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Abstract: The fashion industry is facing increasing pressure to move toward sustainable development,
especially with concern to cost and environmental sustainability. Innovative digital technologies are
regarded as a promising solution for fashion companies to resolve this issue. In this context, this
paper put forth a new 3D reverse garment design approach embedded with a garment fit prediction
and structure self-adaptive adjustment mechanism, using machine learning (ML) techniques. Ini-
tially, the 3D basic garment was drawn directly on the scanned mannequin of a specific consumer.
Next, a probabilistic neural network (PNN) was employed to predict the garment’s fit. Afterwards,
genetic algorithms (GA) and support vector regression (SVR) were utilized to estimate and control
the garment structural parameters following the feedback of fit evaluation and the consumer’s
personalized needs. Meanwhile, a comprehensive evaluation was constructed to characterize the
quantitative relationships between the consumer profile and the designed garment profile (garment
fit and styles). Ultimately, the desired garment which met the consumer’s needs was obtained by
performing the routine of “design–fit evaluation–pattern adjustment–comprehensive evaluation”,
iteratively. The experimental results show that the proposed approach provides a new solution to
develop quality personalized fashion products (garments) more accurately, economically, and in
an environmentally friendly way. It is feasible to facilitate the sustainable development of fashion
companies by simultaneously reducing costs and negative impacts on the environment.

Keywords: interactive 3D garment design; reverse engineering; machine learning; probabilistic
neural network; genetic algorithms; support vector regression

1. Introduction

In recent years, there has been increasing pressure on companies in the fashion industry
due to adverse impacts on the natural environment [1–6]. The fashion industry accounts for
approximately 20 percent of industrial wastewater pollution worldwide, and 8–10 percent
of humanity’s carbon emissions, is was more than all international flights and maritime
shipping combined [7]. This trend reinforces fashion companies’ need for new business
models for sustainability, in order to gain competitive advantages worldwide [8–10]. More
specifically, sustainability in the fashion industry mainly endeavors to design, develop and
manufacture quality products in an eco-friendly manner that has few negative impacts on
the environment and society [11,12]. Nevertheless, quality fashion products are designed
and developed traditionally by running the routine of “design–demonstration–evaluation–
adjustment”, using real garment prototypes [13]. It is obvious that the conventional garment
design and development process, which is tedious, low-efficient, and material-wasting, is
unfavorable for the sustainable development of fashion companies [14,15]. In this context,
innovative digital technologies (i.e., 3D human body scanning, reverse engineering, virtual
reality) have been regarded as key for updating the garment design process in pursuit of
sustainability [16–18].
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In the past decades, commercial 3D garment computer-aided design (CAD) software
systems such as Style 3D, Lectra Modaris 3D, Clo 3D, OpiTex 3D Runway, Browzwear
VStitcher, Marvelous Designer, and Assyst-Bullmer Vidya have been developed and made
available commercially in the industry [19]. As the simulation of the garment design
process can be conducted without manufacturing real garments [20], these systems allow
the companies to accomplish objectives of sustainability, including material-saving and
environmental protection. In the system, 3D reverse technology (also named 3D-to-2D
flattening, 3D flattening, or 3D reverse engineering) has attracted increasing attention.
Why is this technology attractive? The main merits of the technology are presented as
follows. (1) The 2D garment patterns originate from the scanned 3D human body, which
can reflect the surface morphology features of a specific human body, apart from the human
body dimensions. The quality of the designed garment can be ensured and significantly
improved. This technology facilitates higher levels of garment customization, especially
through accomplishing one pattern for one person. (2) Compared with the traditional
2D design approach, the personalized garment is drawn and developed directly from
a 3D digital mannequin, which is more intuitive and efficient because it dramatically
reduces complicated calculations and manipulations. Therefore, 3D reverse technology
embedded in the 3D garment CAD opens up new opportunities for practitioners (i.e.,
fashion designers, and pattern makers) to design garments more simply, precisely and
quickly. Thus, it facilitates the achievement of the vision of sustainability by lessening the
heavy environmental burden by reducing unnecessary waste of labor and materials.

In practice, the factors affecting garment quality (i.e., appearance, fitness, comfort,
functionality, etc.) are sophisticated and connected [21]. Meanwhile, fashion design
is experience and knowledge-dependent work. A novice fashion designer will find it
more difficult to deal with the implicit relationships among these factors efficiently and
accurately, because they are full of uncertainty and nonlinearity. Machine learning (ML)
techniques, such as artificial neural networks (ANN), support vector regression (SVR),
and genetic algorithm (GA), have the advantages of learning, generalizing, and dealing
with complex nonlinear relationships and solving optimization problems [22,23]. As a
result, several ML-based computational intelligence approaches (i.e., naive Bayes classifier,
back propagation artificial neural networks, decision tree C4.5, etc.) have been developed
to support fashion designers in making decisions during the process of garment design,
especially for fit evaluation [20,24,25] and clothing production [26,27]. These pieces of
research present good cases and bright prospects for the application of ML techniques in
the fashion industry. Therefore, we extended the application of ML techniques, in terms
of a probabilistic neural network (PNN), SVR and GA, to optimize traditional 3D reverse
engineering technology for the fashion industry in this study.

Figure 1 illustrates our proposed interactive 3D garment design approach embedded
with ML models. First, Model 1 was created to predict and evaluate the garment fit of the
basic garment, which was designed directly on the 3D mannequin. This model permitted
the prediction and control of the garment fit in a 3D digital design space by fully taking the
garment’s design parameters and the fabric’s mechanical properties into consideration. In
this way, it was able to ensure that the garment fit of the desired garment is satisfactory.
Next, if the evaluation results from Model 1 were dissatisfactory, an adaptive adjustment
mechanism for 2D garment patterns supported by the knowledge-based Model 2 would be
activated. Then, Model 3 was established to comprehensively evaluate the garment quality,
including the characteristics of garment fit and style. If the evaluation results from Model
3 were dissatisfactory, the aforementioned adjustment mechanism would be activated
again. Ultimately, the desired garment will be obtained by performing the routine of “2D
modification–3D demonstration–evaluation”, repeatedly. Moreover, the 2D production
patterns of the satisfactory 3D garment will be generated and delivered to the following
manufacturing department.
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Figure 1. The proposed 3D reverse garment design process integrating machine learning and 3D
reverse technology.

Compared with existing 3D reverse engineering-based garment design methods, the
main merits of the proposed approach in this study are as follows:

• Reducing the difficulties of personalized garment design for fashion designers (espe-
cially the novice) and lessening the heavy dependency on the designer’s experiences
and skills by modelling profound design knowledge using ML techniques;

• Providing a new solution to overcome the technical drawbacks of current 3D reverse
design methods for garment design by using ML techniques to enhance the reliability
of flattened 2D garment patterns;

• Boosting the emergence of an innovative personalized design approach for fashion
products (i.e., garments, footwear, headwear, etc.) by integrating fit evaluation and an
adaptive mechanism into the conventional 3D design process;

• Facilitating the industrialized application of 3D reverse design technology in the
fashion industry by resolving the current technical bottlenecks using intelligent com-
putational tools;

• Offering a promising solution for fashion companies aiming for sustainability by
designing quality fashion products in a more reliable, intuitive, accurate, efficient, and
economical manner.

The remaining sections of this article are structured as below. The research method-
ology is introduced in Section 2. The production of the models concerned is explained
concretely in Section 3. In Section 4, we discuss and validate the implementation of the
proposed approach. Finally, the conclusion and future research directions are summarized
in Section 5.

2. Research Methodology
2.1. Literature Review

Scholars in academia have attempted to develop new 3D garment design technology,
aiming to promote product design quality and efficiency and the satisfaction of consumers
while avoiding unnecessary waste of time, labor, and materials. For example, Li and Lu
expounded a novel approach to creating 3D new garment models using garment examples
rather than 2D patterns [21]. Ref. [28] introduced an evolving framework for designing
the styling curves of garments. Bartle et al. presented a system permitting direct editing
of garments in 3D space, which was very suitable for users with no experience in 2D
garment patterns [29]. Liu et al. put forward a development and dynamic wear comfort
evaluation method for cycling clothes patterns based on 3D virtual reality and flattening
technology [30]. To develop female seamless soft body armor with ensured fitness and good
comfort, Abtew et al. presented a 2D pattern development method based on a 3D adaptive
virtual mannequin, using a reverse engineering technique [31]. In Ref. [32], Mesuda et al.
put forward a design method for planar patterns using a cloth model by mapping. Liu et al.
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proposed a sketch-based 3D garment patten-making technology which was able to deduce
the form of a 3D garment based on the structural lines drawn on the virtual mannequin [33].
A 3D prototyping method supporting the automatic generation of swimsuit patterns was
presented by Han in [34]. Lei et al. put forth a new 3D garment pattern-making method
based on graphic coding to facilitate the transformation of 3D garments to 2D patterns
more accurately and intuitively [35]. Liu et al. applied 3D reverse engineering technology
to the digital restoration of ancient Chinese clothing [36,37]. Ji et.al proposed a method
for flattening the 3D design of the corset to a 2D pattern using 3D point cloud data [38].
The above studies have revealed the bright prospects of the application of 3D reverse
technology in the fashion industry.

However, 3D reverse design technology has still seldom been implemented in real
garment manufacturing scenarios [35]. The major reason for this situation is that inaccurate
2D patterns are easily generated when the non-developable surfaces are flattened, due to
the restrictions of current technology [35]. More importantly, an evaluation and adjustment
mechanism to deal with the flattened 2D patterns, by which the generated 2D patterns can
meet the requirements of real production, is lacking. To address this issue, we proposed a
new interactive 3D garment design method, with the goal of sustainability, by combining
machine learning with traditional 3D reverse engineering technology.

2.2. General Research Scheme

The research procedure of this study briefly includes three phases. In the first phase,
several sensory experiments were conducted to collect the learning data for building Model
1, involving the sensory data on the garment fit of the actual garments, the fabric properties
data, and the garment ease allowance or clothing pressure data measured in a digital 3D
design space. The probabilistic neural network (PNN), proposed by Specht originally, is
regarded a particular type of ANN model based on Bayesian decision rules [39,40]. Thanks
to its excellent characteristics such as fast process speed, simple topology, less sensitivity to
noisy data, being easy to model, etc., a PNN was employed to construct Model 1.

In the experiments of the second phase, we acquired the relevant learning data from
the garment patterns, in terms of the length variation data of the structural lines (SL) and
the movement data of the corresponding controlling points (CP). Compared with other
regression techniques, support vector regression (SVR), working on the principles of a
support vector machine (SVM), has several outstanding advantages, such as availability in
both linear and non-linear regression and high generalizability, which can avoid the local
minimum [41]. Furthermore, the genetic algorithm (GA) has been considered a powerful
tool for dealing with complicated optimization problems due to its fast convergence and
simple encoding. Therefore, an SVR combined with a GA (GASVR) was employed in our
research to create Model 2.

In the last phase, we built Model 3 to characterize the quantitative relationships
between the designed garment based on the proposed approach and the target garment.
The experimental details will be concretely explained in the following Section 3.

Due to its outstanding advantages in intelligent computation, the ML models proposed
in this study were developed using MATLAB programming language.

2.3. Formalization

Let F = { f1, f2, . . . , fm} be a set of fabrics involved in this article.
Let FP = { f p1, f p2, · · · , f p15} be a set of the fabric mechanical property descrip-

tors, where f p1, f p2, f p3, f p4, f p5, f p6, f p7, f p8, f p9, f p10, f p11, f p12, f p13, f p14, f p15 refer
to Stretch weft, Stretch warp, Stretch bias, Bending weft, Bending warp, Bending bias, Buckling
ratio weft, Buckling ratio warp, Buckling ratio bias, Buckling stiffness weft, Buckling stiffness
warp, Buckling stiffness bias, Dynamic friction, Static friction, and Thickness, respectively.

Let FV = { f v1, f v2, . . . , f v15} be a set of standardized values of mechanical properties
of the fabric fi(i ∈ m) measured in the 3D virtual environment (Style 3D). The elements of
FV have a one-to-one correspondence with those of FP.
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Let FIT = { f it1, f it2, f it3, f it4, f it5} = {1, 2, 3, 4, 5} be a set of values representing
the garment fit characteristics, corresponding to the linguistic values of sensory descrip-
tors {”Too tight/short(1)”, ”Tight/Short(2)”, ”Per f ect(3)”, ”Loose/Long(4)”, ”Too loose/
long(5)”}.

Let CP =
[
FN SN

]
be a vector for profiling the consumer’s needs, where FN and

SN refer to the needs of garment fit and style, respectively.
Let FN =

[
f n1 · · · f ni · · · f np

]
( f ni ∈ nFIT) be a p-dimensional normalized

vector representing the requirements of garment fit at p feature positions.
Let SN =

{
SN1, · · · , SNj, · · · , SNq

}
be a set of normalized vectors representing the

needs for q categories of style design elements. For a specific garment style, the SN can be
composed of various categories of style design elements. For example, as a classical style
of men’s wear, shirt style can be constituted by combining diverse design elements, such as
the silhouette, garment length, collar, darts, pleats, pockets, etc.

Let SNj =
[
snj1 · · · snjv · · · snju

]
be a ju-dimensional one-hot vector expressing

the need for a j-th category style design element. The value of snjv is denoted as the
nearness degree of the style needed to the jv-th style element.

For instance, if the chest pocket (CT) of shirt style includes four basic types, namely
no CT, patch CT, patch CT without flap, and insert CT, then it can be defined by:

SNchest pocket = {no CT, patch CT, patch CT without f lap, insert CT}.

If a SNchest pocket =

[
no CT

0
patch CT

0
patch CT without f lap

1
insert CT

0

]
, it means that the

need for the chest pocket style is patch CT without flap.
Let GP =

[
FC SC

]
be a vector for profiling the characteristics of the garment de-

signed by machine learning-enhanced 3D reverse technology, where FC and SC represent
the characteristics of garment fit and style, respectively.

Let FC =
[

f c1 · · · f ci · · · f cp
]
( f ci ∈ nFIT) be a p-dimensional normalized

vector representing the characteristics for garment fit at p feature positions. The elements
of FC have a one-to-one correspondence with those of FN.

Let SC =
{

SC1, . . . , SCj, · · · , SCq
}

be a set of one-hot vectors expressing the style
characteristics of the designed garment from the aspects of the q categories of style design
elements.

Let SCj =
[
scj1 · · · scjv · · · scju

]
be a ju-dimensional vector expressing the con-

crete style characteristics of a designed garment in the j-th category style design element.
The structure of SCq has a one-to-one correspondence with that of SNq. Moreover, the
value of scjv is defined by using the same method as snjv , as mentioned above.

2.4. Acquisition of the Modelling Data
2.4.1. Acquisition of the Learning Data for Model 1 (Experiment I)

Model 1 was denoted as a knowledge base for garment fit prediction. Its main objective
concentrated on predicting the garment fit characteristics in a 3D virtual environment
without any physical try-on. The output learning data of Model 1 was the sensory data on
garment fit collected from the real try-on experiments. The input learning data, including
garment ease allowance, clothing pressure, and fabric mechanical properties, were acquired
using the 3D garment CAD software Style 3D, thanks to its outstanding simulation effects.
The concrete data acquisition procedures are described below:

Step 1: Both loose and tight-fitting garments were considered in our research. Since
the experiment objectives focused on the garment fit, simple-style garments without any
redundant ornaments (see Figure 2) were prepared and involved in our experiments.
For each style of the involved experimental garment, we chose five sizes with five kinds
of fabrics.
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Figure 2. The involved experiment garment styles. Note: (a) loose-fitting top garment; (b) loose-
fitting lower garment; (c) tight-fitting top garment; (d) tight-fitting lower garment.

Step 2: Since the fashion companies involved in our research project aimed to expand
the Chinese men’s wear market, we recruited male experimental subjects in China to
participate in this research. The basic idea and principles can be generalized for other
companies and institutions to develop target markets by enrolling the subjects from the
target population.

To guarantee the procedure and results of the sensory experiments, a professional
with over 20 years of experience in studying and developing garment sizing systems
was invited to take part in our experiments. With her profound knowledge and rich
experience, 16 male subjects with representative human body shapes were screened out.
Their body sizes corresponded to the sizes defined in the China National Standard (GB/T
1335.1-2008) [42], which were 155/80A, 155/84A, 160/80A, 160/84A, 160/88A, 165/84A,
165/88A, 165/92A, 170/84A, 170/88A, 170/92A, 175/84A, 175/88A, 175/92A, 180/88A,
and 185/92A, respectively. There were two major principles of subject selection: (1) the
body sizes were selected according to the accommodate rate (AR) of the China National
Standard (GB/T 1335.1-2008) in descending order; (2) the aggregated AR value of the
selected body sizes should cover most of the Chinese population.

Step 3: In a laboratory with constant temperature (20± 2 ◦C) and relative humidity
(65± 5%), we declared the objective of this experiment to the subjects first. Next, when all
the subjects agreed to the experiment, each of the 16 subjects performed his try-on with the
experimental garments and perceived the fit levels in various scenarios, such as standing,
sitting, walking, squatting, etc. After that, they recorded the evaluation value of the gar-
ment fit at each feature position of the garment based on the semantic differential method.
The evaluation value of garment fit was represented by {1, 2, 3, 4, 5}, corresponding to
the linguistic values {too tight/short, tight/short, perfect, loose/long, too loose/long}. Fi-
nally, all the evaluation data were aggregated to the output learning data of Model 1.

For each experimental garment style, 400 records of data were collected to form the
learning dataset.

2.4.2. Acquisition of the Learning Data for Model 2 (Experiment II)

Model 2 was defined as an adjustment rules knowledge base for garment patterns,
enabling the adaptive adjustment of garment patterns. The acquisition of the learning data
of Model 2 is presented concretely below:

Step 1: The key pattern panel and the associate panels were identified based on the
knowledge of the designer. In our research, for both the top and the lower garment, the
front pattern panel was chosen as the key panel, with the other panels as the associate
panels.

Step 2: As shown in Figure 3, first of all, we decomposed the key pattern panel, and
then extracted a series of SLs, keeping the status of the SLs in original patterns, includ-
ing length, direction, angle, radian, etc. Next, for all the extracted SLs, we defined the
movement directions of the corresponding CPs in the same coordinate system, including
horizontal and vertical directions. Lastly, for a certain structural line (sli) and its corre-
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sponding controlling points (cpv, cpv+1), we collected the movement data of the two CPs,
including dx_cpv, dy_cpv, dx_cpv+1 and dy_cpv+1, under various moving scenarios, and
then record the corresponding length variation data dl_sli of the structural line sli. These
data were stored and utilized as the learning dataset to establish Model 2.
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3. Construction of the Computational Tools for Optimizing the 3D Reverse
Design Method
3.1. Creation of Knowledge Base for Garment Fit Prediction (Model 1)

The proposed knowledge base for garment fit prediction (see Figure 4) consisted of
three layers, involving the data layer, the computational layer, and the decision layer. In the
data layer, the learning data collected from Experiment I were stored in a series of databases,
such as the human body dimension database, the garment ease allowance database, the
clothing pressure database, and the fabric mechanical property database. The data in
the data layer were analyzed quantitatively and modelled in the computational layer,
aiming to realize the prediction of garment fit at each feature position. The computational
layer constituted the core of Model 1. The decision layer presented the global and local
garment fit characteristics aggregated from the computational layer. Due to its excellent
performance mentioned in Section 2, a PNN was employed to construct the garment fit
prediction models in the computational layer (see Figure 4).
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For a specific feature position i, the construction of a PNN-based garment fit prediction
model is generally described as follows:
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Step 1: The inputs were distributed to the input layer of the PNN model, represented
by a vector inputi:

inputi = {garment f it indicator, f v1, f v2, · · · , f v15,}

where the garment fit indicator was determined by the fit characteristics of the garment
style. For the loose-fitting garment style, garment ease allowance was utilized, while the
clothing pressure was used for the tight-fitting garment. The parameters ( f v1 ∼ f v15)
were measured and obtained using a fabric property measurement tool associated with the
software Style 3D.

Step 2: First, in the pattern layer, the relationship between the input vector inputi
and each pattern of the fit characteristics f itj was calculated by the Euclidean distance,
following Equation (1). Afterwards, the neuron output of the pattern layer was activated
by a radial Gauss function similar to Equation (2).

Edij = ||inputi − f itj || (1)

Oppattern
ij = exp

[
−

Edij

2σ2

]
(2)

where σ referred to the spread parameter, also named the smoothing parameter.
Step 3: In the summation layer, one summation neuron corresponds to the fit charac-

teristics f itj. For each summation neuron, the inputs from the pattern layer belonging to
the fit characteristics f itj were aggregated following Equation (3) accordingly.

Sij =
l

∑
i=1

Oppattern
ij =

l

∑
i=1

exp
[
−

Edij

2σ2

]
(3)

where l was the number of samples belonging to the fit characteristics f itj.
The class-conditional probability of the i-th sample belonging to the fit characteristics

f itj was computed following Equation (4):

Opsummation
j = P

(
inputi

∣∣ f itj
)
=

Sij

l
(4)

Step 4: Based on the Bayes theory, the fit characteristics of the i-th sample were decided
by Equation (5) in the output layer. This meant that the largest P

(
inputi

∣∣ f itj
)

would be
identified and the corresponding j would be declared as the category of the input vector
inputi.

Categroy(xi) = argmax
(

Opsummation
j

)
= argmax

(
P
(
inputi

∣∣ f itj
))

(5)

The K − f old (K = 10) cross-validation approach was utilized to create the PNN-
based prediction model. Concretely, the learning dataset was randomly split into K(= 10)
smaller sets first. Additionally, then, for each of the K “folds”, K− 1(= 9) small sets with
360 instances, were employed as the training dataset, in turn, to train the model, with the
remaining part of the original dataset as the validation dataset. Finally, the garment fit
prediction model at the feature position i was determined after 10− f old cross-validation.

3.2. Creation of Knowledge Base for Garment Pattern Adjustment (Model 2)

The proposed adjustment rules knowledge base for garment patterns (see Figure 5)
was composed of a series of basic databases and relational models. The relational models in
the key pattern panel aimed to quantitatively characterize the relations between the length
change data of the structural lines (SLs) and the movement data of the controlling points
(CPs). Based on these models, we further defined the adjustment rules of the key pattern
panel. By constructing the model expressing the relations between the associate panels and
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the key panel, the adjustment rules of the associate panels were achieved. They were key
to the success of the implementation of the adaptive self-adjustment mechanism proposed
in this study.
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Thanks to the advantages mentioned in Section 2, an SVR combined with GA (GASVR)
was employed in our research to create Model 2. Considering the possible movements
of the CPs, we created five GASVR-based relational models, respectively for each SL (sli)
in the key pattern panel. The input and output of the concerned models for the sli were
defined following the principles presented in Table 1.

Table 1. The inputs and output of the GASVR-based relational models of the structure line sli in the
key pattern panel.

Model Name Input Output

GASVR1
dx_cpv, dy_cpv, dx_cpv+1,

dy_cpv+1
dl_sli

GASVR2
dl_sli, dy_cpv, dx_cpv+1,

dy_cpv+1
dx_cpv

GASVR3
dx_cpv, dl_sli, dx_cpv+1,

dy_cpv+1
dy_cpv

GASVR4 dx_cpv, dy_cpv, dl_sli, dy_cpv+1 dx_cpv+1
GASVR5 dx_cpv, dy_cpv, dx_cpv+1, dl_sli dy_cpv+1

Note: cpv and cpv+1 represent the controlling points corresponding to the structure line sli.

The relational models between the associate and key pattern panels were defined
following the correspondence between the associate panels and the key panel based on
classical garment-making knowledge. These models aimed to realize the associate and
adaptive adjustment of the associate panels.

3.3. Creation of the Comprehensive Evaluation Model (Model 3)

A similarity degree indicator sim(CP, GP) was defined to represent the quantitative
relationships between the consumer profile (CP) and the designed garment profile (GP).
In this study, the sim(CP, GP) was denoted and calculated by Equation (6).

sim(CP, GP) = 0.5× sim(FN, FC) + 0.5× sim(SN, SC) (6)

The sim(FN, FC), as shown in Equation (7), represents the indicator of the similarity
degrees between the garment fit needs (FN) and the fitness characteristics (FC) of the
designed garment profile (GP).

sim(FN, FC) = similaritygarment f it =
∑m

1 min( f ni, f ci)

∑m
1 max( f ni, f ci)

(7)
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where f ni and f ci refer to the fit need and fit characteristics at i-th feature position.
The values of sim(FN, FC) are between 0 and 1. From Equation (7), if the fit character-

istics are close to the fit needs at each feature position, the value of sim(FN, FC) is close to
1. Otherwise, it tends to be 0.

The sim(SN, SC), as shown in Equation (8), refers to the indicator for expressing the
similarity degree between the style needs (SN) and the style characteristics (SC) of a
specifically designed garment profile (GP).

sim(SN, SC) = similaritygarment style

=
∑j ∑i min(sni ,sci)

∑j ∑i max(sni ,sci)
,
(
sni ∈ SNj ∈ SN, sci ∈ SCj ∈ SC

) (8)

The values of sim(SN, SC) vary between 0 and 1. If all style elements of SN and SC
are close to each other, the value of sim(SN, SC) is close to 1. Otherwise, it tends to be 0.

4. Application, Validation, and Discussion
4.1. Application in the Customization of Personalized Tight-Fitting Garments
4.1.1. Definition of the Consumer Profile for Tight-Fitting Garments

Since the sport legging is a classical and popular tight-fitting garment style, we
elaborate our proposed technology using a real customization case of sport leggings for a
specific male consumer in this section. After multiple interactions with the consumer, the
vector-style consumer profile for the sport leggings was obtained (see Table 2).

Table 2. Consumer profile for the tight-fitting garment.

S.N. Category Normalized Vectors Notes

Style
needs

1 Silhouette SN1 =

[
H
0

A
0

X
0

T
0

S
1

] S shape (“S” represents
Skinny.)

2 Length SN2 =

[
Mini

0
Thigh

0
Knee

0
Ankle

1
Full

0

]
Ankle length

3 Waist line position SN3 =

[
High

0
Normal

0
Lower

1

]
Lower waist line

4 Waist band SN4 =

[
No
0

Straight
1

Curve
0

]
Straight waist band

5 Leg opening SN5 =

[
Tapered

1
Straight

0
Flared

0

]
Tapered opening

6 Dart SN6 =

[
No f ront

1
Single f ront

0
Double f ront

0
Multiple f ront

0
No back

1
Single back

0

]
No front and back dart

7 Pleat SN7 =

[
No f ront

1
Single f ront

0
Double f ront

0
Multiple f ront

0

]
No front pleat

8 Yoke SN8 =

[
No
0

Straight
1

Curve
0

Special
0

]
Straight yoke

9 Ornament SN9 =

[
Embroidery

0
Printing

0
Riveiting

0
Quilting

0
Hollow cut

0
No
1

]
No ornament

10 Pocket SN10 =

[
NF
0

FI
1

FIC
0

FP
0

NB
0

BI
0

BIF
0

BP
0

BPF
0

]
1 Front inserted pocket

Fit needs FN =

[
Waist girth

3
Hip girth

3
Thigh girth

3
Knee girth

3
Ankle girth

3

]
Perfect

1 Note: NF, FI, FIC, Fp, NB, BI, BIF, BP, and BPF refer to No front pocket, Front inserted pocket, Front inserted
pocket with coin pocket, Front patched pocket, No back pocket, Back inserted pocket, Back inserted pocket with
flap, Back patched pocket, and Back patch pocket with flap, respectively.

4.1.2. Design of the 3D Basic Garment

The design process of the 3D garment associated with 2D patterns was generally split
into three sequential parts. In the first part, a 3D basic garment with the main structural
lines (especially the outlines) was created directly from the scanned mannequin of the
consumer. In the second part, a procedure of garment fit evaluation and adjustment was
conducted on the created basic garment to ensure the garment fit fulfilled the consumer’s
needs. In the third part, the desired garment was achieved by supplementing the remaining
style design details to the fit-ensured 3D basic garment.

The creation of the 3D basic garment associated with 2D patterns is described below:
Step 1: The reference structural lines (the outlines) were drawn directly on the scanned

human body model, see Figure 6a.
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Step 2: The 3D garment pieces associated with 2D patterns were generated by peeling
the “skin” from the scanned mannequin, see Figure 6b,c.

Step 3: The 3D tight-fitting garment was obtained by a series of operations of virtual
stitching, such as mirroring, sewing, digital fabric assignment, etc., see Figure 6d. The
involved digital fabric corresponding to the real fabric selected was measured and modelled
by the fabric property measurement tool associated with the Style 3D software. The
properties of the involved fabric used to model the 3D tight-fitting garment can be expressed

by:

{
f p1
61,

f p2
58,

f p3
27,

f p4
32,

f p5
32,

f p6
31,

f p7
0 ,

f p8
0 ,

f p9
0 ,

f p10
0 ,

f p11
0 ,

f p12
0 ,

f p13
0.03,

f p14
0.03,

f p15
0.42

}
.

4.1.3. Fit Evaluation of the Basic Garment

First, the clothing pressures at the feature positions of the initial 3D garment were
collected as shown in Figure 7. Additionally, then, they were aggregated following the
feature positions. The aggregated pressure data were given as follows:

Prinitial =

{
W

8.28,
H

55.96,
T

81.79,
K

55.15,
C
35
}

where, W, H, T, K, and C refer to waist, hip, thigh, knee, and calf, respectively.
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Second, the input vector, which consisted of integrating the clothing pressure and
the fabric properties’ parameters, was imported into the proposed PNN-based models.
Additionally, then, we obtained the predictive fit characteristics for the basic garment,

represented by: FCinitial =

{
W
5 ,

H
3,

T
1,

K
3,

C
4
}

. This meant that the fit characteristics of the

waist, hip, thigh, knee, and calf were too loose, perfect, too tight, perfect, and loose,
respectively. Both the hip and knee parts met the consumer’s fit needs.

Furthermore, according to Equations (6)–(8), we obtained the similarity between the initial
garment profile and consumer profile: sim

(
FN, FCinitial

)
= 0.7222, sim

(
SN, SCinitial

)
=

0.8000, and sim
(

CP, GPinitial
)
= 0.7611. It can be found that the value of sim

(
CP, GPinitial

)
was smaller than 0.8, which is relatively low. Therefore, the adjustment mechanism was activated.

4.1.4. Adjustment of the Basic Garment

Initially, an iterative adjustment process of garment fit was conducted. The general
principle of the process was described as follows. In the first round of adjustment, we
adjusted the garment fit at the target feature positions, using a series of preset adjustment
rules. Then, we conducted a process of garment fit evaluation on the adjusted garment.
If all the fit characteristics of the feature positions met the consumer’s needs, the process
of garment fit adjustment was terminated. Otherwise, a second round of adjustment and
evaluation continued. The circle of “2D pattern adjustment–3D garment fit evaluation” ran
iteratively until all the consumer’s needs were fulfilled.

Let APk =

{
WG
apk1,

HG
apk2,

TG
apk3,

KG
apk4,

CG
apk5

}
be a set of garment pattern adjustment pa-

rameters of the k-th round, where WG, HG, TG, KG, and CG represent the abbreviation of
the garment dimensions at feature positions, in terms of waist girth, hip girth, thigh girth,
knee girth, and calf girth, respectively.

At first, the total adjustment rules of the initial garment were set in this study, namely

AP1 =

{
WG
−4,

HG
0 ,

TG
2 ,

KG
0 ,

CG
−2
}

. Next, the total adjustment rules were decomposed to each

garment pattern panel. The adjustment rules of the key pattern panel (front panel) were

defined as FAP1 =

{
WG
−1,

HG
0 ,

TG
1 ,

KG
0 ,

CG
−1
}

. Additionally, then, the first round of the adjust-

ment procedure for the key panel (see Figure 8) was executed. The main steps are described
as follows.
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(1) Calculation of the moving data of the controlling point F2 in the structural line l1;
(2) Analysis of the influence of the movement of F2 on the length deviation of the

adjacent structural line l2.
If the deviation was larger than a predefined threshold value ε, we returned to the last

step to recompute the moving data of F2. Otherwise, we continued to compute the moving
data of the point F3.

(3) The cycle of “adjustment–analysis” was performed repeatedly and terminated until
all the adjustment requirements of the key panel were achieved.

Afterwards, the associate panels were adjusted using the rules defined by modelling
the quantitative relationships of the controlling points between the associate and key panels.
The adjustment parameters can be found in Table 3.

Additionally, then, we evaluated the garment fit. The aggregated pressures at six

feature positions were defined as Pr1st adjustement =

{
W

56.76,
H

76.33,
T

83.40,
K

57.93,
C

56.58
}

. The

garment fit characteristics at feature positions after the first round of adjustment were

predicted: FC1st adjustment =

{
W
3 ,

H
2,

T
2,

K
3,

C
3
}

. This meant that there were still two feature

positions not meeting the consumer’s fit needs. Meanwhile, as illustrated in Figure 9II, the
red region in the side part of the legging had expanded after the first round of adjustment,
showing that the fit characteristics of the side parts tend to be tight. Hence, the adjustment
proceeded to the second round, the adjustment parameters of which are presented in
Table 3.
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From Figure 9III, it was found that the fit characteristics of the side parts had been
improved as the red region had shrunk. The aggregated pressures were expressed by

Pr2nd adjustement =

{
W

62.14,
H

65.84,
T

57.80,
K

57.90,
C

68.70
}

, corresponding to the predicted garment

fit characteristics FC2nd adjustment =

{
W
3 ,

H
2,

T
3,

K
3,

C
2
}

. This indicated that the hip and calf parts

still needed to be adjusted. Therefore, the third round of adjustment continued. The pressures
and garment fit characteristics after this round of adjustment were, respectively, expressed by:

Pr3rd adjustement =

{
W

53.97,
H

57.63,
T

49.55,
K

58.92,
C

50.95
}

and FC3rd adjustment =

{
W
3 ,

H
3,

T
3,

K
3,

C
3
}

.

After three rounds of adjustment, it was concluded that all the garment fit characteristics at
feature positions met the consumer’s needs. The garment fit adjustment process therefore
came to an end. Meanwhile, the similarity sim

(
FN, FCadjusted

)
was computed by following

Equation (7), equaling 1.0000. Additionally, the sim
(

CP, GPadjusted
)

increased to 0.9000
from 0.7611.
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Table 3. The adjustment rules for the tight-fitting garment.

Controlling Points
1st Round of Adjustment 2nd Round of Adjustment 3rd Round of Adjustment

Horizontal
Direction

Vertical
Direction

Horizontal
Direction

Vertical
Direction

Horizontal
Direction

Vertical
Direction

F1 Front side waist −1.0000 0 0 0 0 0
F2 Front side hip −1.0045 0 0.5000 0.0025 0 0
F3 Front side knee −0.9281 0 0 0 0 0
F4 Front side calf −0.5000 0.0058 0 0 0 0
F5 Front side hem 0 0.0163 0 0 0 0
F6 Front inseam hem 0.0011 0.0163 0 0 −0.5000 0
F7 Front inseam calf 0.5000 0.0073 0 0 0 0
F8 Front inseam knee −0.9281 0.3580 0 0 0 0
F9 Front crotch −1.0000 0.6848 −1.0000 0 −1.0000 0
F10 Front center hip −1.0045 0.1341 0.5000 −0.7651 0 −0.6939
F11 Front center waist 0 0 0 0 0 0
B1 Back side waist 1.0000 0 0 0 0 0
B2 Back side hip 1.0045 0 −0.5000 0.0025 0 0
B3 Back side knee 0.9281 0 0 0 0 0
B4 Back side calf 0.5000 0.0058 0 0 0 0
B5 Back side hem 0 0.0163 0 0 0 0
B6 Back inseam hem −0.0011 0.0163 0 0 0 0
B7 Back inseam calf −0.5000 0.0073 0 0 0.5000 0
B8 Back inseam knee 0.9281 0.3580 0 0 0 0
B9 Back crotch 1.0000 0.6848 1.0000 0 1.0000 0
B10 Back center hip 1.0045 0.1341 −0.5000 −0.7651 0 −0.6939
B11 Back center waist 0 0 0 0 0 0

We further designed the garment by adding style design details following the con-
sumer’s needs (see Figure 10I). Thus, both the similarity sim

(
SN, SCadjusted

)
and sim

(
CP, GPadjusted

)
reached 1.000. This meant the adjustment process came to an end.
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4.1.5. Design of the Production Pattern Panel

Garment production patterns are regarded as a critical link between fashion design
and garment manufacturing. In this study, the 2D patterns determined by the above steps
were post-processed first to meet the requirements of garment production. Additionally,
then, we designed the production patterns (see Figure 10IV) by defining the quantified
relationships between the controlling points in the production panels and the original
panels (see Table 4).
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Table 4. The design rules of the production panels of the front 1 and back panels.

Controlling
Points of the

Original Panel

Coordinates Controlling Points
of the Production

Panel

Coordinates

Horizontal
Direction

Vertical
Direction

Horizontal
Direction

Vertical
Direction

Front 1

F1 xF1 yF1 F′1 xF1 + 1 yF1 + 1
F2 xF2 yF2 F′2 xF2 + 1 yF2 − 1
F3 xF3 yF3 F′3 xF3 − 1 yF3 − 1
F4 xF4 yF4 F′4 xF4 − 1 yF4

F5 xF5 yF5 F′5 xF5 − 1 yF5 + 1

Back

B1 xB1 yB1 B′1 xB1 − 1 yB1 + 1
B2 xB2 yB2 B′2 xB2 − 1 yB2 − 1
B3 xB3 yB3 B′3 xB3 + 1 yB3 − 1
B4 xB4 yB4 B′4 xB4 + 1 yB4

B5 xB5 yB5 B′5 xF5 + 1 yB5 + 1

4.2. Application in the Customization of Personalized Loose-Fitting Garments
4.2.1. Definition of the Consumer Profile for Loose-Fitting Garments

The proposed method can not only be suitable for tight-fitting garments, but also
for loose-fitting garments. In this section, we elaborate on its implementation with the
customization of straight-legged trousers. The consumer profile for straight-legged trousers
was defined by vectors (see Table 5).

Table 5. Consumer profile for loose-fitting garment.

S.N. Category Normalized Vectors Notes

Style
needs

1 Silhouette SN1 =
[

H
1

A
0

X
0

T
0

S
0
]

H shape

2 Length SN2 =

[
Mini

0
Thigh

0
Knee

0
Ankle

0
Full
1

]
Full length

3 Waist line position SN3 =

[
High

0
Normal

1
Lower

0

]
Normal waist line

4 Waist band SN4 =

[
No
0

Straight
1

Curve
0

]
Straight waist band

5 Leg opening SN5 =

[
Tapered

0
Straight

1
Flared

0

]
Straight opening

6 Dart SN6 =

[
No f ront

1
Single f ront

0
Double f ront

0
Multiple f ront

0
No back

0
Single back

1

]
Single back dart

7 Pleat SN7 =

[
No f ront

1
Single f ront

0
Double f ront

0
Multiple f ront

0

]
No front pleat

8 Yoke SN8 =

[
No
1

Straight
0

Curve
0

Special
0

]
No yoke

9 Ornament SN9 =

[
Embroidery

0
Printing

0
Riveiting

0
Quilting

0
Hollow cut

0
No
1

]
No ornament

10 Pocket SN10 =
[

NF
0

FI
0

FIC
0

FP
0

NB
0

BI
1

BIF
0

BP
0

BPF
0
]

1 Back inserted pocket

Fit
needs FN =

[
Waist girth

3
Hip girth

5
Thigh girth

5
Knee girth

5
Ankle girth

5

] Perfect at waist girth,
and loose at other
feature positions

4.2.2. Design, Evaluation, and Adjustment of the Desired Loose-Fitting Garment

The design of the desired straight-legged trousers started from the flattened patterns
of the 3D basic garment described in Section 4.1.2. First, the circle of “pattern adjustment–
garment fit evaluation” was executed until the fit needs of the consumer were met. In
our case, we performed two rounds of adjustments to attain the fit goals. The concrete
adjustment rules are shown in Table 6. Afterwards, we added the required style details
to the adjusted garment. Ultimately, the desired straight-legged trousers were achieved,
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and the patterns were post-processed following the requirements of industrial garment
production.

Table 6. The adjustment parameters for loose-fitting garments.

Controlling Points
1st Round of Adjustment 2nd Round of Adjustment

Horizontal
Direction Vertical Direction Horizontal

Direction Vertical Direction

F1 Front side waist 1.0000 1.0000 0 0.0049
F2 Front side hip 1.0000 0.3618 1.0000 0.0061
F3 Front side knee 1.0000 0.3659 0 0.2564
F4 Front side calf 0 0 0 0
F5 Front side hem 0 −0.0702 0 0.2573
F6 Front inseam hem −1.9947 −0.0702 −1.9947 0.2573
F7 Front inseam calf 0 0 0 0
F8 Front inseam knee −2.0070 0.3659 −1.9935 0.2564
F9 Front crotch −1.9302 0 −1.9935 0
F10 Front center hip −1.0000 −1.1975 −1 −1.2033
F11 Front center waist 0.3841 1.0000 0 3.0000
B1 Back side waist −1.0000 1.0000 0 0.0049
B2 Back side hip −1.0000 0.3618 −1.0000 0.0061
B3 Back side knee −1.0000 0.3659 0 0.2564
B4 Back side calf 0 0 0 0
B5 Back side hem 0 −0.0702 0 0.2573
B6 Back inseam hem 1.9947 −0.0702 1.9947 0.2573
B7 Back inseam calf 0 0 0 0
B8 Back inseam knee 2.0070 0.3659 1.9935 0.2564
B9 Back crotch 1.9302 0 1.9935 0
B10 Back center hip 1.0000 −1.1975 1 −1.2033
B11 Back center waist −0.3841 1.0000 0 0

Figure 11 demonstrates the design of the desired straight-legged trousers. The red
color represents that the region cannot be worn, while the yellow color indicates that the
region is rather tight. From Figure 11I–III, it can be observed that both the areas of red and
yellow tend to zero after two rounds of adjustment. These areas may prove that proper
garment fitting has been gradually achieved.

4.3. Comparison between the ML-Enhanced 3D Reverse Design Method and the Traditional
2D Method

To evaluate the proposed approach in this study, we compared the garments designed
by the ML-enhanced 3D reverse technology (Solution A) and the traditional 2D method
(Solution B). As illustrated in Figure 12I,II, the red areas of the B garments (Solution B)
are larger than those of the A garments (Solution A). Meanwhile, from the perspective
of clothing pressures, all the pressures of the B garments are higher than those of the
A garments. This indicates that the B garments are tighter than the A garments. The
performance of the A garments is superior to that of the B garments, since the dimensions
of the A garments are extracted from the flattened human body, while the dimensions of
the B garments are estimated based on the key human body dimensions (i.e., body height,
bust girth, waist girth, etc.). Hence, we can conclude that the proposed ML-enhanced 3D
reverse design approach is applicable and facilitates the design of personalized garments
more accurately and promptly.
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4.4. Extention to Development of a Sustainable New O2O Business Model in the Fashion Industry

A new O2O (order online and receive services offline) business model in the fashion
industry can be formed based on the proposed 3D reverse design approach. The general
implementation process (see Figure 13) mainly consists of three sequential phases. In Phase
1, a consumer profile for a specific consumer is made from the perspectives of garment
fit, style, and fabric. Afterwards, the 3D basic garment is then designed based on the
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3D reverse design method in Phase 2. In the final Phase 3, we employ machine learning
techniques to evaluate and adjust the basic garment created from Phase 2. After a series
of garment design evaluations and adjustments, the target garment associated with the
garment patterns is determined and delivered to the following department for garment
manufacturing.

Compared with the current models, the proposed new business model has the fol-
lowing outstanding merits. First, it is supported by advanced ML models, which can act
as an “AI advisor” to provide powerful support for fashion designers without adequate
knowledge and experience to make decisions in personalized garment design. Second, an
ML-enhanced interactive garment design decision support system can be further developed
based on the proposed computational models. Thus, the interaction between humans (i.e.,
consumers, fashion designers, pattern makers, etc.) and products will be greatly optimized
based on the proposed system. Third, the model will enable fashion companies to promote
their level of sustainable development by facilitating high-quality and efficient interactions
between the stages of online customization and offline production.
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5. Conclusions

In this study, a new reverse design approach for personalized garments, in pursuit
of sustainability, was proposed by combining 3D reverse engineering technology with
machine learning. The involved ML techniques included probabilistic neural networks,
genetic algorithms, and support vector regression. The experimental results have demon-
strated that the proposed approach will allow fashion companies to promote sustainable
development by providing quality personalized products and services for consumers, and
simultaneously reducing costs and environmental burdens. Compared with the current
3D reverse design technologies in fashion industry, the prominent merits of the proposed
approach in this study can be summarized as follows: (1) optimizing 3D garment reverse
design technology for sustainable fashion by integrating an evaluation and self-adjustment
mechanism using ML techniques; (2) constructing an effective and efficient interaction
mechanism between humans (i.e., consumers, fashion design, pattern makers, etc.) and
products by integrating ML techniques into 3D garment modeling; (3) offering a new idea
and solution to overcome the key technical bottlenecks in the industrial implementation
of 3D-to-2D garment pattern-making technology; (4) supporting the creation of a new
interactive design decision support system for personalized fashion products with the
presented ML models; (5) advancing the formation of a new sustainable business mode
or ecosystem in the fashion industry by powerfully enhancing the linkage between online
customization and offline manufacturing using ML techniques.

As we were limited by the article’s length, the proposed technology was validated
using garments for the lower body only. However, the basic principles can be generalized
to different garment styles, such as shirts, skirts, coats, and so forth. Our research works in
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the future will mainly comprise the following aspects: (1) promoting the performance of
the proposed ML models by progressively expanding their learning datasets, such as hu-
man body datasets, fabric datasets, garment style datasets, garment fit datasets, consumer
preference and emotion datasets, and so on; (2) further enhancing the performances and
generality of the proposed approach by employing more advanced computational tech-
nologies (such as deep learning); (3) developing a new decision support system/platform
for personalized garment design by integrating the proposed ML models.

Furthermore, the new technologies and mechanisms mentioned in this manuscript can
indeed help the sustainable development of clothing design and manufacturing. However,
the role of humans (designers) cannot be ignored. The greatest value of humans (designers)
lies in their creativity and creative thinking, which cannot easily be replaced by current
technologies. With the help of technology, designers can be freed from tedious and repet-
itive work and focus on creative work in order to produce more value or profit. In this
regard, the role and value of designers will become more and more prominent. Therefore,
the balance between technology and human nature should be carefully considered; this
constitutes one of our most important research directions in the future.
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