ௠ୀଵ ,                                                             𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜       

where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and (77), respectively; and (∗) = 𝛿௞ ஺೘భఒ೘భ ∙ [eఒ೘భ(௧ି௧మೖషమ) − eఒ೘భ(௧ି௧మೖషభ)]  

Table 4. Solutions for different constitutive models under cyclic loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation 

u =

 ∑∞
m=1

Im
t1

[
Am1
λm1

(eλm1t − 1)
]
sin Mz

H , 0 ≤ t ≤ t1

∑∞
m=1

Im
t1

{
Am1
λm1

[
eλm1t − eλm1(t−t1)

]}
sin Mz

H ,t ≥ t1

U =


t1
t −

2
(σt+σb)

∑∞
m=1

Im
Mt1

[
Am1
λm1

(
eλm1t − 1

)]
, 0 ≤ t ≤ t1

1− 2
(σt+σb)

∑∞
m=1

Im
Mt1

{
Am1
λm1

[
eλm1t − eλm1(t−t1)

]}
,t ≥ t1

where expressions for λm1 and Am1 are given in
Equations (71) and (77), respectively.

Table 3. Solutions for different constitutive models under multi-step loading.

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation
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Merchant model 
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E1
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𝑢ത = ⎩⎪⎨
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∑ 𝐼௠൛ൣ∑ (∗)௜௞ୀଵ ൧ൟsin ெ௭ு ,ஶ௠ୀଵ                                                                 𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

𝑈ഥ =
⎩⎪⎪⎨
⎪⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ⎩⎪⎨

⎪⎧ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ∙ ቐ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1] +஺೘మఒ೘మ [eఒ೘భ(௧ି௧మ೔షమ) − 1] ቑ⎭⎪⎬
⎪⎫ஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟ,ஶ௠ୀଵ                                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in Equations (21), (22), (66) and (67), 
respectively; and  (∗) = ∑ 𝛿௞ ൜஺೘ೕఒ೘ೕ ∙ [eఒ೘ೕ(௧ି௧మೖషమ) − eఒ೘ೕ(௧ି௧మೖషభ)]ൠଶ௝ୀଵ   

Maxwell model 
E0 η0

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ 𝐼௠ ቐൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡቑ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ   

∑ 𝐼௠൛ൣ∑ (∗)௜௞ୀଵ ൧ൟsin ெ௭ு ,ஶ௠ୀଵ                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜       

𝑈ഥ = ⎩⎪⎨
⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൞ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ +𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡൢஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ  

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟஶ௠ୀଵ ,                                                                𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜         

where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), (73) and (75), respectively; and  (∗) = 𝛿௞ ቄ஺೘భఒ೘భ ∙ [eఒ೘భ(௧ି௧మೖషమ) − eఒ೘భ(௧ି௧మೖషభ)] + 𝐶௠(𝑡ଶ௞ିଵ − 𝑡ଶ௞ିଶ)]ቅ  
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𝑈ഥ = ⎩⎪⎨
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Table 4. Solutions for different constitutive models under cyclic loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation 

u =


∑∞

m=1 Im


[
∑i−1

k=1 (∗)
]
+ δi


Am1
λm1

[e λm1(t−t2i−2) − 1
]
+

Am2
λm2

[e
λm1(t−t2i−2) − 1

] 
sin Mz

H , t2i−2 ≤ t ≤ t2i−1

∑∞
m=1 Im

{[
∑i

k=1 (∗)
]}

sin Mz
H , t2i−1 ≤ t ≤ t2i

U =
qi−1 + δi(t− t2i−2)− 2

(σt+σb)
∑∞

m=1
Im
M


[
∑i−1

k=1(∗)
]
+ δi·

Am1
λm1

[e λm1(t−t2i−2) − 1
]
+

Am2
λm2

[e λm1(t−t2i−2) − 1
] 

, t2i−2 ≤ t ≤ t2i−1

qi − 2
(σt+σb)

∑∞
m=1

Im
M

{[
∑i

k=1 (∗)
]}

, t2i−1 ≤ t ≤ t2i

where expressions for λm1, λm2, Am1 and Am2 are given in Equations (21), (22), (66) and (67),
respectively; and

(∗) = ∑2
j=1 δk

{
Amj
λmj
·
[
eλmj(t−t2k−2) − eλmj(t−t2k−1)

]}

Maxwell model
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∑ 𝐼௠൛ൣ∑ (∗)௜௞ୀଵ ൧ൟsin ெ௭ு ,ஶ௠ୀଵ                                                                 𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

𝑈ഥ =
⎩⎪⎪⎨
⎪⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ⎩⎪⎨

⎪⎧ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ∙ ቐ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1] +஺೘మఒ೘మ [eఒ೘భ(௧ି௧మ೔షమ) − 1] ቑ⎭⎪⎬
⎪⎫ஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟ,ஶ௠ୀଵ                                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in Equations (21), (22), (66) and (67), 
respectively; and  (∗) = ∑ 𝛿௞ ൜஺೘ೕఒ೘ೕ ∙ [eఒ೘ೕ(௧ି௧మೖషమ) − eఒ೘ೕ(௧ି௧మೖషభ)]ൠଶ௝ୀଵ   

Maxwell model 
E0 η0

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ 𝐼௠ ቐൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡቑ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ   

∑ 𝐼௠൛ൣ∑ (∗)௜௞ୀଵ ൧ൟsin ெ௭ு ,ஶ௠ୀଵ                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜       

𝑈ഥ = ⎩⎪⎨
⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൞ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ +𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡൢஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ  

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟஶ௠ୀଵ ,                                                                𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜         

where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), (73) and (75), respectively; and  (∗) = 𝛿௞ ቄ஺೘భఒ೘భ ∙ [eఒ೘భ(௧ି௧మೖషమ) − eఒ೘భ(௧ି௧మೖషభ)] + 𝐶௠(𝑡ଶ௞ିଵ − 𝑡ଶ௞ିଶ)]ቅ  

Linear elastic model 
E0

 

𝑢ത = ቐ∑ 𝐼௠ ቄൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]ቅ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ ∑ 𝐼௠ൣ∑ (∗)௜௞ୀଵ ൧sin ெ௭ு ,ஶ௠ୀଵ                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜      

𝑈ഥ = ⎩⎪⎨
⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൝ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ +𝛿௜ ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]ൡஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟஶ௠ୀଵ ,                                                             𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜       

where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and (77), respectively; and (∗) = 𝛿௞ ஺೘భఒ೘భ ∙ [eఒ೘భ(௧ି௧మೖషమ) − eఒ೘భ(௧ି௧మೖషభ)]  

Table 4. Solutions for different constitutive models under cyclic loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation 

u =


∑∞

m=1 Im

{[
∑i−1

k=1 (∗)
]
+ δi

{
Am1
λm1

[e λm1(t−t2i−2) − 1
]

+Cm(t− t2i−2)

}}
sin Mz

H , t2i−2 ≤ t ≤ t2i−1

∑∞
m=1 Im

{[
∑i

k=1 (∗)
]}

sin Mz
H , t2i−1 ≤ t ≤ t2i

U =
qi−1 + δi(t− t2i−2)− 2

(σt+σb)
∑∞

m=1
Im
M


[
∑i−1

k=1(∗)
]
+

δi

{
Am1
λm1

[e λm1(t−t2i−2) − 1
]

+Cm(t− t2i−2)

}  , t2i−2 ≤ t ≤ t2i−1

qi − 2
(σt+σb)

∑∞
m=1

Im
M

{[
∑i

k=1(∗)
]}

, t2i−1 ≤ t ≤ t2i

where expressions for λm1, Am1 and Cm are given in Equations (71), (73) and (75), respectively; and

(∗) = δk

{
Am1
λm1
·
[
eλm1(t−t2k−2) − eλm1(t−t2k−1)

]
+Cm(t2k−1 − t2k−2)]

}
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Table 3. Cont.

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation

Linear elastic model

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 22 
 

𝑈ഥ = ቐ௧భ௧ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቂ஺೘భఒ೘భ ൫eఒ೘భ௧ − 1൯ + 𝐶௠𝑡ቃஶ௠ୀଵ ,                 0 ≤ 𝑡 ≤ 𝑡ଵ1 − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ௧భ ቄ஺೘భఒ೘భ ൣeఒ೘భ௧ − eఒ೘భ(௧ି௧భ)൧ + 𝐶௠𝑡ଵቅ ,ஶ௠ୀଵ  𝑡 ≥ 𝑡ଵ         

where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), 
(73) and (75), respectively. 

Linear elastic 
model 
E0
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where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and 
(77), respectively.  

Table 3. Solutions for different constitutive models under multi-step loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation 

Merchant model 

E0

E1

η1

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ 𝐼௠ ൞ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ቐ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1] +஺೘మఒ೘మ [eఒ೘భ(௧ି௧మ೔షమ) − 1] ቑൢ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ

∑ 𝐼௠൛ൣ∑ (∗)௜௞ୀଵ ൧ൟsin ெ௭ு ,ஶ௠ୀଵ                                                                 𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

𝑈ഥ =
⎩⎪⎪⎨
⎪⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ⎩⎪⎨

⎪⎧ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ∙ ቐ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1] +஺೘మఒ೘మ [eఒ೘భ(௧ି௧మ೔షమ) − 1] ቑ⎭⎪⎬
⎪⎫ஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟ,ஶ௠ୀଵ                                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜     

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in Equations (21), (22), (66) and (67), 
respectively; and  (∗) = ∑ 𝛿௞ ൜஺೘ೕఒ೘ೕ ∙ [eఒ೘ೕ(௧ି௧మೖషమ) − eఒ೘ೕ(௧ି௧మೖషభ)]ൠଶ௝ୀଵ   

Maxwell model 
E0 η0

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ 𝐼௠ ቐൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡቑ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ   

∑ 𝐼௠൛ൣ∑ (∗)௜௞ୀଵ ൧ൟsin ெ௭ு ,ஶ௠ୀଵ                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜       

𝑈ഥ = ⎩⎪⎨
⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൞ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ +𝛿௜ ൝஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]+𝐶௠(𝑡 − 𝑡ଶ௜ିଶ) ൡൢஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ  

𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟஶ௠ୀଵ ,                                                                𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜         

where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), (73) and (75), respectively; and  (∗) = 𝛿௞ ቄ஺೘భఒ೘భ ∙ [eఒ೘భ(௧ି௧మೖషమ) − eఒ೘భ(௧ି௧మೖషభ)] + 𝐶௠(𝑡ଶ௞ିଵ − 𝑡ଶ௞ିଶ)]ቅ  

Linear elastic model 
E0

 

𝑢ത = ቐ∑ 𝐼௠ ቄൣ∑ (∗)௜ିଵ௞ୀଵ ൧ + 𝛿௜ ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]ቅ sin ெ௭ுஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ ∑ 𝐼௠ൣ∑ (∗)௜௞ୀଵ ൧sin ெ௭ு ,ஶ௠ୀଵ                                                        𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜      

𝑈ഥ = ⎩⎪⎨
⎪⎧𝑞௜ିଵ + 𝛿௜(𝑡 − 𝑡ଶ௜ିଶ) − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൝ ൣ∑ (∗)௜ିଵ௞ୀଵ ൧ +𝛿௜ ஺೘భఒ೘భ [eఒ೘భ(௧ି௧మ೔షమ) − 1]ൡஶ௠ୀଵ , 𝑡ଶ௜ିଶ ≤ 𝑡 ≤ 𝑡ଶ௜ିଵ𝑞௜ − ଶ(ఙ೟ାఙ್) ∑ ூ೘ெ ൛ൣ∑ (∗)௜௞ୀଵ ൧ൟஶ௠ୀଵ ,                                                             𝑡ଶ௜ିଵ ≤ 𝑡 ≤ 𝑡ଶ௜       

where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and (77), respectively; and (∗) = 𝛿௞ ஺೘భఒ೘భ ∙ [eఒ೘భ(௧ି௧మೖషమ) − eఒ೘భ(௧ି௧మೖషభ)]  

Table 4. Solutions for different constitutive models under cyclic loading. 

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation 

u =

∑∞
m=1 Im

{[
∑i−1

k=1 (∗)
]
+ δi

Am1
λm1

[e λm1(t−t2i−2) − 1
]}

sin Mz
H , t2i−2 ≤ t ≤ t2i−1

∑∞
m=1 Im

[
∑i

k=1 (∗)
]
sin Mz

H , t2i−1 ≤ t ≤ t2i

U =


qi−1 + δi(t− t2i−2)− 2

(σt+σb)
∑∞

m=1
Im
M


[
∑i−1

k=1(∗)
]
+

δi
Am1
λm1

[e λm1(t−t2i−2) − 1
] , t2i−2 ≤ t ≤ t2i−1

qi − 2
(σt+σb)

∑∞
m=1

Im
M

{[
∑i

k=1(∗)
]}

, t2i−1 ≤ t ≤ t2i

where expressions for λm1 and Am1 are given in Equations (71) and (77), respectively; and

(∗) = δk
Am1
λm1
·
[
eλm1(t−t2k−2) − eλm1(t−t2k−1)

]

Table 4. Solutions for different constitutive models under cyclic loading.

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation

Merchant model
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where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in Equations (21), (22), (66) and (67), 
respectively; and  𝑔ଵ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ∑ ൜஺೘ೕఒ೘ೕ ∙ ൣeఒ೘ೕ௧ିఒ೘ೕ(ேିଵ)ఉ௧భ − 1൧ൠଶ௝ୀଵ   𝑔ଶ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ∑ ൜஺೘ೕఒ೘ೕ ∙ ൣeఒ೘ೕ௧ିఒ೘ೕ(ேିଵ)ఉ௧భ − eఒ೘ೕ௧ିఒ೘ೕ[(ேିଵ)ఉାఈ]௧భ൧ൠଶ௝ୀଵ    𝑔ଷ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ∑ ൜஺೘ೕఒ೘ೕ ൤eఒ೘ೕ௧ିఒ೘ೕ(ேିଵ)ఉ௧భ − eఒ೘ೕ௧ିఒ೘ೕ[(ேିଵ)ఉାఈ]௧భ−eఒ೘ೕ௧ିఒ೘ೕ[(ேିଵ)ఉା(ଵିఈ)]௧భ + 1 ൨ൠଶ௝ୀଵ   𝑔ସ(𝑡) = [∑ (∗)ே௡ୀଵ ]   (∗) = ∑ ൜஺೘ೕఒ೘ೕ ൤ eఒ೘ೕ௧ିఒ೘ೕ(௡ିଵ)ఉ௧భ − eఒ೘ೕ௧ିఒ೘ೕ[(௡ିଵ)ఉାఈ]௧భ −eఒ೘ೕ௧ିఒ೘ೕ[(௡ିଵ)ఉା(ଵିఈ)]௧భ + eఒ೘ೕ௧ିఒ೘ೕ[(௡ିଵ)ఉାଵ]௧భ൨ൠଶ௝ୀଵ   

Maxwell model 
E0 η0

 

𝑢ത = ⎩⎪⎨
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where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), (73), and (75), respectively; 
and ℎଵ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ቄ஺೘భఒ೘భ ∙ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − 1൧ + 𝐶௠[𝑡 − (𝑁 − 1)𝛽𝑡ଵ]ቅ  ℎଶ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ቄ஺೘భఒ೘భ ∙ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉାఈ]௧భ + 𝐶௠𝛼𝑡ଵ൧ቅ   ℎଷ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ eఒ೘భ௧ ൤eିఒ೘భ(ேିଵ)ఉ௧భ − eିఒ೘భ[(ேିଵ)ఉାఈ]௧భ−eିఒ೘భ[(ேିଵ)ఉା(ଵିఈ)]௧భ + eିఒ೘భ௧ ൨ + 𝐶௠ሼ[(𝑁 − 1)𝛽 + 1]𝑡ଵ − 𝑡ሽ  ℎସ(𝑡) = [∑ (∗)ே௡ୀଵ ]    (∗) = ஺೘భఒ೘భ ൤ eఒ೘భ௧ିఒ೘భ(௡ିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉାఈ]௧భ −eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉା(ଵିఈ)]௧భ + eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉାଵ]௧భ൨  
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where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and (77), respectively; and  𝑙ଵ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − 1൧  𝑙ଶ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉାఈ]௧భ൧   

u =


∑∞

m=1
Im
αt1
·g1(t)·sin Mz

H , (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1

∑∞
m=1

Im
αt1
·g2(t)·sin Mz

H , [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1

∑∞
m=1

Im
αt1
·g3(t)·sin Mz

H , [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1

∑∞
m=1

Im
αt1
·g4(t)·sin Mz

H , [(N − 1)β + 1]t1 ≤ t ≤ Nβt1

U =



1
αt1

[t− (N − 1)βt1]− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·g1(t), (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1

1− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·g2(t), [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1

1
αt1
{[(N − 1)β+1]t1 − t } − 2

(σt+σb)
∑∞

m=1
Im

Mαt1
g3(t), [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1

− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·g4(t), [(N − 1)β + 1]t1 ≤ t ≤ Nβt1

where expressions for λm1, λm2, Am1 and Am2 are given in Equations (21), (22), (66) and (67), respectively; and

g1(t) =
[
∑N−1

n=1 (∗)
]
+ ∑2

j=1

{ Amj
λmj
·
[
eλmj t−λmj(N−1)βt1 − 1

]}
g2(t) =

[
∑N−1

n=1 (∗)
]
+ ∑2

j=1

{ Amj
λmj
·
[
eλmj t−λmj(N−1)βt1 − eλmj t−λmj [(N−1)β+α]t1

]}
g3(t) =

[
∑N−1

n=1 (∗)
]
+ ∑2

j=1

{
Amj
λmj

[
eλmj t−λmj(N−1)βt1 − eλmj t−λmj [(N−1)β+α]t1

−eλmj t−λmj [(N−1)β+(1−α)]t1 + 1

]}
g4(t) =

[
∑N

n=1(∗)
]

(∗) = ∑2
j=1

{
Amj
λmj

[
eλmj t−λmj(n−1)βt1 − eλmj t−λmj [(n−1)β+α]t1−

eλmj t−λmj [(n−1)β+(1−α)]t1 + eλmj t−λmj [(n−1)β+1]t1

]}
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⎪⎧∑ ಺೘ഀ೟భ∙௚భ(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ ,    (ேିଵ)ఉ௧భஸ௧ஸ[(ேିଵ)ఉାఈ]௧భ                     ∑ ಺೘ഀ೟భ∙௚మ(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ  ,   [(ேିଵ)ఉାఈ]௧భஸ௧ஸ[(ேିଵ)ఉା(ଵିఈ)]௧భ∑ ಺೘ഀ೟భ∙௚య(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ ,    [(ேିଵ)ఉା(ଵିఈ)]௧భஸ௧ஸ[(ேିଵ)ఉାଵ]௧భ  ∑ ಺೘ഀ೟భ∙௚ర(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ ,    [(ேିଵ)ఉାଵ]௧భஸ௧ஸேఉ௧భ                               

  

𝑈ഥ = ⎩⎪⎨
⎪⎧ భഀ೟భ[௧ି(ேିଵ)ఉ௧భ]ି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ∙௚భ(௧)ಮ೘సభ ,          (ேିଵ)ఉ௧భஸ௧ஸ[(ேିଵ)ఉାఈ]௧భ                    ଵି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ∙௚మ(௧)ಮ೘సభ ,                                            [(ேିଵ)ఉାఈ]௧భஸ௧ஸ[(ேିଵ)ఉା(ଵିఈ)]௧భభഀ೟భሼ[(ேିଵ)ఉାଵ]௧భି௧ሽି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ௚య(௧)ಮ೘సభ ,   [(ேିଵ)ఉା(ଵିఈ)]௧భஸ௧ஸ[(ேିଵ)ఉାଵ]௧భ ି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ∙௚ర(௧)ಮ೘సభ ,                                                [(ேିଵ)ఉାଵ]௧భஸ௧ஸேఉ௧భ                              

  

where expressions for 𝜆௠ଵ, 𝜆௠ଶ, 𝐴௠ଵ and 𝐴௠ଶ are given in Equations (21), (22), (66) and (67), 
respectively; and  𝑔ଵ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ∑ ൜஺೘ೕఒ೘ೕ ∙ ൣeఒ೘ೕ௧ିఒ೘ೕ(ேିଵ)ఉ௧భ − 1൧ൠଶ௝ୀଵ   𝑔ଶ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ∑ ൜஺೘ೕఒ೘ೕ ∙ ൣeఒ೘ೕ௧ିఒ೘ೕ(ேିଵ)ఉ௧భ − eఒ೘ೕ௧ିఒ೘ೕ[(ேିଵ)ఉାఈ]௧భ൧ൠଶ௝ୀଵ    𝑔ଷ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ∑ ൜஺೘ೕఒ೘ೕ ൤eఒ೘ೕ௧ିఒ೘ೕ(ேିଵ)ఉ௧భ − eఒ೘ೕ௧ିఒ೘ೕ[(ேିଵ)ఉାఈ]௧భ−eఒ೘ೕ௧ିఒ೘ೕ[(ேିଵ)ఉା(ଵିఈ)]௧భ + 1 ൨ൠଶ௝ୀଵ   𝑔ସ(𝑡) = [∑ (∗)ே௡ୀଵ ]   (∗) = ∑ ൜஺೘ೕఒ೘ೕ ൤ eఒ೘ೕ௧ିఒ೘ೕ(௡ିଵ)ఉ௧భ − eఒ೘ೕ௧ିఒ೘ೕ[(௡ିଵ)ఉାఈ]௧భ −eఒ೘ೕ௧ିఒ೘ೕ[(௡ିଵ)ఉା(ଵିఈ)]௧భ + eఒ೘ೕ௧ିఒ೘ೕ[(௡ିଵ)ఉାଵ]௧భ൨ൠଶ௝ୀଵ   
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where expressions for 𝜆௠ଵ, 𝐴௠ଵ and 𝐶௠ are given in Equations (71), (73), and (75), respectively; 
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Linear elastic 
model 
E0

 

𝑢ത = ⎩⎪⎨
⎪⎧∑ ಺೘ഀ೟భ∙௟భ(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ ,    (ேିଵ)ఉ௧భஸ௧ஸ[(ேିଵ)ఉାఈ]௧భ                     ∑ ಺೘ഀ೟భ∙௟మ(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ ,    [(ேିଵ)ఉାఈ]௧భஸ௧ஸ[(ேିଵ)ఉା(ଵିఈ)]௧భ∑ ಺೘ഀ೟భ∙௟య(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ ,    [(ேିଵ)ఉା(ଵିఈ)]௧భஸ௧ஸ[(ேିଵ)ఉାଵ]௧భ  ∑ ಺೘ഀ೟భ∙௟ర(௧)∙ୱ୧୬ಾ೥ಹಮ೘సభ ,    [(ேିଵ)ఉାଵ]௧భஸ௧ஸேఉ௧భ                               

  

𝑈ഥ = ⎩⎪⎨
⎪⎧ భഀ೟భ[௧ି(ேିଵ)ఉ௧భ]ି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ∙௟భ(௧)ಮ೘సభ ,          (ேିଵ)ఉ௧భஸ௧ஸ[(ேିଵ)ఉାఈ]௧భ                    ଵି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ∙௟మ(௧)ಮ೘సభ ,                                            [(ேିଵ)ఉାఈ]௧భஸ௧ஸ[(ேିଵ)ఉା(ଵିఈ)]௧భభഀ೟భሼ[(ேିଵ)ఉାଵ]௧భି௧ሽି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ∙௟య(௧)ಮ೘సభ ,   [(ேିଵ)ఉା(ଵିఈ)]௧భஸ௧ஸ[(ேିଵ)ఉାଵ]௧భ  ି మ൫഑೟శ഑್൯ ∑ ಺೘ಾഀ೟భ∙௟ర(௧)ಮ೘సభ ,                                                 [(ேିଵ)ఉାଵ]௧భஸ௧ஸேఉ௧భ                              

  

where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and (77), respectively; and  𝑙ଵ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − 1൧  𝑙ଶ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉାఈ]௧భ൧   

u =


∑∞

m=1
Im
αt1
·h1(t)·sin Mz

H , (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1

∑∞
m=1

Im
αt1
·h2(t)·sin Mz

H , [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1

∑∞
m=1

Im
αt1
·h3(t)·sin Mz

H , [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1

∑∞
m=1

Im
αt1
·h4(t)·sin Mz

H , [(N − 1)β + 1]t1 ≤ t ≤ Nβt1

U =



1
αt1

[t− (N − 1)βt1]− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·h1(t), (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1

1− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·h2(t), [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1

1
αt1
{[(N − 1)β+1]t1 − t } − 2

(σt+σb)
∑∞

m=1
Im

Mαt1
·h3(t), [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1

− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·h4(t), [(N − 1)β + 1]t1 ≤ t ≤ Nβt1

where expressions for λm1, Am1 and Cm are given in Equations (71), (73), and (75), respectively; and

h1(t) =
[
∑N−1

n=1 (∗)
]
+
{

Am1
λm1
·
[
eλm1t−λm1(N−1)βt1 − 1

]
+ Cm[t− (N − 1)βt1]

}
h2(t) =

[
∑N−1

n=1 (∗)
]
+
{

Am1
λm1
·
[
eλm1t−λm1(N−1)βt1 − eλm1t−λm1 [(N−1)β+α]t1 + Cmαt1

]}
h3(t) =

[
∑N−1

n=1 (∗)
]
+ Am1

λm1
eλm1t

[
e−λm1(N−1)βt1 − e−λm1 [(N−1)β+α]t1

−e−λm1 [(N−1)β+(1−α)]t1 + e−λm1t

]
+ Cm{[(N − 1)β + 1]t1 − t}

h4(t) =
[
∑N

n=1(∗)
]

(∗) = Am1
λm1

[
eλm1t−λm1(n−1)βt1 − eλm1t−λm1 [(n−1)β+α]t1−

eλm1t−λm1 [(n−1)β+(1−α)]t1 + eλm1t−λm1 [(n−1)β+1]t1

]
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Table 4. Cont.

Model Average Excess Pore Water Pressure and Overall Average Degree of Consolidation

Linear elastic model
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where expressions for 𝜆௠ଵ and 𝐴௠ଵ are given in Equations (71) and (77), respectively; and  𝑙ଵ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − 1൧  𝑙ଶ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൣeఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉାఈ]௧భ൧   

u =


∑∞

m=1
Im
αt1
·l1(t)·sin Mz

H , (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1

∑∞
m=1

Im
αt1
·l2(t)·sin Mz

H , [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1

∑∞
m=1

Im
αt1
·l3(t)·sin Mz

H , [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1

∑∞
m=1

Im
αt1
·l4(t)·sin Mz

H , [(N − 1)β + 1]t1 ≤ t ≤ Nβt1

U =



1
αt1

[t− (N − 1)βt1]− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·l1(t), (N − 1)βt1 ≤ t ≤ [(N − 1)β + α]t1

1− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·l2(t), [(N − 1)β + α]t1 ≤ t ≤ [(N − 1)β + (1− α)]t1

1
αt1
{[(N − 1)β+1]t1 − t } − 2

(σt+σb)
∑∞

m=1
Im

Mαt1
·l3(t), [(N − 1)β + (1− α)]t1 ≤ t ≤ [(N − 1)β + 1]t1

− 2
(σt+σb)

∑∞
m=1

Im
Mαt1
·l4(t), [(N − 1)β + 1]t1 ≤ t ≤ Nβt1

where expressions for λm1 and Am1 are given in Equations (71) and (77), respectively; and

l1(t) =
[
∑N−1

n=1 (∗)
]
+ Am1

λm1

[
eλm1t−λm1(N−1)βt1 − 1

]
l2(t) =

[
∑N−1

n=1 (∗)
]
+ Am1

λm1

[
eλm1t−λm1(N−1)βt1 − eλm1t−λm1 [(N−1)β+α]t1

]
l3(t) =

[
∑N−1

n=1 (∗)
]
+ Am1

λm1

[
eλm1t−λm1(N−1)βt1 − eλm1t−λm1 [(N−1)β+α]t1

−eλm1t−λm1 [(N−1)β+(1−α)]t1 + 1

]
l4(t) =

[
∑N

n=1(∗)
]

(∗) = Am1
λm1

[
eλm1t−λm1(n−1)βt1 − eλm1t−λm1 [(n−1)β+α]t1

−eλm1t−λm1 [(n−1)β+(1−α)]t1 + eλm1t−λm1 [(n−1)β+1]t1

]

5. Model Validation

Li et al. (2013) [29] adopted GDS advanced consolidation test system to test the
consolidation process of Xiaoshan soft clay. The diameter and height of the soil sample
were 76.2 mm and 20 mm, respectively. The water content, density, and void ratio of
the soil sample were 50.22%, 1.68 g/cm3, and 1.43, respectively. The consolidation pres-
sure was 200 kPa. The proposed four-element model and the traditional three-element
model (i.e., the Merchant model) were applied to simulate the test results. The values
of model parameters were set as: E0 = 3.11 MPa, E1 = 4.56 MPa, η0 = 8.51 × 105 MPa.s,
η1 = 2.80 × 104 MPa.s, kv = 7.22 × 10−8 m/s. Figure 4 shows the comparison between the
test results and analytical solutions. It can be clearly seen that the four-element model
proposed in this study can accurately predict pore pressure and settlement changes, while
the Merchant model will overestimate pore pressure drop and settlement development.
For example, the pore pressure drop and settlement calculated by the four-element model
at 1000 s are 67 kPa and 0.52 mm, respectively, while the pore pressure drop and settlement
calculated by the Merchant model increase to 75 kPa and 0.81 mm, respectively. In addition,
the pore pressure remained unchanged after 10,000 s; that is, the effective stress in the
soil sample remained unchanged. However, the settlement continued to increase between
10,000 s and 100,000 s, which reflects the rheological characteristics of soft clay.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 22 
 

𝑙ଷ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൤eఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉାఈ]௧భ−eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉା(ଵିఈ)]௧భ + 1 ൨  𝑙ସ(𝑡) = [∑ (∗)ே௡ୀଵ ]   (∗) = ஺೘భఒ೘భ ൤ eఒ೘భ௧ିఒ೘భ(௡ିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉାఈ]௧భ−eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉା(ଵିఈ)]௧భ + eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉାଵ]௧భ൨   

5. Model Validation 
Li et al. (2013) [29] adopted GDS advanced consolidation test system to test the con-

solidation process of Xiaoshan soft clay. The diameter and height of the soil sample were 
76.2 mm and 20 mm, respectively. The water content, density, and void ratio of the soil 
sample were 50.22%, 1.68 g/cm3, and 1.43, respectively. The consolidation pressure was 
200 kPa. The proposed four-element model and the traditional three-element model (i.e., 
the Merchant model) were applied to simulate the test results. The values of model pa-
rameters were set as: E0 = 3.11 MPa, E1 = 4.56 MPa, η0 = 8.51 × 105 MPa.s, η1 = 2.80 × 104 
MPa.s, kv = 7.22 × 10−8 m/s. Figure 4 shows the comparison between the test results and 
analytical solutions. It can be clearly seen that the four-element model proposed in this 
study can accurately predict pore pressure and settlement changes, while the Merchant 
model will overestimate pore pressure drop and settlement development. For example, 
the pore pressure drop and settlement calculated by the four-element model at 1000 s are 
67 kPa and 0.52 mm, respectively, while the pore pressure drop and settlement calculated 
by the Merchant model increase to 75 kPa and 0.81 mm, respectively. In addition, the pore 
pressure remained unchanged after 10,000 s; that is, the effective stress in the soil sample 
remained unchanged. However, the settlement continued to increase between 10,000 s 
and 100,000 s, which reflects the rheological characteristics of soft clay. 

  

  

Figure 4. Cont.



Sustainability 2023, 15, 6129 16 of 22

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 22 
 

𝑙ଷ(𝑡) = [∑ (∗)ேିଵ௡ୀଵ ] + ஺೘భఒ೘భ ൤eఒ೘భ௧ିఒ೘భ(ேିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉାఈ]௧భ−eఒ೘భ௧ିఒ೘భ[(ேିଵ)ఉା(ଵିఈ)]௧భ + 1 ൨  𝑙ସ(𝑡) = [∑ (∗)ே௡ୀଵ ]   (∗) = ஺೘భఒ೘భ ൤ eఒ೘భ௧ିఒ೘భ(௡ିଵ)ఉ௧భ − eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉାఈ]௧భ−eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉା(ଵିఈ)]௧భ + eఒ೘భ௧ିఒ೘భ[(௡ିଵ)ఉାଵ]௧భ൨   

5. Model Validation 
Li et al. (2013) [29] adopted GDS advanced consolidation test system to test the con-

solidation process of Xiaoshan soft clay. The diameter and height of the soil sample were 
76.2 mm and 20 mm, respectively. The water content, density, and void ratio of the soil 
sample were 50.22%, 1.68 g/cm3, and 1.43, respectively. The consolidation pressure was 
200 kPa. The proposed four-element model and the traditional three-element model (i.e., 
the Merchant model) were applied to simulate the test results. The values of model pa-
rameters were set as: E0 = 3.11 MPa, E1 = 4.56 MPa, η0 = 8.51 × 105 MPa.s, η1 = 2.80 × 104 
MPa.s, kv = 7.22 × 10−8 m/s. Figure 4 shows the comparison between the test results and 
analytical solutions. It can be clearly seen that the four-element model proposed in this 
study can accurately predict pore pressure and settlement changes, while the Merchant 
model will overestimate pore pressure drop and settlement development. For example, 
the pore pressure drop and settlement calculated by the four-element model at 1000 s are 
67 kPa and 0.52 mm, respectively, while the pore pressure drop and settlement calculated 
by the Merchant model increase to 75 kPa and 0.81 mm, respectively. In addition, the pore 
pressure remained unchanged after 10,000 s; that is, the effective stress in the soil sample 
remained unchanged. However, the settlement continued to increase between 10,000 s 
and 100,000 s, which reflects the rheological characteristics of soft clay. 
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6. Consolidation Behavior Analysis

To investigate the consolidation behavior of vertical drains considering the rheolog-
ical characteristics of soil under time and depth-dependent loading, taking the one-step
and cyclic loading as examples, several factors affecting the consolidation behavior are
discussed. In this section, the reference parameters used for analysis are: rw = 0.07 m;
rs = 0.28 m; re = 0.7 m; H = 10 m; kh = 2.0 × 10−8 m/s; ks/kh = 0.2; kv/kh = 0.8;
kw/kh = 5000;E0 = 2.0 MPa; E1 = 5.0 MPa; σt/σb = 5/2; η0 = η1 = 1.0× 107 MPa·s;
γw = 10 kN/m; t1 = 1.0 days.

6.1. Consolidation Behavior Analysis under One-Step Loading Condition

For the solutions under the one-step loading condition, the expression of the overall
average degree of consolidation U can be seen in Equations (44) and (45). In the parameter
analysis, t1, σt/σb, E1, η1, and η0 are selected to analyze the consolidation behavior.

Figure 5 shows the influence of loading time t1 on consolidation behavior, where t1
varies from 0.1 to 10 days. From Figure 5, it can be seen that the consolidation rate decreases
with the increase in the loading time t1 at the initial stage. When the loading time increased
from 0.1 days to 10 days, the consolidation degree decreased from 80% to 55% on the 10th
day. However, with the increase in time t, the overall average degree of consolidation U
under different loading time t1 tends to be the same.
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Figure 5. The influence of t1 on the consolidation behavior under one-step loading.

In Figure 6, the influence of the distribution of additional stress with depth (σt/σb)
on consolidation behavior is investigated, where σt/σb = ∞ and σt/σb = 0 represents that
the additional stress has an inverted triangle distribution along the depth and a triangle
distribution, respectively. It shows that the overall average degree of consolidation U
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increases with the increase in σt/σb and the consolidation rate is the greatest with an
inverted triangle distribution of additional stress. As σt/σb increases from 0 to 2.5, the
consolidation degree increases from 72% to 81% on the 10th day. The main reason for this
phenomenon is that the vertical pervious boundary is located on the ground surface, so the
larger the additional stress of the top surface, the faster the consolidation rate.
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Figure 6. The influence of σt/σb on the consolidation behavior under one-step loading.

In Figure 7, E1 varies from 0.1 to 100 MPa; thus, it shows the influence of E1 (i.e., the
modules of the spring in the Kelvin body) on consolidation behavior. It can be seen that
the consolidation degree curves are almost identical under different E1 at the initial stage
of consolidation. Nevertheless, the rate of consolidation decreases and the rheological
behavior becomes more and more obvious with the decrease in E1 and the increase in time
t. As E1 increases from 0.1 to 100 MPa, the steady consolidation degree (i.e., maximum
consolidation degree) increases from 90 to 97%.
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Figure 7. The influence of E1 on the consolidation behavior under one-step loading.

Figure 8 shows the influence of η1 (i.e., the viscosity coefficient of the dashpot in the
Kelvin body) on consolidation behavior, where η1 varies from 1.0× 105 to 1.0× 109 MPa·s.
As can be seen from the figure, the consolidation curves intersect with each other. In
the initial stage, the consolidation is accelerated with the increase in η1; however, the
consolidation rate gradually slows down in the later stage.
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Figure 8. The influence of η1 on the consolidation behavior under one-step loading.

The influence of η0 (i.e., the viscosity coefficient of the independent dashpot) on
the consolidation behavior can be seen in Figure 9, where η0 varies from 1.0 × 105 to
1.0× 109 MPa·s. It can be seen that the consolidation rate increases with the decrease in
η0 at the initial stage, but the final overall average degree of consolidation decreases with
the decrease in η0. As η0 increases from 1 × 105 MPa·s to 1 × 109 MPa·s, the consolidation
degree decreases from 45% to 10% on the 1st day, while the consolidation degree increases
from 78 to 100% on the 100th day.
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Figure 9. The influence of η0 on the consolidation behavior under one-step loading.

6.2. Consolidation Behavior Analysis under Cyclic Loading Condition

For the solutions under the cyclic loading condition, the expression of the overall
average degree of consolidation U can be seen in Equations (62)–(65). In this chapter, the
time parameters related to cyclic loads are α = 0.25 and β = 2.0, and the parameters t1,
σt/σb, E1, η1, and η0 are also used to study consolidation behaviors.

Figure 10 shows the influence of loading time t1 on consolidation behavior. It shows
that the maximum degree of consolidation increases with the increase in t1, while the
minimum degree of consolidation decreases with the increase in t1 during the cyclic
loading. The consolidation degree curves tend to a steady state after a certain number of
loading cycles.
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Figure 10. The influence of t1 on the consolidation behavior under cyclic loading.

In Figure 11, the influence of σt/σb on the consolidation behavior is studied. It can be
seen that the amount of relative variation of consolidation within each cycle becomes larger
for larger σt/σb, and the amount of relative variation of consolidation degree within each
cycle is the smallest with a triangle distribution of additional stress. With σt/σb increasing
from 0 to 1, the variation of the consolidation degree under cyclic loading increases from
8 to 15%.
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The influence of E1 on consolidation can be seen in Figure 12. From Figure 12, it can
be seen that the consolidation rate is accelerated with the increase in E1 at the initial stage.
However, when the number of cycles increases to a certain value, the consolidation degree
curves under different E1 almost coincide completely.
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Figure 12. The influence of E1 on the consolidation behavior under cyclic loading.
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Figure 13 shows the influence of η1 on consolidation behavior. As can be seen in the
figure, the effect of η1 on the consolidation behavior is similar to that of E1, but the effect
of η1 on the consolidation rate is relatively greater. The consolidation rate increases with
the increase in η1 at the initial stage, but the influence of η1 becomes insignificant at the
later stage.
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The influence of η0 can be seen in Figure 14. It can be seen that the consolidation rate
decreases with the increase in η0 at the initial stage and the amount of relative variation
of the consolidation degree within each cycle is larger with smaller η0 during the entire
consolidation process. As η0 increases from 1 × 105 MPa·s to 1 × 109 MPa·s, the variation
of consolidation degree decreases from 55 to 13% under cyclic loading.

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 22 
 

The influence of 𝜂଴ can be seen in Figure 14. It can be seen that the consolidation 
rate decreases with the increase in 𝜂଴  at the initial stage and the amount of relative 
variation of the consolidation degree within each cycle is larger with smaller 𝜂଴ during 
the entire consolidation process. As 𝜂଴ increases from 1 × 105 MPas to 1 × 109 MPas, the 
variation of consolidation degree decreases from 55 to 13% under cyclic loading. 

 
Figure 14. The influence of 𝜂଴ on the consolidation behavior under cyclic loading. 

From these figures, it should be noted that the consolidation degree in each cycle 
reaches a maximum at the end of unloading and the consolidation degree is the minimum 
at the beginning of the loading. 

7. Discussion 
For the one-dimensional consolidation problem of soft soil foundation under time-

dependent loading, most of the previous studies obtained numerical solutions [25–28], 
while the relevant analytical solutions were few and complicated [24]. In this study, a 
general solution for the one-dimensional consolidation of a soft soil foundation was 
derived. Compared with existing analytical solutions, the variable substitution method 
was used to obtain the governing equation, which is simple in form and easy to solve 
under time-dependent loading. Then, the general solution of one-dimensional 
consolidation was obtained by using the separation variable method. The general solution 
contains only one integral of the loading function, which is easy to operate in complex 
loading conditions. Finally, this study gave the analytical solutions of the one-dimensional 
consolidation of soft soil foundation under several common loading types and analyzed 
the consolidation behavior under one-step loading and cyclic loading. These analytical 
solutions provide theoretical guidance for determining construction parameters such as 
the loading mode, loading rate, and loading time in the preloading method for soft soil 
foundation treatment. This study also summarizes the change rule of consolidation degree 
with time under different loading parameters. 

In summary, this study further expands and enriches the analytical theory of the one-
dimensional consolidation of soil and provides theoretical guidance for the construction 
process of soft soil foundations under variable loading. 

8. Conclusions 
The following conclusions may be drawn from this study: 

1. Based on Barron’s theory of equal strain consolidation, a four-element model was 
used to consider the rheological characteristics of soil, and a set of analytical solutions 
was developed for consolidation with vertical drains under depth and time-depend-
ent loading. The increase in additional stress is a function depending on both time 
and depth. It is assumed to vary linearly with depth, and several time functions are 
considered to represent different loading cases, which include instantaneous loading, 

0 2 4 6 8 10 190 192 194 196 198 200

80

60

40

20

0

t1 = 1days;   Ε1= 5.0MPa
σt /σb= 5/2; η1 = 1.0×107MPa⋅s

 η0 = 1.0×105MPa⋅s;
 η0 = 1.0×107MPa⋅s;
 η0 = 1.0×109MPa⋅s;

U
 (%

)

time (t1)

Figure 14. The influence of η0 on the consolidation behavior under cyclic loading.

From these figures, it should be noted that the consolidation degree in each cycle
reaches a maximum at the end of unloading and the consolidation degree is the minimum
at the beginning of the loading.

7. Discussion

For the one-dimensional consolidation problem of soft soil foundation under time-
dependent loading, most of the previous studies obtained numerical solutions [25–28],
while the relevant analytical solutions were few and complicated [24]. In this study,
a general solution for the one-dimensional consolidation of a soft soil foundation was
derived. Compared with existing analytical solutions, the variable substitution method
was used to obtain the governing equation, which is simple in form and easy to solve under
time-dependent loading. Then, the general solution of one-dimensional consolidation was
obtained by using the separation variable method. The general solution contains only one
integral of the loading function, which is easy to operate in complex loading conditions.
Finally, this study gave the analytical solutions of the one-dimensional consolidation of
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soft soil foundation under several common loading types and analyzed the consolidation
behavior under one-step loading and cyclic loading. These analytical solutions provide
theoretical guidance for determining construction parameters such as the loading mode,
loading rate, and loading time in the preloading method for soft soil foundation treatment.
This study also summarizes the change rule of consolidation degree with time under
different loading parameters.

In summary, this study further expands and enriches the analytical theory of the one-
dimensional consolidation of soil and provides theoretical guidance for the construction
process of soft soil foundations under variable loading.

8. Conclusions

The following conclusions may be drawn from this study:

1. Based on Barron’s theory of equal strain consolidation, a four-element model was used
to consider the rheological characteristics of soil, and a set of analytical solutions was
developed for consolidation with vertical drains under depth and time-dependent
loading. The increase in additional stress is a function depending on both time and
depth. It is assumed to vary linearly with depth, and several time functions are
considered to represent different loading cases, which include instantaneous loading,
one-step loading, multi-step loading, and cyclic loading.

2. The consolidation rate is accelerated with the decrease in loading time t1 and the
increase in σt/σb (the value of the top-to-bottom additional stress ratio). With the
decrease both of the modulus of the spring in the Kelvin body and the viscosity
coefficient of the independent dashpot, the rheological behavior becomes more and
more obvious at the later stage of consolidation. The rate of consolidation becomes
faster at an early stage but slower at a later stage, with the increase in the viscosity
coefficient of the dashpot in the Kelvin body.

3. For cyclic loading, the consolidation degree in each cycle reaches a maximum at the
end of unloading and reaches the minimum at the beginning of the loading. When
the number of cycles increases to a certain value, the variation form of consolidation
degree curves will tend to be stable.
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