A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring
Abstract
:1. Introduction
2. Brief Literature Review of Hydrological Ecosystem Services (HESS)
3. Definition of the Hydrological Ecosystem Services (HESS) Framework
3.1. Formulation of the HESS17 Framework
3.2. Definition of HESS Presented in the Framework
3.2.1. HESS1: Basin Runoff
3.2.2. HESS2: Inland Capture Fishery
3.2.3. HESS3: Natural Feed for Livestock
3.2.4. HESS4: Fuelwood
3.2.5. HESS5: Dry Season Flow
3.2.6. HESS6: Total Groundwater Recharge
3.2.7. HESS7: Surface Water Storage
3.2.8. HESS8: Root Zone Water Storage
3.2.9. HESS9: Sustaining Rainfall
3.2.10. HESS10: Attenuation of Peak Flow
3.2.11. HESS11: Carbon Sequestration
3.2.12. HESS12: Reduce Greenhouse Gas Emissions
3.2.13. HESS13: Micro-Climate Cooling
3.2.14. HESS14: Natural Reduction in the Eutrophication of Water
3.2.15. HESS15: Reduction in Soil Erosion
3.2.16. HESS16: Meeting Environmental Flow Requirements
3.2.17. HESS17: Leisure
4. Proposed HESS Determination Processes
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MSI | Multi-spectral |
TIR | Thermal Infrared |
VIIRS | Visible Infrared Imaging Radiometer Suite |
NPP | Net Primary Production |
GPP | Gross Primary Production |
fPAR | Fraction of Absorbed Photosynthetically Active Radiation |
R | Runoff |
LST | Land Surface Temperature |
NDRE | Normalized Difference Red-Edge |
H | Surface elevation |
A | Surface area |
B_riv | River width |
∆S | Change in storage |
EF | Evaporative fraction |
SM | Soil moisture |
P | Precipitation |
ET | Evapotranspiration |
∆S | Storage change |
E | Evaporation |
T | Transpiration |
Q | Stream flow |
LU | Land Use |
NDVI | Normalized Difference Vegetation Index |
ABDI | Algal Bloom Detection Index |
Chl-a | Cholorphyll A |
References
- Millennium Ecosystem Assessment (Program). Ecosystems and Human Well-Being: Wetlands and Water Synthesis: A Report of the Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-597-8. [Google Scholar]
- Brauman, K.A. Hydrologic ecosystem services: Linking ecohydrologic processes to human well-being in water research and watershed management. WIREs Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Poortinga, A.; Nguyen, Q.; Tenneson, K.; Troy, A.; Saah, D.; Bhandari, B.; Ellenburg, W.L.; Aekakkararungroj, A.; Ha, L.; Pham, H.; et al. Linking Earth Observations for Assessing the Food Security Situation in Vietnam: A Landscape Approach. Front. Environ. Sci. 2019, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Nature-Based Solutions for Water; UNESCO. The United Nations World Water Development Report; UNESCO: Paris, France, 2018; ISBN 978-92-3-100264-9. [Google Scholar]
- CGIAR Research Program on Water, Land and Ecosystems (WLE). Ecosystem Services and Resilience Framework; International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE): Colombo, Sri Lanka, 2014. [Google Scholar]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B.; Villa, F. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Terrado, M.; Momblanch, A.; Bardina, M.; Boithias, L.; Munné, A.; Sabater, S.; Solera, A.; Acuña, V. Integrating ecosystem services in river basin management plans. J. Appl. Ecol. 2016, 53, 865–875. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.; Allen, R.; Droogers, P.; D’Urso, G.; Steduto, P. Twenty-five years modeling irrigated and drained soils: State of the art. Agric. Water Manag. 2007, 92, 111–125. [Google Scholar] [CrossRef]
- Nedkov, S.; Campagne, S.; Borisova, B.; Krpec, P.; Prodanova, H.; Kokkoris, I.P.; Hristova, D.; Le Clec’H, S.; Santos-Martin, F.; Burkhard, B.; et al. Modeling water regulation ecosystem services: A review in the context of ecosystem accounting. Ecosyst. Serv. 2022, 56, 101458. [Google Scholar] [CrossRef]
- Schulp, C.J.; Alkemade, R.; Goldewijk, K.K.; Petz, K. Mapping ecosystem functions and services in Eastern Europe using global-scale data sets. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martin-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J.R. Soil and Water Asessment Tool Theoritical Documentation: Version 2009; Texas Water Resources Institute Technical Report No. 406; Texas Water Resources Institute, Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Ha, L.T.; Bastiaanssen, W.G.M.; Van Griensven, A.; Van Dijk, A.I.J.M.; Senay, G.B. Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin. Water 2018, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- Tallis, H.; Polasky, S. Mapping and Valuing Ecosystem Services as an Approach for Conservation and Natural-Resource Management. Ann. N. Y. Acad. Sci. 2009, 1162, 265–283. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [Green Version]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Hoyer, R.; Chang, H. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 2014, 53, 402–416. [Google Scholar] [CrossRef]
- Terrado, M.; Acuña, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Simons, G.; Poortinga, A.; Bastiaanssen, W.G.M.; Saah, D.S.; Troy, D.; Hunink, J.E.; de Klerk, M.; Rutten, M.; Cutter, P.; Rebelo, L.-M.; et al. On Spatially Distributed Hydrological Ecosystem Services: Bridging the Quantitative Information Gap Using Remote Sensing and Hydrological Models; FutureWater: Wageningen, The Netherlands, 2017. [Google Scholar]
- Ha, L.T.; Bastiaanssen, W.G.M. Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model. Sustainability 2023, 15. in press. [Google Scholar]
- Kumar, P. The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: London, UK; Washington, DC, USA, 2010; ISBN 978-1-84971-212-5. [Google Scholar]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Belmar, O.; Ibáñez, C.; Forner, A.; Caiola, N. The Influence of Flow Regime on Ecological Quality, Bird Diversity, and Shellfish Fisheries in a Lowland Mediterranean River and Its Coastal Area. Water 2019, 11, 918. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards: Ecological Limits of Hydrologic Alteration. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef] [Green Version]
- Pan, F.; Choi, W. A Conceptual Modeling Framework for Hydrologic Ecosystem Services. Hydrology 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Willaarts, B.A.; Volk, M.; Aguilera, P.A. Assessing the ecosystem services supplied by freshwater flows in Mediterranean agroecosystems. Agric. Water Manag. 2012, 105, 21–31. [Google Scholar] [CrossRef]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; López, A.; Elorza, F.J.; Ziv, G.; Acuña, V.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total. Environ. 2013, 458–460, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Shibata, H.; Wang, Q. Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecol. Indic. 2016, 62, 1–13. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.-H.; Artmann, M.; Pauleit, S. The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; Zhao, C.; Waseem, M.; Khan, K.A.; Ahmad, R. Analysis of Energy Input–Output of Farms and Assessment of Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci. 2022, 9, 826838. [Google Scholar] [CrossRef]
- McCartney, M.; Cai, X.; Smakhtin, V. Evaluating the Flow Regulating Functions of Natural Ecosystems in the Zambezi Basin; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2013. [Google Scholar]
- Kiptala, J.K.; Mohamed, Y.; Mul, M.; van der Zaag, P. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa: Mapping ET Using Modis and Sebal in a Landscape in E. Africa. Water Resour. Res. 2013, 49, 8495–8510. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P.; Allen, R.G.; Burt, C.M. Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agric. Water Manag. 2009, 96, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.; Karimi, P.; Rebelo, L.-M.; Duan, Z.; Senay, G.; Muthuwatte, L.; Smakhtin, V. Earth Observation Based Assessment of the Water Production and Water Consumption of Nile Basin Agro-Ecosystems. Remote Sens. 2014, 6, 10306–10334. [Google Scholar] [CrossRef] [Green Version]
- Poortinga, A.; Bastiaanssen, W.; Simons, G.; Saah, D.; Senay, G.; Fenn, M.; Bean, B.; Kadyszewski, J. A Self-Calibrating Runoff and Streamflow Remote Sensing Model for Ungauged Basins Using Open-Access Earth Observation Data. Remote Sens. 2017, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- van Eekelen, M.; Bastiaanssen, W.; Jarmain, C.; Jackson, B.; Ferreira, F.; van der Zaag, P.; Okello, A.S.; Bosch, J.; Dye, P.; Bastidas-Obando, E.; et al. A novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the Incomati basin. Agric. Ecosyst. Environ. 2015, 200, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Cheema, M.; Bastiaanssen, W. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agric. Water Manag. 2010, 97, 1541–1552. [Google Scholar] [CrossRef]
- Zad, S.N.M.; Zulkafli, Z.; Muharram, F.M. Satellite Rainfall (TRMM 3B42-V7) Performance Assessment and Adjustment over Pahang River Basin, Malaysia. Remote Sens. 2018, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Paca, V.H.D.M.; Espinoza-Dávalos, G.E.; Hessels, T.M.; Moreira, D.M.; Comair, G.F.; Bastiaanssen, W.G.M. The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecol. Process. 2019, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Sriwongsitanon, N.; Suwawong, T.; Thianpopirug, S.; Williams, J.; Jia, L.; Bastiaanssen, W. Validation of seven global remotely sensed ET products across Thailand using water balance measurements and land use classifications. J. Hydrol. Reg. Stud. 2020, 30, 100709. [Google Scholar] [CrossRef]
- Troch, P.; Durcik, M.; Seneviratne, S.; Hirschi, M.; Teuling, A.; Hurkmans, R.; Hasan, S. New data sets to estimate terrestrial water storage change. Eos Trans. Am. Geophys. Union 2007, 88, 469–470. [Google Scholar] [CrossRef] [Green Version]
- Simons, G.; Bastiaanssen, W.; Cheema, M.; Ahmad, B.; Immerzeel, W. A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan. Agric. Water Manag. 2020, 236, 106174. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Statistical Database; FAO: Rome, Italy, 2021. [Google Scholar]
- Froese, R.; Pauly, D. FishBase. World Wide Web Electronic Publication; ScienceOpen, Inc.: Burlington, MA, USA, 2014. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Welcomme, R.L. An overview of global catch statistics for inland fish. ICES J. Mar. Sci. 2011, 68, 1751–1756. [Google Scholar] [CrossRef] [Green Version]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, L.-M.; Finlayson, C.M.; Strauch, A.; Rosenqvist, A.; Perennou, C.; Tøttrup, C.; Hilarides, L.; Paganini, M.; Wielaard, N.; Siegert, F.; et al. The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring; An information source for Ramsar Convention on Wetlands; Secretariat of the Ramsar Convention: Gland, Switzerland, 2018; Volume 10. [Google Scholar]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Lucas, R.; Rebelo, L.-M.; Fatoyinbo, L.; Rosenqvist, A.; Itoh, T.; Shimada, M.; Simard, M.; Souza-Filho, P.W.M.; Thomas, N.; Trettin, C.; et al. Contribution of L-band SAR to systematic global mangrove monitoring. Mar. Freshw. Res. 2014, 65, 589. [Google Scholar] [CrossRef]
- Hortle, K.G.; Bamrungrach, P. Fisheries Habitat and Yield in the Lower Mekong River Basin; Technical Paper No. 47; Mekong River Commission Secretariat: Vientiane, Laos, 2015. [Google Scholar]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Gómez, S.; Guenni, O.; de Guenni, L.B. Growth, leaf photosynthesis and canopy light use efficiency under differing irradiance and soil N supplies in the forage grass Brachiaria decumbens Stapf. Grass Forage Sci. 2013, 68, 395–407. [Google Scholar] [CrossRef]
- FAO. Simple Technologies for Charcoal Making; FAO Forestry Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1983; ISBN 978-92-5-101328-1. [Google Scholar]
- Ahl, D.E.; Gower, S.T.; Mackay, D.S.; Burrows, S.N.; Norman, J.M.; Diak, G.R. Heterogeneity of light use efficiency in a northern Wisconsin forest: Implications for modeling net primary production with remote sensing. Remote Sens. Environ. 2004, 93, 168–178. [Google Scholar] [CrossRef]
- Trischler, J.; Sandberg, D.; Thörnqvist, T. Estimating the Annual Above-Ground Biomass Production of Various Species on Sites in Sweden on the Basis of Individual Climate and Productivity Values. Forests 2014, 5, 2521–2541. [Google Scholar] [CrossRef] [Green Version]
- Pukkala, T.; Pohjonen, V. Yield models for Eucalyptus globulus fuelwood plantations in Ethiopia. Biomass 1990, 21, 129–143. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Hungerford, R.D. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res. 1987, 17, 472–483. [Google Scholar] [CrossRef]
- Boegh, E.; Thorsen, M.; Butts, M.; Hansen, S.; Christiansen, J.; Abrahamsen, P.; Hasager, C.; Jensen, N.; van der Keur, P.; Refsgaard, J.; et al. Incorporating remote sensing data in physically based distributed agro-hydrological modelling. J. Hydrol. 2004, 287, 279–299. [Google Scholar] [CrossRef]
- Yang, K.; Li, M.; Liu, Y.; Cheng, L.; Duan, Y.; Zhou, M. River Delineation from Remotely Sensed Imagery Using a Multi-Scale Classification Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4726–4737. [Google Scholar] [CrossRef]
- Donchyts, G.; Schellekens, J.; Winsemius, H.; Eisemann, E.; Van De Giesen, N. A 30 m Resolution Surface Water Mask Including Estimation of Positional and Thematic Differences Using Landsat 8, SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, Australia. Remote Sens. 2016, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Bjerklie, D.M.; Birkett, C.M.; Jones, J.W.; Carabajal, C.; Rover, J.; Fulton, J.; Garambois, P.-A. Satellite remote sensing estimation of river discharge: Application to the Yukon River Alaska. J. Hydrol. 2018, 561, 1000–1018. [Google Scholar] [CrossRef] [Green Version]
- Durand, M.; Gleason, C.J.; Garambois, P.A.; Bjerklie, D.; Smith, L.C.; Roux, H.; Rodriguez, E.; Bates, P.D.; Pavelsky, T.M.; Monnier, J.; et al. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 2016, 52, 4527–4549. [Google Scholar] [CrossRef] [Green Version]
- Michailovsky, C.I.; Bauer-Gottwein, P. Operational reservoir inflow forecasting with radar altimetry: The Zambezi case study. Hydrol. Earth Syst. Sci. 2014, 18, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Simons, G.; Droogers, P.; Contreras, S.; Sieber, J.; Bastiaanssen, W. Virtual Tracers to Detect Sources of Water and Track Water Reuse across a River Basin. Water 2020, 12, 2315. [Google Scholar] [CrossRef]
- Xu, Y.; Beekman, H.E. Review: Groundwater recharge estimation in arid and semi-arid southern Africa. Hydrogeol. J. 2019, 27, 929–943. [Google Scholar] [CrossRef]
- Wohling, D.; Petheram, C.; Leaney, F.; Jolly, I.; Crosbie, R. Review of Australian Groundwater Recharge Studies; CSIRO Australia: Canberra, Australia, 2010. [Google Scholar] [CrossRef]
- Hessels, T.; Davids, J.C.; Bastiaanssen, W. Scalable Water Balances from Earth Observations (SWEO): Results from 50 years of remote sensing in hydrology. Water Int. 2022, 47, 866–886. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Z.; Bastiaanssen, W.G.M. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model. Environ. Res. Lett. 2017, 12, 024005. [Google Scholar] [CrossRef]
- Hillel, D.; van Bavel, C.H.M. Simulation of Profile Water Storage as Related to Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1976, 40, 807–815. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Bastiaanssen, W.G.M.; Gao, H.; Jägermeyr, J.; Senay, G.B.; van Dijk, A.I.J.M.; Guerschman, J.P.; Keys, P.W.; Gordon, L.J.; Savenije, H.H.G. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 2016, 20, 1459–1481. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Meneely, J.M.; Rango, A.; Neff, R. Satellite microwave observations of soil moisture variations. JAWRA J. Am. Water Resour. Assoc. 1977, 13, 265–282. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.; Le Vine, D.; Hsu, A.; Oldak, A.; Starks, P.; Swift, C.; Isham, J.; Haken, M. Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2136–2151. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-27257-3. [Google Scholar]
- Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.L.; Watts, C.; Payan, J.G.; Edwards, E.; Goodrich, D.C.; Williams, D.; Shuttleworth, W.J. The understory and overstory partitioning of energy and water fluxes in an open canopy, semiarid woodland. Agric. For. Meteorol. 2002, 114, 127–139. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Mecikalski, J.R.; Anderson, M.C.; Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. 2011, 116, D15107. [Google Scholar] [CrossRef]
- Neale, C.M.; Geli, H.M.; Kustas, W.P.; Alfieri, J.G.; Gowda, P.H.; Evett, S.R.; Prueger, J.H.; Hipps, L.E.; Dulaney, W.P.; Chávez, J.L.; et al. Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach. Adv. Water Resour. 2012, 50, 152–161. [Google Scholar] [CrossRef]
- Hu, G.; Jia, L. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote Sensing Observations. Remote Sens. 2015, 7, 3056–3087. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Petropoulos, G. A new method for estimating of evapotranspiration and surface soil moisture from optical and thermal infrared measurements: The simplified triangle. Int. J. Remote Sens. 2019, 40, 7716–7729. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Long, D.; Liu, B.; Qin, G.; Qin, J.; Batelaan, O. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method. Remote Sens. 2015, 7, 8250–8270. [Google Scholar] [CrossRef] [Green Version]
- FAO. WaPOR V2 Quality Assessment—Technical Report on the Data Quality of the WaPOR FAO Database Version 2; FAO: Rome, Italy, 2020; ISBN 978-92-5-133654-0. [Google Scholar]
- Savenije, H.H. New definitions for moisture recycling and the relationship with land-use changes in the Sahel. J. Hydrol. 1995, 167, 57–78. [Google Scholar] [CrossRef]
- van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents: Origin and fate of atmospheric moisture. Water Resour. Res. 2010, 46, W09525. [Google Scholar] [CrossRef] [Green Version]
- Kunstmann, H.; Jung, G. Influence of soil-moisture and land use change on precipitation in the Volta Basin of West Africa. Int. J. River Basin Manag. 2007, 5, 9–16. [Google Scholar] [CrossRef]
- Rama, H.-O.; Roberts, D.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.; Zhu, J. Sensitivity analysis of greenhouse gas emissions at farm level: Case study of grain and cash crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Shepherd, A.; Wu, L.; Chadwick, D.; Bol, R. A Review of Quantitative Tools for Assessing the Diffuse Pollution Response to Farmer Adaptations and Mitigation Methods Under Climate Change. In Advances in Agronomy; Elsevier: San Diego, CA, USA, 2011; Volume 112, pp. 1–54. ISBN 978-0-12-385538-1. [Google Scholar]
- UNFCCC. Report of the Conference of Parties on Its Thirteenth Session; UNFCCC: Bali, Indonesia, 2007. [Google Scholar]
- Khorchani, M.; Nadal-Romero, E.; Lasanta, T.; Tague, C. Carbon sequestration and water yield tradeoffs following restoration of abandoned agricultural lands in Mediterranean mountains. Environ. Res. 2022, 207, 112203. [Google Scholar] [CrossRef] [PubMed]
- Hairiah, K. Measuring Carbon Stocks: Across Land Use Systems: A Manual; Brawijaya University and ICALRRD (Indonesian Center for Agricultural Land Resources Research and Development): Malang, Indonesia, 2011; ISBN 978-979-3198-55-2. [Google Scholar]
- Pereira, P. Ecosystem services in a changing environment. Sci. Total. Environ. 2019, 702, 135008. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, L.; Ma, Y.; Liu, P. Overview of Ecohydrological Models and Systems at the Watershed Scale. IEEE Syst. J. 2014, 9, 1091–1099. [Google Scholar] [CrossRef]
- Cramer, W.; Kicklighter, D.W.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A.L.; The Participants of the Potsdam NpP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob. Chang. Biol. 1999, 5, 1–15. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; c/o Institute for Global Environmental Strategies IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Nayak, A.; Rahman, M.M.; Naidu, R.; Dhal, B.; Swain, C.; Tripathi, R.; Shahid, M.; Islam, M.R.; Pathak, H. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Sci. Total. Environ. 2019, 665, 890–912. [Google Scholar] [CrossRef]
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP using three models compared with MODIS-NPP data over China. PLoS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Cicerone, R.J. Future global warming from atmospheric trace gases. Nature 1986, 319, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Cicerone, R.J.; Singh, H.B.; Kiehl, J.T. Trace gas trends and their potential role in climate change. J. Geophys. Res. 1985, 90, 5547–5566. [Google Scholar] [CrossRef] [Green Version]
- Mondal, B.; Bauddh, K.; Kumar, A.; Bordoloi, N. India’s Contribution to Greenhouse Gas Emission from Freshwater Ecosystems: A Comprehensive Review. Water 2022, 14, 2965. [Google Scholar] [CrossRef]
- Cicerone, R.J.; Shetter, J.D. Sources of atmospheric methane: Measurements in rice paddies and a discussion. J. Geophys. Res. 1981, 86, 7203. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Xu, X.; Liu, M.; Ren, W.; Zhang, C.; Chen, G.; Lu, C. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: Application of a global biogeochemistry model. Biogeosciences 2010, 7, 2673–2694. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Huang, J.-X.; Zhang, C.; Ma, H.-Y.; Zhuo, W.; Chen, Y.-Y.; Zhu, D.-H.; Wu, Q.; Mansaray, L.R. Soil temperature estimation at different depths, using remotely-sensed data. J. Integr. Agric. 2020, 19, 277–290. [Google Scholar] [CrossRef]
- Xu, C.; Qu, J.J.; Hao, X.; Zhu, Z.; Gutenberg, L. Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102156. [Google Scholar] [CrossRef]
- van Woesik, F. Micro-Climate Management. DownToEarth 2022, in press. [Google Scholar]
- Osann Jochum, M.A. Operational Space-Assisted Irrigation Advisory Services: Overview of and Lessons Learned from the Project DEMETER. In Proceedings of the AIP Conference Proceedings, Naples, Italy, 10–11 November 2005; Volume 852, pp. 3–13. [Google Scholar] [CrossRef] [Green Version]
- Dörnhöfer, K.; Klinger, P.; Heege, T.; Oppelt, N. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Sci. Total. Environ. 2018, 612, 1200–1214. [Google Scholar] [CrossRef]
- Poddar, S.; Chacko, N.; Swain, D. Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Front. Mar. Sci. 2019, 6, 598. [Google Scholar] [CrossRef]
- Ma, J.; Jin, S.; Li, J.; He, Y.; Shang, W. Spatio-Temporal Variations and Driving Forces of Harmful Algal Blooms in Chaohu Lake: A Multi-Source Remote Sensing Approach. Remote Sens. 2021, 13, 427. [Google Scholar] [CrossRef]
- Peppa, M.; Vasilakos, C.; Kavroudakis, D. Eutrophication Monitoring for Lake Pamvotis, Greece, Using Sentinel-2 Data. ISPRS Int. J. Geo-Inf. 2020, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, A. Using Sentinel-2 Data to Predict Nitrogen Uptake in Maize Crop. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2656–2662. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubaña, B.; Dalen, M.; Harrell, D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.; Shen, P.; Li, W.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Bogunovic, I.; Muñoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Dang, Y.; Ren, W.; Tao, B.; Chen, G.; Lu, C.; Yang, J.; Pan, S.; Wang, G.; Li, S.; Tian, H. Climate and Land Use Controls on Soil Organic Carbon in the Loess Plateau Region of China. PLoS ONE 2014, 9, e95548. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R. The EPIC Model. In Computer Models of Watershed Hydrology; Water Resources Publications: Littleton, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Schaake, J.C.; Koren, V.I.; Duan, Q.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. Atmos. 1996, 101, 7461–7475. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Zhao, Y.; Lei, J.; Feng, X.; Zeng, F.; Zhou, J.; Mao, D. Quantification of Environmental Flow Requirements to Support Ecosystem Services of Oasis Areas: A Case Study in Tarim Basin, Northwest China. Water 2015, 7, 5657–5675. [Google Scholar] [CrossRef] [Green Version]
- Smakhtin, V.; Revenga, C.; Döll, P. A Pilot Global Assessment of Environmental Water Requirements and Scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Schaefli, B.; Montanari, A.; Savenije, H.H.G. On the calibration of hydrological models in ungauged basins: A framework for integrating hard and soft hydrological information: Integrating hard and soft information. Water Resour. Res. 2009, 45, W12422. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, H.; Schnepf, A.; Hopmans, J.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Schoups, G.; Nasseri, M. GRACEfully Closing the Water Balance: A Data-Driven Probabilistic Approach Applied to River Basins in Iran. Water Resour. Res. 2021, 57, e2020WR029071. [Google Scholar] [CrossRef]
General Categories | HESS | Ecosystem Services/Concept | Major Principles | Unit | Spatial Connection between Providing and Demanding Locations of HESS | Temporal Connection between Providing and Demanding Locations of HESS | Consumptive Use | Non-Consumptive Use |
---|---|---|---|---|---|---|---|---|
Provisioning services (related to water) | ||||||||
Fresh water | 1 | Basin runoff | Ultimate source of water available for multiple purposes | m3/ha | River basin, in-stream directional benefits (downstream) | Annual, seasonal (wet and dry period) | x | |
Food | 2 | Inland capture fishery | Catch from lakes, wetlands, rivers | kg/ha | Local, surrounding communities | Annual | x | x |
Food | 3 | Natural livestock feed production | Dry matter production from natural pastures, alpine pastures, wetlands and more | kg/ha | Local, surrounding communities | Annual | x | |
Fuels | 4 | Fuelwood from natural forests | Dry matter production from forests and savannahs | kg/ha | Local, surrounding communities | Annual | x | |
Regulating services (related to water) | ||||||||
Fresh water supply | 5 | Dry season flow (“baseflow”) | Flow from groundwater outflow, lakes, wetlands and upstream runoff | m3/s | River basin, directional benefits (downstream) | Seasonal (during dry period) | x | |
Fresh water supply | 6 | Total groundwater recharge | Vertical transient moisture flow originating from percolation reaching saturated groundwater | m3/ha | River basin | Annual, seasonal (wet and dry period) | x | |
Fresh water | 7 | Surface water storage | Total water stock in natural surface water systems (lakes, wetlands) | m3 | River basin, local, surrounding communities | Annual, seasonal (wet and dry period) | x | |
Fresh water supply | 8 | Root zone water storage | Retention of soil moisture in unsaturated zone for carrying over water from wet to dry seasons | m3 | River basin, local, surrounding communities | Annual, seasonal (wet and dry period) | x | |
Fresh water supply | 9 | Sustaining rainfall | Sustaining rainfall originating from land evaporation | m3/ha | River basin | Annual | x | |
Disturbance regulation | 10 | Peak flow attenuation | Attenuated peak flow for safeguarding downstream areas from flooding by means of ecological intervention | % | River basin, directional benefits (downstream) | Seasonal (wet period) | x | |
Air quality and climate | 11 | Carbon sequestration | Assimilating atmospheric carbon into crop organs (wood, roots) and soil | kg C/ha | River basin | Annual | x | |
Air quality and climate | 12 | Reduce greenhouse gas emissions | Reduced methane emissions and other trace gasses due to changes in land use and water management | kg C/ha | River basin | Annual | x | |
Air quality and climate | 13 | Micro-climate cooling | Evaporative cooling of the vegetation and near-surface atmosphere due to changes in land and water management | °C | River basin | Annual | x | |
Water quality | 14 | Natural reduction of water eutrophication | Reduction in eutrophication due to changes in land use and water management | % | River basin, directional benefits (downstream) | Annual, seasonal (wet and dry period) | x | |
Water quality | 15 | Reduction in soil erosion | Reducing erosion and sedimentation by increased vegetation cover | kg/ha | River basin, directional benefits (downstream) | Annual, seasonal (wet and dry period) | x | |
Supporting services | ||||||||
Habitat provision | 16 | Meeting environmental flow requirements | Meeting minimum flows and water levels for biodiversity, ecosystem health and endangered (fish) species | % | River basin, in-stream directional benefits (downstream) | Seasonal (wet and dry period) | x | |
Cultural services | ||||||||
Recreational | 17 | Leisure | Socialisation of humans via water sports, golf courses, eco-tourism, aesthetic views, mountain biking, forest BBQs, etc. | Number of visitors | Local, surrounding communities | Annual, seasonal (wet and dry period) | x | x |
Indicator | Remote Sensing Outputs | Other Quantification Methods |
---|---|---|
HESS1 | P, ET, ΔS | Hydrological models |
HESS2 | A, H, E | FAOSTAT, WorldFish, statistics (mean annual discharge and water bodies) |
HESS3 | NPP | Look-up table for LULC |
HESS4 | NPP | Look-up table for LULC |
HESS5 | , H | Hydrograph measurements, rainfall-runoff models |
HESS6 | P, ET, ∆S, Vc | Tracers, hydrological model |
HESS7 | A, H | Bathymetry, gauge readings |
HESS8 | EF, LST, NDVI | Soil moisture and root length measurement, unsaturated zone hydrology models |
HESS9 | P, ET, Vc | Atmospheric models |
HESS10 | LU, A, H | Rainfall–runoff models |
HESS11 | LU, Vc, NPP | IPCC–AFOLU method |
HESS12 | LU, Vc, NPP | IPCC–AFOLU method |
HESS13 | LST, Vc, LU | Air temperature and air humidity measurements, global/regional climate model |
HESS14 | LU, ABDI, FAI, Chl-a, MCI, MPH, SRRE | Optical and laboratory measurement |
HESS15 | Vc, NPP | No. of landslides, erosion measurements |
HESS16 | , A, P, ET, ∆S, Vc | Historic and current hydrographs |
HESS17 | ET, A, H | Visitor statistics, no. of leisure businesses |
Satellite | Sensor | Spatial Resolution (Nadir, m) | HESS | RS Parameters |
---|---|---|---|---|
LANDSAT | OLI-2, TIRS-2 (Landsat 9) | 15–90 m | HESS3, HESS4, HESS11 | EF, SM, H, NPP |
OLI, TIRS (Landsat 8) | HESS14 | Chl-a, FAI, SRRE, NDRE | ||
ETM+ (Landsat 7) | HESS1, HESS5 | Q | ||
MSS (Landsat 1, 2, 3) | HESS7, HESS10, HESS17 | Q | ||
TM (Landsat 4, 5) | ||||
Terra/Aqua | MODIS | 250–1000 m | HESS3, HESS4, HESS11, HESS14 | NPP, SRRE, NDRE, FAI |
PROBA-V | Vegetation | 120 m | HESS3, HESS4, HESS11 | NPP |
IRS | WiFS | 188 m | HESS3, HESS4, HESS11 | NPP |
Suomi | VIIRS | 375 m | HESS3, HESS4, HESS11 | NPP, LST |
JASON | Poseidon | na | HESS1, HESS5, HESS7, HESS10, HESS16 | , H |
Sentinel-3 | Altimeter | variable | HESS1, HESS5 | LST |
Sentinel-3 Sentinel-2 | Altimeter MSI | variable 10 m | HESS7, HESS10, HESS16 | |
HESS1, HESS5 | Q | |||
Sentinel-2 Sentinel-1 | MSI C-band SAR | 10 m 10 m | HESS14 | Vc, chl-a, FAI, NDRE |
HESS7, HESS16 | , A, Q | |||
HESS1, HESS5 | Q | |||
Sentinel-1 ISS | C-band SAR EcoStress | 10 m 70 m | HESS 8 | SM |
HESS7, HESS10, HESS16 | Q | |||
HESS9, HESS13 | LST, NDVI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, L.T.; Bastiaanssen, W.G.M.; Simons, G.W.H.; Poortinga, A. A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring. Sustainability 2023, 15, 6182. https://doi.org/10.3390/su15076182
Ha LT, Bastiaanssen WGM, Simons GWH, Poortinga A. A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring. Sustainability. 2023; 15(7):6182. https://doi.org/10.3390/su15076182
Chicago/Turabian StyleHa, Lan Thanh, Wim G. M. Bastiaanssen, Gijs W. H. Simons, and Ate Poortinga. 2023. "A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring" Sustainability 15, no. 7: 6182. https://doi.org/10.3390/su15076182
APA StyleHa, L. T., Bastiaanssen, W. G. M., Simons, G. W. H., & Poortinga, A. (2023). A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring. Sustainability, 15(7), 6182. https://doi.org/10.3390/su15076182