Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review
Abstract
:1. Introduction
Geography and Water Resources of Study Area
2. Water Quality Parameters and Limits in Pakistan
3. Methodology
4. Water Quality Assessment in Pakistan
4.1. Surface Water Quality Assessment
Major Pollutants and Their Sources in the Surface Water of Pakistan
4.2. Groundwater Quality Assessment
Major Pollutants and Their Sources in the Groundwater of Pakistan
4.3. Research on Filtration Plant Water Quality
4.4. Research on Rainwater Quality
5. Pollution Sources, Assessment Techniques, and Sustainable Development Importance
5.1. Water Pollution Sources in Pakistan
5.2. Method Used for the Water Quality Assessment
5.3. Importance of Water Quality in Combating Climate Change and Achieving Sustainable Development
6. Conclusions
Limitations of This Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hashmi, I.; Farooq, S.; Qaiser, S. Chlorination and water quality monitoring within a public drinking water supply in Rawalpindi Cantt (Westridge and Tench) area, Pakistan. Environ. Monit. Assess. 2009, 158, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Deitch, M.J.; Tunio, I.A.; Kumar, A.; Memon, S.A.; Williams, L.; Tagar, U.; Kumari, R.; Basheer, S. Assessment of physicochemical parameters in groundwater quality of desert area (Tharparkar) of Pakistan. Case Stud. Chem. Environ. Eng. 2022, 6, 100232. [Google Scholar] [CrossRef]
- Ebrahim, Z.T. Is Pakistan running dry? In Water Issues in Himalayan South Asia; Palgrave Macmillan: Singapore, 2019; pp. 153–181. [Google Scholar] [CrossRef]
- Daud, M.K.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W.; et al. Drinking Water Quality Status and Contamination in Pakistan. BioMed Res. Int. 2017, 2017, 7908183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmi, G. Arsenic in drinking water threatens up to 60 million in Pakistan. Science 2017, 24, 15–16. [Google Scholar] [CrossRef]
- Nabi, G.; Ali, M.; Khan, S.; Kumar, S. The crisis of water shortage and pollution in Pakistan: Risk to public health, biodiversity, and ecosystem. Environ. Sci. Pollut. Res. 2019, 26, 10443–10445. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasir, M.; Khan, A. Environmental and health impacts of industrial wastewater effluents in Pakistan: A review. Rev. Environ. Health 2019, 34, 171–186. [Google Scholar] [CrossRef]
- Kalair, A.R.; Abas, N.; Ul Hasan, Q.; Kalair, E.; Kalair, A.; Khan, N. Water, energy and food nexus of Indus Water Treaty: Water governance. Water Energy Nexus 2019, 2, 10–24. [Google Scholar] [CrossRef]
- Piazza, S.; Blokker, E.J.M.; Freni, G.; Puleo, V.; Sambito, M. Impact of diffusion and dispersion of contaminants in water distribution networks modelling and monitoring. Water Sci. Technol. Water Supply 2020, 20, 46–58. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Sadeghi, S.H.; Gholamalifard, M.; Davudirad, A.A. Watershed health assessment using the pressure–state–response (PSR) framework. Land Degrad. Dev. 2020, 31, 3–19. [Google Scholar] [CrossRef]
- Abdul, N.A.; Talib, S.A.; Amir, A. Removal Kinetics of Chromium by Nano-Magnetite in Different Environments of Groundwater. J. Environ. Eng. 2020, 146, 04019111. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Kumar, N.M. Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability 2022, 14, 2044. [Google Scholar] [CrossRef]
- Kumar, N.M.; Kanchikere, P.M.J. Floatovoltaics: Towards improved energy efficiency, land and water management. Int. J. Civ. Eng. Technol. 2018, 9, 1089–1096. [Google Scholar]
- Zhang, D.; Sial, M.S.; Ahmad, N.; Filipe, J.A.; Thu, P.A.; Zia-Ud-din, M.; Caleiro, A.B. Water scarcity and sustainability in an emerging economy: A management perspective for future. Sustainability 2021, 13, 144. [Google Scholar] [CrossRef]
- Qamar, K.; Nchasi, G.; Mirha, H.T.; Siddiqui, J.A.; Jahangir, K.; Shaeen, S.K.; Islam, Z.; Essar, M.Y. Water sanitation problem in Pakistan: A review on disease prevalence, strategies for treatment and prevention. Ann. Med. Surg. 2022, 82, 104709. [Google Scholar] [CrossRef]
- Howard, G. The future of water and sanitation: Global challenges and the need for greater ambition. J. Water Supply Res. Technol. 2021, 70, 438–448. [Google Scholar] [CrossRef]
- Ranjan, A. Inter-Provincial water sharing conflicts in Pakistan. Pak. A J. Pak. Stud. 2012, 4, 102–122. [Google Scholar]
- Young, W.J.; Anwar, A.; Bhatti, T.; Borgomeo, E.; Davies, S.; Garthwaite, W.R., III; Gilmont, E.M.; Leb, C.; Lytton, L.; Makin, I.; et al. Pakistan Getting More from Water; World Bank: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Akhtar, I.u.H.; Athar, H. Water supply and effective rainfall impacts on major crops across irrigated areas of Punjab, Pakistan. Theor. Appl. Climatol. 2020, 142, 1097–1116. [Google Scholar] [CrossRef]
- Salma, S.; Rehman, S.; Shah, M.A. Rainfall Trends in Different Climate Zones of Pakistan. Pak. J. Meteorol. 2012, 9, 37–47. [Google Scholar]
- Abbas, M.; Shen, S.L.; Lyu, H.M.; Zhou, A.; Rashid, S. Evaluation of the hydrochemistry of groundwater at Jhelum Basin, Punjab, Pakistan. Environ. Earth Sci. 2021, 80, 300. [Google Scholar] [CrossRef]
- Ali, G.; Sajjad, M.; Kanwal, S.; Xiao, T.; Khalid, S.; Shoaib, F.; Gul, H.N. Spatial–temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci. Rep. 2021, 11, 6935. [Google Scholar] [CrossRef]
- Ashfaq, M.; Li, Y.; Rehman, M.S.U.; Zubair, M.; Mustafa, G.; Nazar, M.F.; Yu, C.P.; Sun, Q. Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: A case study of Lahore, Pakistan. Sci. Total Environ. 2019, 688, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Qadir, A.; Mumtaz, M.; Ahmad, S.R. An unintended challenge of microplastic pollution in the urban surface water system of Lahore, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 16718–16730. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, N.K.; Saand, A.; Keerio, M.A.; Ali, A.; Bhatti, N.-K.; Samo, S.R.; Bhuriro, A.A. Ground Water Quality Assessment of Daur Taluka, Shaheed Benazir Abad. Eng. Technol. Appl. Sci. Res. 2018, 8, 2785–2789. [Google Scholar] [CrossRef]
- Yu, C.-H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Chilton, P.J.; Jamieson, D.; Abid, M.S.; Milne, C.J.; Ince, M.E.; Aziz, J.A. Pakistan Water Quality Mapping and Management Project; Water Engineering Development Centre, Loughborough University & London School of Hygiene and Tropical Medicines: Loughborough, UK, 2001. [Google Scholar]
- Ullah, S.; Javed, M.W.; Shafique, M.; Khan, S.F. An integrated approach for quality assessment of drinking water using GIS: A case study of Lower Dir. J. Himal. Earth Sci. 2014, 47, 163–174. [Google Scholar]
- Butt, M.; Khair, S.M. Cost of Illness of Water-borne Diseases: A Case Study of Quetta. J. Appl. Emerg. Sci. 2016, 5, 133–143. [Google Scholar] [CrossRef]
- Haydar, S.; Arshad, M.; Aziz, J.A. Evaluation of Drinking Water Quality in Urban Areas of Pakistan: A Case Study of Southern Lahore. Pak. J. Eng. Appl. Sci. 2009, 5, 16–23. [Google Scholar]
- Khwaja, M.A.; Aslam, A. Comparative Assessment of Pakistan National Drinking Water Quality Standards with Selected Asian Countries and World Health Organization; Sustainable Development Policy Institute (SDPI): Islamabad, Pakistan, 2018. [Google Scholar]
- Khan, M.; Chaudhry, M.N. Role of and challenges to environmental impact assessment proponents in Pakistan. Environ. Impact Assess. Rev. 2021, 90, 106606. [Google Scholar] [CrossRef]
- Khalid, S.; Murtaza, B.; Shaheen, I.; Ahmad, I.; Ullah, M.I.; Abbas, T.; Rehman, F.; Ashraf, M.R.; Khalid, S.; Abbas, S.; et al. Assessment and public perception of drinking water quality and safety in district Vehari, Punjab, Pakistan. J. Clean. Prod. 2018, 181, 224–234. [Google Scholar] [CrossRef]
- Khan, M.H.; Nafees, M.; Muhammad, N.; Ullah, U.; Hussain, R.; Bilal, M. Assessment of Drinking Water Sources for Water Quality, Human Health Risks, and Pollution Sources: A Case Study of the District Bajaur, Pakistan. Arch. Environ. Contam. Toxicol. 2021, 80, 41–54. [Google Scholar] [CrossRef]
- Weitzberg, E.; Lundberg, J.O. Novel Aspects of Dietary Nitrate and Human Health. Annu. Rev. Nutr. 2013, 33, 129–159. [Google Scholar] [CrossRef]
- Nadeem, O.; Hameed, R. Evaluation of environmental impact assessment system in Pakistan. Environ. Impact Assess. Rev. 2008, 28, 562–571. [Google Scholar] [CrossRef]
- Haider, H.; Ali, W. Sustainability of Sanitation Systems in Pakistan Solid Waste Management View Project. 2009. Available online: https://www.researchgate.net/publication/256191560_Sustainability_of_Sanitation_Systems_in_Pakistan (accessed on 24 February 2023).
- Arfan, M.; Ansari, K.; Ullah, A.; Hassan, D.; Siyal, A.; Water, S.J. Agenda setting in water and IWRM: Discourse analysis of water policy debate in Pakistan. Water 2020, 12, 1656. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Razali, A.; Ismail, S.N.S.; Awang, S.; Praveena, S.M.; Abidin, E.Z. Land use change in highland area and its impact on river water quality: A review of case studies in Malaysia. Ecol. Process. 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Sial, R.A.; Chaudhary, M.F.; Abbas, S.T.; Latif, M.I.; Khan, A.G. Quality of effluents from Hattar Industrial Estate. J. Zhejiang Univ. Sci. B 2006, 7, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Nasrullah, R.; Bibi, H.; Iqbal, M.; Durrani, M.I. Pollution load in industrial effluent and ground water of Gadoon Amazai Industrial Estate (GAIE) Swabi, NWFP. J. Agric. Biol. Sci. 2006, 1, 18–24. [Google Scholar]
- Kumar, L.; Kamil, I.; Ahmad, M.; Naqvi, S.A.; Deitch, M.J.; Amjad, A.Q.; Kumar, A.; Basheer, S.; Arshad, M.; Sassanelli, C. In-house resource efficiency improvements supplementing the end of pipe treatments in textile SMEs under a circular economy fashion. Front. Environ. Sci. 2022, 10, 1002319. [Google Scholar] [CrossRef]
- Fida, M.; Li, P.; Wang, Y.; Alam, S.M.K.; Nsabimana, A. Water Contamination and Human Health Risks in Pakistan: A Review. Expo. Health 2022, 2022, 1–21. [Google Scholar] [CrossRef]
- Ahmad, W.; Zubair, A.; Abbasi, H.N.; Nasir, M.I. Water Study of Physical, Chemical and Heavy Metals Parameters in River Indus and its Tributaries, Sindh, Pakistan. Pak. J. Sci. Ind. Res. Ser. A Phys. Sci. 2021, 64, 103–109. [Google Scholar] [CrossRef]
- Fatima, S.U.; Khan, M.A.; Siddiqui, F.; Mahmood, N.; Salman, N.; Alamgir, A.; Shaukat, S.S. Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). Environ. Monit. Assess. 2022, 194, 151. [Google Scholar] [CrossRef] [PubMed]
- Dilshad, A.; Taneez, M.; Younas, F.; Jabeen, A.; Rafiq, M.T.; Fatimah, H. Microplastic pollution in the surface water and sediments from Kallar Kahar wetland, Pakistan: Occurrence, distribution, and characterization by ATR-FTIR. Environ. Monit. Assess. 2022, 194, 511. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Younas, M.; Sharif, H.M.A.; Wang, C.; Yaseen, M.; Cao, X.; Zhou, Y.; Ibrahim, S.M.; Yvette, B.; Lu, Y. Heavy metals contamination, potential pathways and risks along the Indus Drainage System of Pakistan. Sci. Total Environ. 2022, 809, 151994. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Mansouri, B.; Chatha, A.M.M.; Ullah, Q.; Abadeen, Z.U.; Khan, M.Z.; Khan, A.; Saeed, S.; Bhat, R.A. Water quality and health risk assessment of trace elements in surface water at Punjnad Headworks, Punjab, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 61457–61469. [Google Scholar] [CrossRef]
- Ahmad, L.; Waheed, H.; Gul, N.; Sheikh, L.; Khan, A.; Iqbal, H. Geochemistry of subsurface water of Swabi district and associated health risk with heavy metal contamination. Environ. Monit. Assess. 2022, 194, 480. [Google Scholar] [CrossRef]
- Fatima, S.U.; Khan, M.A.; Alamgir, A.; Mahmood, N.; Sulman, N. Multivariate and spatial methods-based water quality assessment of Chu Tran Valley, Gilgit Baltistan. Appl. Water Sci. 2022, 12, 129. [Google Scholar] [CrossRef]
- Khan, A.; Khan, M.S.; Egozcue, J.J.; Shafique, M.A.; Nadeem, S.; Saddiq, G. Irrigation suitability, health risk assessment and source apportionment of heavy metals in surface water used for irrigation near marble industry in Malakand, Pakistan. PLoS ONE 2022, 17, e0279083. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Islam, M.; Hassan, M.; Bilal, H.; Shah, I.A.; Ourania, T. Modeling the fecal contamination (fecal coliform bacteria) in transboundary waters using the scenario matrix approach: A case study of Sutlej River, Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 79555–79566. [Google Scholar] [CrossRef]
- Daud, S.; MonaLisa; Nisar, U. Bin Integrated geophysical, geochemical, and geospatial tools to characterize water resources in GAIE, Eastern Peshawar basin, Pakistan. Environ. Earth Sci. 2022, 81, 390. [Google Scholar] [CrossRef]
- Nawab, J.; Rahman, A.; Khan, S.; Ghani, J.; Ullah, Z.; Khan, H.; Waqas, M. Drinking Water Quality Assessment of Government, Non-Government and Self-Based Schemes in the Disaster Affected Areas of Khyber Pakhtunkhwa, Pakistan. Expo. Health 2022, 1–17. [Google Scholar] [CrossRef]
- Panhwar, M.Y.; Panhwar, S.; Keerio, H.A.; Khokhar, N.H.; Shah, S.A.; Pathan, N. Water quality analysis of old and new Phuleli Canal for irrigation purpose in the vicinity of Hyderabad, Pakistan. Water Pract. Technol. 2022, 17, 529–536. [Google Scholar] [CrossRef]
- Mastoi, S.T.; Channa, A.S.; Qureshi, K.M.; Khokhar, W.A. Assessment of Water Quality and Quantity of Surface and Subsurface Drainage System in the Command Area of Bareji Distributary Mirpurkhas, Sindh, Pakistan. QUEST Res. J. 2022, 20, 127–137. [Google Scholar] [CrossRef]
- Amrane, A.; Khellaf, N.; Khan, R.U.; Hamayun, M.; Altaf, A.A.; Kausar, S.; Razzaq, Z.; Javaid, T. Assessment and Removal of Heavy Metals and Other Ions from the Industrial Wastewater of Faisalabad, Pakistan. Processes 2022, 10, 2165. [Google Scholar] [CrossRef]
- Abbas, Z.; Imran, M.; Natasha, N.; Murtaza, B.; Amjad, M.; Shah, N.S.; Khan, Z.U.H.; Ahmad, I.; Ahmad, S. Distribution and health risk assessment of trace elements in ground/surface water of Kot Addu, Punjab, Pakistan: A multivariate analysis. Environ. Monit. Assess. 2021, 193, 351. [Google Scholar] [CrossRef]
- Salam, M.; Alam, F.; Hossain, M.N.; Saeed, M.A.; Khan, T.; Zarin, K.; Rwan, B.; Ullah, W.; Khan, W.; Khan, O. Assessing the drinking water quality of educational institutions at selected locations of district Swat, Pakistan. Environ. Earth Sci. 2021, 80, 322. [Google Scholar] [CrossRef]
- Ahsan, W.A.; Ahmad, H.R.; Farooqi, Z.U.R.; Sabir, M.; Ayub, M.A.; Rizwan, M.; Ilic, P. Surface water quality assessment of Skardu springs using Water Quality Index. Environ. Sci. Pollut. Res. 2021, 28, 20537–20548. [Google Scholar] [CrossRef]
- Ahmed, M.; Mumtaz, R.; Zaidi, S.M.H. Analysis of water quality indices and machine learning techniques for rating water pollution: A case study of Rawal Dam, Pakistan. Water Supply 2021, 21, 3225–3250. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.; Khan, F.A.; Shah, L.A.; Rauf, A.U.; Badrashi, Y.I.; Khan, W.; Khan, J. Assessment of the Impacts of Terrestrial Determinants on Surface Water Quality at Multiple Spatial Scales. Pol. J. Environ. Stud. 2021, 30, 2137–2147. [Google Scholar] [CrossRef]
- Shah, M.I.; Javed, M.F.; Abunama, T. Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques. Environ. Sci. Pollut. Res. 2021, 28, 13202–13220. [Google Scholar] [CrossRef]
- Khuhawar, M.Y.; Lanjwani, M.F.; Khuhawar, T.M.J. Assessment of variation in water quality at Right Bank Outfall Drain, including Manchar lake, Sindh, Pakistan. Int. J. Environ. Anal. Chem. 2021, 00, 1–23. [Google Scholar] [CrossRef]
- Setia, R.; Lamba, S.; Chander, S.; Kumar, V.; Dhir, N.; Sharma, M.; Singh, R.P.; Pateriya, B. Hydrochemical evaluation of surface water quality of Sutlej river using multi-indices, multivariate statistics and GIS. Environ. Earth Sci. 2021, 80, 565. [Google Scholar] [CrossRef]
- Akhtar, F.; Ahmed, M.; Akhtar, M.N. Drinking, Tap and Canal Water Quality Analysis for Human Consumption: A Case Study of Nawabshah City, Pakistan. Mehran Univ. Res. J. Eng. Technol. 2021, 40, 392–398. [Google Scholar] [CrossRef]
- Rehman, J.U.; Ahmad, N.; Ullah, N.; Alam, I.; Ullah, H. Health Risks in Different Age Group of Nitrate in Spring Water Used for Drinking in Harnai, Balochistan, Pakistan. Ecol. Food Nutr. 2020, 59, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, S.; Wang, J.; Mahmood, Q.; Li, X.D.; Zeb, B.S.; Naseem, I.; Hayat, M.T.; Nawazish, S.; Ditta, A. Association of Nephrolithiasis with Drinking Water Quality and Diet in Pakistan. Environ. Eng. Manag. J. 2020, 19, 1289–1297. [Google Scholar] [CrossRef]
- Jehan, S.; Khattak, S.A.; Muhammad, S.; Ali, L.; Rashid, A.; Hussain, M.L. Human health risks by potentially toxic metals in drinking water along the Hattar Industrial Estate, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 2677–2690. [Google Scholar] [CrossRef]
- Bashir, N.; Saeed, R.; Afzaal, M.; Ahmad, A.; Muhammad, N.; Iqbal, J.; Khan, A.; Maqbool, Y.; Hameed, S. Water quality assessment of lower Jhelum canal in Pakistan by using geographic information system (GIS). Groundw. Sustain. Dev. 2020, 10, 100357. [Google Scholar] [CrossRef]
- Jehan, S.; Ullah, I.; Khan, S.; Muhammad, S.; Khattak, S.A.; Khan, T. Evaluation of the Swat River, Northern Pakistan, water quality using multivariate statistical techniques and water quality index (WQI) model. Environ. Sci. Pollut. Res. 2020, 27, 38545–38558. [Google Scholar] [CrossRef]
- Khan, A.J.; Akhter, G.; Gabriel, H.F.; Shahid, M. Anthropogenic effects of coal mining on ecological resources of the central indus basin, Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 1255. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.T.; Aftab, R.; Mahfooz, Y.; Yasar, A.; Yen, Y.; Shaikh, S.A.; Irshad, S. Estimation of water quality, management and risk assessment in Khyber Pakhtunkhwa and Gilgit-Baltistan, Pakistan. Desalination Water Treat. 2019, 171, 105–114. [Google Scholar] [CrossRef]
- Mahfooz, Y.; Yasar, A.; Sohail, M.T.; Tabinda, A.B.; Rasheed, R.; Irshad, S.; Yousaf, B. Investigating the drinking and surface water quality and associated health risks in a semi-arid multi-industrial metropolis (Faisalabad), Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 20853–20865. [Google Scholar] [CrossRef]
- Imran, U.; Ullah, A.; Shaikh, K.; Mehmood, R.; Saeed, M. Health risk assessment of the exposure of heavy metal contamination in surface water of lower Sindh, Pakistan. SN Appl. Sci. 2019, 1, 589. [Google Scholar] [CrossRef] [Green Version]
- Shahab, A.; Qi, S.; Zaheer, M. Arsenic contamination, subsequent water toxicity, and associated public health risks in the lower Indus plain, Sindh province, Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 30642–30662. [Google Scholar] [CrossRef]
- Mehmood, K.; Ahmad, H.R. Saifullah Quantitative assessment of human health risk posed with chromium in waste, ground, and surface water in an industrial hub of Pakistan. Arab. J. Geosci. 2019, 12, 283. [Google Scholar] [CrossRef]
- Saleem, M.; Iqbal, J.; Shah, M.H. Seasonal variations, risk assessment and multivariate analysis of trace metals in the freshwater reservoirs of Pakistan. Chemosphere 2019, 216, 715–724. [Google Scholar] [CrossRef]
- Khan, K.; Lu, Y.; Saeed, M.A.; Bilal, H.; Sher, H.; Khan, H.; Ali, J.; Wang, P.; Uwizeyimana, H.; Baninla, Y.; et al. Prevalent fecal contamination in drinking water resources and potential health risks in Swat, Pakistan. J. Environ. Sci. 2018, 72, 1–12. [Google Scholar] [CrossRef]
- Sarfraz, M.; Sultana, N.; Jamil, M. Groundwater Quality and Health Risk Assessment in Rural Areas of District Jaffarabad, Baluchistan (Pakistan). Pak. J. Anal. Environ. Chem. 2018, 19, 79–85. [Google Scholar] [CrossRef]
- Solangi, G.S.; Siyal, A.A.; Babar, M.M.; Siyal, P. Evaluation of surface water quality using the water quality index (Wqi) and the synthetic pollution index (spi): A case study of indus delta region of pakistan. Desalination Water Treat. 2018, 118, 39–48. [Google Scholar] [CrossRef]
- Qaisar, F.U.R.; Zhang, F.; Pant, R.R.; Wang, G.; Khan, S.; Zeng, C. Spatial variation, source identification, and quality assessment of surface water geochemical composition in the Indus River Basin, Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 12749–12763. [Google Scholar] [CrossRef]
- Majeed, S.; Rashid, S.; Qadir, A.; Mackay, C.; Hayat, F. Spatial patterns of pollutants in water of metropolitan drain in Lahore, Pakistan, using multivariate statistical techniques. Environ. Monit. Assess. 2018, 190, 128. [Google Scholar] [CrossRef]
- Shahab, A.; Qi, S.; Zaheer, M.; Rashid, A.; Talib, M.A.; Ashraf, U. Hydrochemical characteristics and water quality assessment for drinking and agricultural purposes in District Jacobabad, lower Indus Plain, Pakistan. Int. J. Agric. Biol. Eng. 2018, 11, 115–121. [Google Scholar] [CrossRef]
- Iqbal, H.H.; Shahid, N.; Qadir, A.; Ahmad, S.R.; Sarwar, S.; Ashraf, M.R.; Arshad, H.M.; Masood, N. Hydrological and ichthyological impact assessment of rasul barrage, river jhelum, Pakistan. Pol. J. Environ. Stud. 2017, 26, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Farooqi, A.; Javed, A.; Ali, W.; Zafar, M.I. Effect of human settlements on surface and groundwater quality: Statistical source identification of heavy and trace metals of Siran River and its catchment area Mansehra, Pakistan. J. Chem. Soc. Pak. 2017, 39, 296–308. [Google Scholar]
- Javed, S.; Ali, A.; Ullah, S. Spatial assessment of water quality parameters in Jhelum city (Pakistan). Environ. Monit. Assess. 2017, 189, 119. [Google Scholar] [CrossRef] [PubMed]
- Noreen, M.; Shahid, M.; Iqbal, M.; Nisar, J.; Abbas, M. Measurement of cytotoxicity and heavy metal load in drains water receiving textile effluents and drinking water in vicinity of drains. Measurement 2017, 109, 88–99. [Google Scholar] [CrossRef]
- Alamgir, A.; Khan, M.A.; Manino, I.; Shaukat, S.S.; Shahab, S. Vulnerability to climate change of surface water resources of coastal areas of Sindh, Pakistan. Desalination Water Treat. 2016, 57, 18668–18678. [Google Scholar] [CrossRef]
- Saleem, M.; Iqbal, J.; Shah, M.H. Assessment of water quality for drinking/irrigation purpose from Mangla dam, Pakistan. Geochem. Explor. Environ. Anal. 2016, 16, 137–145. [Google Scholar] [CrossRef]
- Iftikhar, B.; Bashirullah, N.; Ishtiaq, M.; Khan, S.A.; Siddique, S.; Ayaz, T. Chemical quality assessment of drinking water in district peshawar, pakistan. Khyber Med. Univ. J. 2016, 8, 1–6. [Google Scholar]
- Zulfiqar, H.; Abbas, Q.; Raza, A.; Ali, A. Determinants of Safe Drinking Water in Pakistan: A Case Study of Faisalabad. J. Glob. Innov. Agric. Soc. Sci. 2016, 04, 40–45. [Google Scholar] [CrossRef]
- Ghanghro, A.B.; Jahangir, T.M.; Memon, A.H.; Jahangir, T.M.; Lund, G.M.; Memon, A.H. Arsenic Contamination in Drinking Water of District Jamshoro Arsenic Contamination in Drinking Water of District Jamshoro, Sindh, Pakistan. Biomed. Lett. 2016, 2, 31–37. [Google Scholar]
- Hussain, S.A.; Hussain, S.A.; Hussain, A.; Fatima, U.; Ali, W.; Hussain, A.; Hussain, N. Evaluation of drinking water quality in urban areas of Pakistan: A case study of Gulshan-e-Iqbal Karachi, Pakistan. J. Biodivers. Environ. Sci. 2016, 8, 64–76. [Google Scholar]
- Nazir, H.M.; Hussain, I.; Zafar, M.I.; Ali, Z.; AbdEl-Salam, N.M. Classification of Drinking Water Quality Index and Identification of Significant Factors. Water Resour. Manag. 2016, 30, 4233–4246. [Google Scholar] [CrossRef]
- Bhowmik, A.K.; Alamdar, A.; Katsoyiannis, I.; Shen, H.; Ali, N.; Ali, S.M.; Bokhari, H.; Schäfer, R.B.; Eqani, S.A.M.A.S. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan. Sci. Total Environ. 2015, 538, 306–316. [Google Scholar] [CrossRef]
- Begum, S.; Shah, M.T.; Khan, S. Role of mafic and ultramafic rocks in drinking water quality and its potential health risk assessment, Northern Pakistan. J. Water Health 2015, 13, 1130–1142. [Google Scholar] [CrossRef]
- Abbas, S.; Hashmi, I.; Saif, M.; Rehman, U.; Qazi, I.A.; Awan, M.A.; Nasir, H. Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan. J. Water Health 2015, 13, 270–284. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, M.W.; Adnan, A.; Mukhtar, H.; Danish, M.; Raza, M.A. Determination of toxic metals in water of Lahore canal by atomic absorption spectroscopy. J. Water Chem. Technol. 2015, 37, 73–77. [Google Scholar] [CrossRef]
- Kandhro, A.J.; Rind, A.M.; Mastoi, A.A.; Almani, K.F.; Meghwar, S.; Laghari, M.A.; Rajpout, M.S. Physico-Chemical Assessment of Surface and Ground Water for Drinking Purpose in Nawabshah City, Sindh, Pakistan. Am. J. Environ. Prot. 2015, 4, 62–69. [Google Scholar] [CrossRef]
- Khan, S.; Shah, I.A.; Muhammad, S.; Malik, R.N.; Shah, M.T. Arsenic and Heavy Metal Concentrations in Drinking Water in Pakistan and Risk Assessment: A Case Study. Hum. Ecol. Risk Assess. 2015, 21, 1020–1031. [Google Scholar] [CrossRef]
- Khan, S.S.; Tareen, H.; Jabeen, U.; Mengal, F.; Masood, Z.; Ahmed, S.; Bibi, S.; Riaz, M.; Rizwan, S.; Mandokhail, F.; et al. Quality Assessment of Drinking Water from the Different Colonies of Quetta City, Pakistan according to WHO Standards. Biol. Forum Int. J. 2015, 7, 699–702. [Google Scholar]
- Yousafzai, A.M.; Bari, F.; Ullah, T.; Pakistan, H.B. Assessment of heavy metals in surface water of River Panjkora Dir Lower, KPK Pakistannet. J. Biodivers. Environ. Sci. 2014, 5, 144–152. [Google Scholar]
- Jabeen, S.; Shah, M.T.; Ahmed, I.; Khan, S.; Hayat, M.Q. Physico-chemical parameters of surface and ground water and their environmental impact assessment in the Haripur Basin, Pakistan. J. Geochem. Explor. 2014, 138, 1–7. [Google Scholar] [CrossRef]
- Sheikh, S.A.; Panhwar, A.A.; Channa, M.J.; Merani, B.N.; Nizamani, S.M. Determination of Ground Water Quality for Agriculture and Drinking Purpose in Sindh, Pakistan. J. Pharm. Nutr. Sci. 2014, 4, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Channar, A.G.; Rind, A.M.; Mastoi, G.M.; Almani, K.F.; Lashari, K.H.; Qurishi, M.A.; Mahar, N. Comparative Study of Water Quality of Manchhar Lake with Drinking Water Quality Standard of World Health Organization. Am. J. Environ. Prot. 2014, 3, 68–72. [Google Scholar] [CrossRef]
- Khan, M.A.; Lang, M.; Shaukat, S.S.; Alamgir, A.; Baloch, T. Water quality assessment of hingol river, balochistan, Pakistan. Middle East J. Sci. Res. 2014, 19, 306–313. [Google Scholar] [CrossRef]
- Wattoo, F.H.; Wattoo, M.H.S.; Tirmizi, S.A.; Qadir, M.A. Monitoring of anthropogenic influences on underground and surface water quality of Indus River at district Mianwali-Pakistan. Turk. J. Biochem. J Biochem. 2013, 38, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.A.; Rasheed, H. Fluoride in the drinking water of Pakistan and the possible risk of crippling fluorosis. Drink. Water Eng. Sci. 2013, 6, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, A.; Mirjat, M.S.; Mangio, H.U.R.; Soomro, A. Assessment of Drinking Water Quality Status and its Impact on Health in Tandojam City. Int. J. Humanit. Soc. Sci. 2013, 13, 363–369. [Google Scholar] [CrossRef]
- Ahmed, A.; Noonari, T.M.; Magsi, H.; Mahar, A. Risk assessment of total and faecal coliform bacteria from drinking water supply of Badin city, Pakistan. J. Environ. Prof. Sri Lanka 2013, 2, 52. [Google Scholar] [CrossRef]
- Baig, J.A.; Kazi, T.G.; Shah, A.Q.; Kandhro, G.A.; Afridi, H.I.; Khan, S.; Kolachi, N.F.; Wadhwa, S.K. Arsenic speciation and other parameters of surface and ground water samples of jamshoro, Pakistan. Int. J. Environ. Anal. Chem. 2012, 92, 28–42. [Google Scholar] [CrossRef]
- Farooq, M.A.; Shaukat, S.S.; Zafar, M.U.; Abbas, Q. Variation Pattern of Heavy Metal Concentrations During Pre- and Post-Monsoon Seasons in the Surface Water of River Indus (Sindh Province). World Appl. Sci. J. 2012, 19, 582–587. [Google Scholar] [CrossRef]
- Li, P.; Wu, J. Medical Geology and Medical Geochemistry: An Editorial Introduction. Expo. Health 2022, 14, 217–218. [Google Scholar] [CrossRef]
- Pal, A.; He, Y.; Jekel, M.; Reinhard, M.; Gin, K.Y.H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 2014, 71, 46–62. [Google Scholar] [CrossRef]
- Azizullah, A.; Khattak, M.N.K.; Richter, P.; Häder, D.P. Water pollution in Pakistan and its impact on public health—A review. Environ. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef]
- Rasheed, H.; Iqbal, N.; Ashraf, M.; ul Hasan, F. Groundwater quality and availability assessment: A case study of District Jhelum in the Upper Indus, Pakistan. Environ. Adv. 2022, 7, 100148. [Google Scholar] [CrossRef]
- Khan, S.; Aziz, T.; Noor-Ul-Ain Ahmed, K.; Ahmed, I.; Nida; Akbar, S.S. Drinking Water Quality in 13 Different Districts of Sindh, Pakistan. Health Care Curr. Rev. 2018, 6, 4. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Q.; He, Y.; Luo, X.; Zhang, X. Comparison of daily and sub-daily SWAT models for daily streamflow simulation in the upper Huai River Basin of China. Stoch. Environ. Res. Risk Assess. 2016, 30, 959–972. [Google Scholar] [CrossRef] [Green Version]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Arshad, N.; Imran, S. Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan. Environ. Sci. Pollut. Res. 2017, 24, 2449–2463. [Google Scholar] [CrossRef]
- Sohail, M.T.; Mahfooz, Y.; Aftab, R.; Yen, Y.; Talib, M.A.; Rasool, A. Water quality and health risk of public drinking water sources: A study of fltration plants installed in Rawalpindi and Islamabad, Pakistan. Desalination Water Treat. 2020, 181, 239–250. [Google Scholar] [CrossRef]
- He, X.; Li, P. Surface Water Pollution in the Middle Chinese Loess Plateau with Special Focus on Hexavalent Chromium (Cr6+): Occurrence, Sources and Health Risks. Expo. Health 2020, 12, 385–401. [Google Scholar] [CrossRef]
- Natasha; Shahid, M.; Khalid, S.; Murtaza, B.; Anwar, H.; Shah, A.H.; Sardar, A.; Shabbir, Z.; Niazi, N.K. A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. Environ. Geochem. Health 2020, 1–20. [Google Scholar] [CrossRef]
- Khan, S.; Rauf, R.; Muhammad, S.; Qasim, M.; Din, I. Arsenic and heavy metals health risk assessment through drinking water consumption in the Peshawar District, Pakistan. Hum. Ecol. Risk Assess. 2016, 22, 581–596. [Google Scholar] [CrossRef]
- Mulk, S.; Azizullah, A.; Korai, A.L.; Khattak, M.N.K. Impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan. Environ. Monit. Assess. 2015, 187, 8. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, E.J. Quality Assessment for Shatt Al-Arab River Using Heavy Metal Pollution Index and Metal Index. J. Environ. Earth Sci. 2013, 3, 114–120. [Google Scholar]
- Geng, J.; Wang, Y.; Luo, H. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China. Mar. Pollut. Bull. 2015, 101, 914–921. [Google Scholar] [CrossRef]
- Avigliano, E.; Schenone, N.F. Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchem. J. 2015, 122, 149–158. [Google Scholar] [CrossRef]
- Singh, H.; Pandey, R.; Singh, S.K.; Shukla, D.N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 2017, 7, 4133–4149. [Google Scholar] [CrossRef]
- Cánovas, C.R.; Olías, M.; Nieto, J.M.; Galván, L. Wash-out processes of evaporitic sulfate salts in the Tinto river: Hydrogeochemical evolution and environmental impact. Appl. Geochem. 2010, 25, 288–301. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Anwar, A.A.; Aslam, M. Groundwater monitoring and management: Status and options in Pakistan. Comput. Electron. Agric. 2017, 135, 143–153. [Google Scholar] [CrossRef]
- Alamgir, A.; Khan, M.A.; Schilling, J.; Shaukat, S.S.; Shahab, S. Assessment of groundwater quality in the coastal area of Sindh province, Pakistan. Environ. Monit. Assess. 2016, 188, 78. [Google Scholar] [CrossRef]
- Ling, Y.; Podgorski, J.; Sadiq, M.; Rasheed, H.; Eqani, S.A.M.A.S.; Berg, M. Monitoring and prediction of high fluoride concentrations in groundwater in Pakistan. Sci. Total Environ. 2022, 839, 156058. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [Green Version]
- Khoso, S.; Wagan, F.H.; Tunio, A.H.; Ansari, A.A. An overview on emerging water scarcity in pakistan, its causes, impacts and remedial measures. J. Appl. Eng. Sci. 2015, 13, 35–44. [Google Scholar] [CrossRef]
- Adnan, S.; Iqbal, J. Spatial analysis of the groundwater quality in the Peshawar district, Pakistan. Procedia Eng. 2014, 70, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.S.; Rashid, H.; Khan, S.N.; Akbar, M.U.; Arshad, A.; Rahman, M.M.; Mustafa, S. A Localized Assessment of Groundwater Quality Status Using GIS-Based Water Quality Index in Industrial Zone of Faisalabad, Pakistan. Water 2022, 14, 3342. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Khuhawar, M.Y.; Jahangir Khuhawar, T.M. Assessment of groundwater quality for drinking and irrigation uses in taluka Ratodero, district Larkana, Sindh, Pakistan. Int. J. Environ. Anal. Chem. 2020, 102, 4134–4157. [Google Scholar] [CrossRef]
- ur Rehman, H.; Munir, M.; Ashraf, K.; Fatima, K.; Shahab, S.; Ali, B.; Al-Saeed, F.A.; Abbas, A.M.; uz Zaman, Q. Heavy Metals, Pesticide, Plasticizers Contamination and Risk Analysis of Drinking Water Quality in the Newly Developed Housing Societies of Gujranwala, Pakistan. Water 2022, 14, 3787. [Google Scholar] [CrossRef]
- Mughal, A.; Sultan, K.; Ashraf, K.; Hassan, A.; uz Zaman, Q.; Haider, F.U.; Shahzad, B. Risk Analysis of Heavy Metals and Groundwater Quality Indices in Residential Areas: A Case Study in the Rajanpur District, Pakistan. Water 2022, 14, 3551. [Google Scholar] [CrossRef]
- Jamali, M.A.; Markhand, A.H.; Agheem, M.H.; Zardari, S.H.; Arain, A.Y.W. Spatial variation in groundwater quality with respect to surface water seepages in Kadhan area District Badin (Indus Delta), Sindh, Pakistan. Int. J. Energy Water Resour. 2022, 7, 105–117. [Google Scholar] [CrossRef]
- Jamali, M.Z.; Solangi, G.S.; Keerio, M.A.; Keerio, J.A.; Bheel, N. Assessing and mapping the groundwater quality of Taluka Larkana, Sindh, Pakistan, using water quality indices and geospatial tools. Int. J. Environ. Sci. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- Nasir, M.J.; Tufail, M.; Ayaz, T.; Khan, S.; Khan, A.Z.; Lei, M. Groundwater quality assessment and its vulnerability to pollution: A study of district Nowshera, Khyber Pakhtunkhwa, Pakistan. Environ. Monit. Assess. 2022, 194, 692. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Khuhawar, M.Y.; Lanjwani, A.H.; Khuahwar, T.M.J.; Samtio, M.S.; Rind, I.K.; Soomro, W.A.; Khokhar, L.A.; Channa, F.A. Spatial variability and risk assessment of metals in groundwater of district Kamber-Shahdadkot, Sindh, Pakistan. Groundw. Sustain. Dev. 2022, 18, 100784. [Google Scholar] [CrossRef]
- Noor, S.; Rashid, A.; Javed, A.; Khattak, J.A.; Farooqi, A. Hydrogeological properties, sources provenance, and health risk exposure of fluoride in the groundwater of Batkhela, Pakistan. Environ. Technol. Innov. 2022, 25, 102239. [Google Scholar] [CrossRef]
- Iqbal, Z.; Imran, M.; Natasha; Rahman, G.; Miandad, M.; Shahid, M.; Murtaza, B. Spatial distribution, health risk assessment, and public perception of groundwater in Bahawalnagar, Punjab, Pakistan: A multivariate analysis. Environ. Geochem. Health 2022, 45, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Israr, M.; Nazneen, S.; Raza, A.; Ali, N.; Khan, S.A.; Khan, H.; Khan, S.; Ali, J. Assessment of municipal solid waste landfilling practices on the groundwater quality and associated health risks: A case study of Mardan-Pakistan. Arab. J. Geosci. 2022, 15, 1445. [Google Scholar] [CrossRef]
- Ahmad, W.; Iqbal, J.; Nasir, M.J.; Ahmad, B.; Khan, M.T.; Khan, S.N.; Adnan, S. Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Sci. Rep. 2021, 11, 16526. [Google Scholar] [CrossRef]
- Hassan, M.; Khan, M.J.; Ali, S.S. Environmental security View project Energy and Environmental Security in Developing Countries View project. Pak. J. Sci. 2021, 73. [Google Scholar]
- Lanjwani, M.F.; Khuhawar, M.Y.; Khuhawar, T.M.J.; Lanjwani, A.H.; Soomro, W.A. Evaluation of hydrochemistry of the Dokri groundwater, including historical site Mohenjo-Daro, Sindh, Pakistan. Int. J. Environ. Anal. Chem. 2021, 103, 1892–1916. [Google Scholar] [CrossRef]
- Khan, H.; Khan, M.N.; Sirajuddin, M.; Salman, S.M.; Bilal, M. Assessment of Drinking Water Quality of Different Areas in Tehsil Isa Khel, Mianwali, Punjab, Pakistan. Pak. J. Anal. Environ. Chem. 2021, 22, 376–387. [Google Scholar] [CrossRef]
- Jalees, M.I.; Farooq, M.U.; Anis, M.; Hussain, G.; Iqbal, A.; Saleem, S. Hydrochemistry modelling: Evaluation of groundwater quality deterioration due to anthropogenic activities in Lahore, Pakistan. Environ. Dev. Sustain. 2021, 23, 3062–3076. [Google Scholar] [CrossRef]
- Ahmad, S.; Imran, M.; Murtaza, B.; Natasha; Arshad, M.; Nawaz, R.; Waheed, A.; Hammad, H.M.; Naeem, M.A.; Shahid, M.; et al. Hydrogeochemical and health risk investigation of potentially toxic elements in groundwater along River Sutlej floodplain in Punjab, Pakistan. Environ. Geochem. Health 2021, 43, 5195–5209. [Google Scholar] [CrossRef]
- Iqbal, J.; Su, C.; Rashid, A.; Yang, N.; Baloch, M.Y.J.; Talpur, S.A.; Ullah, Z.; Rahman, G.; Rahman, N.U.; Earjh; et al. Hydrogeochemical Assessment of Groundwater and Suitability Analysis for Domestic and Agricultural Utility in Southern Punjab, Pakistan. Water 2021, 13, 3589. [Google Scholar] [CrossRef]
- Ismail, S.; Ahmed, M.F. GIS-based spatio-temporal and geostatistical analysis of groundwater parameters of Lahore region Pakistan and their source characterization. Environ. Earth Sci. 2021, 80, 719. [Google Scholar] [CrossRef]
- Ullah, Z.; Talib, M.A.; Rashid, A.; Ghani, J.; Shahab, A.; Irfan, M.; Rauf, A.; Bawazeer, S.; Almarhoon, Z.M.; Mabkhot, Y.N. Hydrogeochemical Investigation of Elevated Arsenic Based on Entropy Modeling, in the Aquifers of District Sanghar, Sindh, Pakistan. Water 2021, 13, 3477. [Google Scholar] [CrossRef]
- Ahmed, J.; Ping Wong, L.; Piaw Chua, Y.; Channa, N. Drinking Water Quality Mapping Using Water Quality Index and Geospatial Analysis in Primary Schools of Pakistan. Water 2020, 12, 3382. [Google Scholar] [CrossRef]
- Khan, M.J.; Shah, B.A.; Nasir, B. Groundwater quality assessment for drinking purpose: A case study from Sindh Industrial Trading Estate, Karachi, Pakistan. Model. Earth Syst. Environ. 2020, 6, 263–272. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Natasha; Shah, A.H.; Saeed, F.; Ali, M.; Qaisrani, S.A.; Dumat, C. Heavy metal contamination and exposure risk assessment via drinking groundwater in Vehari, Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 39852–39864. [Google Scholar] [CrossRef]
- Murtaza, B.; Natasha; Amjad, M.; Shahid, M.; Imran, M.; Shah, N.S.; Abbas, G.; Naeem, M.A.; Amjad, M. Compositional and health risk assessment of drinking water from health facilities of District Vehari, Pakistan. Environ. Geochem. Health 2020, 42, 2425–2437. [Google Scholar] [CrossRef]
- Seelro, M.A.; Ansari, M.U.; Manzoor, S.A.; Abodif, A.M.; Sadaf, A. Comparative Study of Ground and Surface Water Quality Assessment Using Water Quality Index (WQI) in Model Colony Malir, Karachi, Pakistan. Environ. Contam. Rev. 2020, 3, 4–12. [Google Scholar] [CrossRef]
- Solangi, G.S.; Siyal, A.A.; Babar, M.M.; Siyal, P. Groundwater quality evaluation using the water quality index (WQI), the synthetic pollution index (SPI), and geospatial tools: A case study of Sujawal district, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2019, 26, 1529–1549. [Google Scholar] [CrossRef]
- Kumar, N.; Memon, S.A.; Mahessar, A.A.; Ansari, K.; Qureshi, A. Impact Assessment of Groundwater Quality using WQI and Geospatial tools: A Case Study of Islamkot, Tharparkar, Pakistan. Technol. Appl. Sci. Res. 2020, 10, 5288–5294. [Google Scholar] [CrossRef]
- Shahzad, H.; Farid, H.U.; Khan, Z.M.; Anjum, M.N.; Ahmad, I.; Chen, X.; Sakindar, P.; Mubeen, M.; Ahmad, M.; Gulakhmadov, A. An integrated use of gis, geostatistical and map overlay techniques for spatio-temporal variability analysis of groundwater quality and level in the punjab province of pakistan, south asia. Water 2020, 12, 3555. [Google Scholar] [CrossRef]
- Razzaq, S.S.; Naz, S.A.; Zubair, A.; Yasmeen, K.; Shafique, M.; Jabeen, N.; Magsi, A. Detection of Hazardous Contaminants in Ground Water Resources: An Alarming Situation for Public Health in Karachi, Pakistan. Pak. J. Anal. Environ. Chem. 2020, 21, 322–331. [Google Scholar] [CrossRef]
- Solangi, G.S.; Munir, B.M.; Siyal, P.; Siyal, A.A.; Babar, M.M. Evaluation of drinking water quality using the water quality index (WQI), the synthetic pollution index (SPI) and geospatial tools in Thatta district, Pakistan. Desalination Water Treat. 2019, 160, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Deeba, F.; Abbas, N.; Butt, M.; Irfan, M. Ground Water Quality of Selected Areas of Punjab and Sind Provinces, Pakistan: Chemical and Microbiological Aspects. SSRN Electron. J. 2019, 5, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Khanoranga; Khalid, S. An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. J. Geochem. Explor. 2019, 197, 14–26. [Google Scholar] [CrossRef]
- Jehan, S.; Khan, S.; Khattak, S.A.; Muhammad, S.; Rashid, A.; Muhammad, N. Hydrochemical properties of drinking water and their sources apportionment of pollution in Bajaur agency, Pakistan. Measurement 2019, 139, 249–257. [Google Scholar] [CrossRef]
- Mazhar, I.; Hamid, A.; Afzal, S. Groundwater quality assessment and human health risks in Gujranwala District, Pakistan. Environ. Earth Sci. 2019, 78, 634. [Google Scholar] [CrossRef]
- Talib, M.A.; Tang, Z.; Shahab, A.; Siddique, J.; Faheem, M.; Fatima, M. Hydrogeochemical Characterization and Suitability Assessment of Groundwater: A Case Study in Central Sindh, Pakistan. Int. J. Environ. Res. Public Health 2019, 16, 886. [Google Scholar] [CrossRef] [Green Version]
- Khuhawar, M.Y.; Khuhawar, M.J.; Ursani, H.-R.; Farooque, M.; Lanjwani; Mahessar, A.A.; Tunio, I.A.; Soomro, A.G.; Rind, I.K.; Brohi, R.-Z.; et al. Assessment of Water Quality of Groundwater of Thar Desert, Sindh, Pakistan. J. Hydrogeol. Hydrol. Eng. Res. 2019, 7, 1000171. [Google Scholar] [CrossRef]
- Masood, N.; Farooqi, A.; Zafar, M.I. Health risk assessment of arsenic and other potentially toxic elements in drinking water from an industrial zone of Gujrat, Pakistan: A case study. Environ. Monit. Assess. 2019, 191, 95. [Google Scholar] [CrossRef]
- Yousaf, S.; Ilyas, M.; Khan, S.; Khan Khattak, A.; Anjum, S. Measurement of physicochemical and heavy metals concentration in drinking water from sources to consumption sites in. J. Himal. Earth Sci. 2019, 52, 36–45. [Google Scholar]
- Mushtaq, N.; Younas, A.; Mashiatullah, A.; Javed, T.; Ahmad, A.; Farooqi, A. Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere 2018, 200, 576–586. [Google Scholar] [CrossRef]
- Khan, A.; Qureshi, F.R. Groundwater Quality Assessment through Water Quality Index (WQI) in New Karachi Town, Karachi, Pakistan. Asian J. Water Environ. Pollut. 2018, 15, 41–46. [Google Scholar] [CrossRef]
- Bhatti, N.B.; Siyal, A.A.; Qureshi, A.L. Groundwater Quality Assessment Using Water Quality Index: A Case Study of Nagarparkar, Sindh, Pakistan. Sindh Univ. Res. J. SURJ Sci. Ser. 2018, 50, 227–234. [Google Scholar]
- Laghari, A.N.; Siyal, Z.A.; Bangwar, D.K.; Soomro, M.A.; Walasai, G.; Shaikh, F.A. Groundwater Quality Analysis for Human Consumption A Case Study of Sukkur City, Pakistan. Technol. Appl. Sci. Res. 2018, 8, 2616–2620. [Google Scholar] [CrossRef]
- Imran, M.; Jahanzaib, S.; Ashraf, A. Using geographical information systems to assess groundwater contamination from arsenic and related diseases based on survey data in Lahore, Pakistan. Arab. J. Geosci. 2017, 10, 450. [Google Scholar] [CrossRef]
- Podgorski, J.E.; Eqani, S.A.M.A.S.; Khanam, T.; Ullah, R.; Shen, H.; Berg, M. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci. Adv. 2017, 3, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Bashir, E.; Huda, S.N.; Naseem, S.; Hamza, S.; Kaleem, M. Geochemistry and quality parameters of dug and tube well water of Khipro, District Sanghar, Sindh, Pakistan. Appl. Water Sci. 2017, 7, 1645–1655. [Google Scholar] [CrossRef]
- Mahmood, K.; Ul-Haq, Z.; Batool, S.A.; Rana, A.D.; Tariq, S. Application of temporal GIS to track areas of significant concern regarding groundwater contamination. Environ. Earth Sci. 2016, 75, 33. [Google Scholar] [CrossRef]
- Farooq, A.; Zahid, F.; Asif, S.; Ali, H.Q. Estimation of Fluoride in Drinking Water in Selected Areas of Southern Lahore, Pakistan. Sci. Int. 2016, 28, 391–395. [Google Scholar]
- Khan, R.U.; Khan, P.; Waheed, M.W.; Jan, R.; Author, C.; Ur Rehman, H.; Bibi, S.; Nazir, R.; Shakir, S.K.; Naz, S.; et al. Heavy Metals Analysis in Drinking Water of Lakki Marwat District, KPK, Pakistan. World Appl. Sci. J. 2016, 34, 15–19. [Google Scholar] [CrossRef]
- Shah, A.A.; Khan, M.A.; Kanwal, N.; Bernstein, R. Assessment of safety of drinking water in tank district: An empirical study of water-borne diseases in rural Khyber Pakhtunkhwa, Pakistan. Int. J. Environ. Sci. 2016, 6, 418–428. [Google Scholar] [CrossRef]
- Shahab, A.; Shihua, Q.; Rashid, A.; Ul Hasan, F.; Sohail, M.T.; Pakistan, R. Evaluation of Water Quality for Drinking and Agricultural Suitability in the Lower Indus Plain in Sindh Province, Pakistan. Pol. J. Environ. Stud. 2016, 25, 2563–2574. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.F.; Afreen, A.; Abbas, Y.; Afridi, Z.-U.-R.; Athar, W.; Ur Rehman, Z.; Khan, Q.; ur Rehaman, S.W.; Ali, A. A Study on physio-chemical and biological analysis of drinking water quality from the residential areas of Islamabad, Pakistan. J. Biodivers. Environ. Sci. 2016, 109, 109–125. [Google Scholar]
- Brahman, K.D.; Kazi, T.G.; Afridi, H.I.; Baig, J.A.; Arain, S.S.; Talpur, F.N.; Kazi, A.G.; Ali, J.; Panhwar, A.H.; Arain, M.B. Exposure of children to arsenic in drinking water in the Tharparkar region of Sindh, Pakistan. Sci. Total Environ. 2016, 544, 653–660. [Google Scholar] [CrossRef]
- Baig, J.A.; Kazi, T.G.; Mustafa, M.A.; Solangi, I.B.; Mughal, M.J.; Afridi, H.I. Arsenic Exposure in Children through Drinking Water in Different Districts of Sindh, Pakistan. Biol. Trace Elem. Res. 2016, 173, 35–46. [Google Scholar] [CrossRef]
- Mahessar, A.A.; Memon, N.A.; Leghari, M.E.H.; Qureshi, A.L.; Arain, G.M. Assessment of Source and Quality of Drinking Water in Coastal Area of. IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 9–15. [Google Scholar] [CrossRef]
- Shahid, S.U.; Iqbal, J.; Hasnain, G. Groundwater quality assessment and its correlation with gastroenteritis using GIS: A case study of Rawal Town, Rawalpindi, Pakistan. Environ. Monit. Assess. 2014, 186, 7525–7537. [Google Scholar] [CrossRef]
- Malik, M.A.; Tang, Z.; Mohamadi, B. Contamination Potential Assessment of Potable Groundwater in Lahore, Pakistan. Pol. J. Environ. Stud. 2014, 23, 1905–1916. [Google Scholar]
- Hassan, A.; Nawaz, M. African Journal of Microbiology Research Microbiological and physicochemical assessments of groundwater quality at Punjab, Pakistan. Afr. J. Microbiol. Res. 2014, 8, 2672–2681. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Akmal, M.; Aziz, F.; Ullah, S.; Khan, K.J. Hand Pumps’ Water Quality Analysis for Drinking and Irrigation Purposes at District Dir Lower, Khyber Pakhtunkhwa Pakistan. Eur. Acad. Res. 2014, 2, 1560–1572. [Google Scholar]
- Arain, M.B.; Ullah, I.; Niaz, A.; Shah, N.; Shah, A.; Hussain, Z.; Tariq, M.; Afridi, H.I.; Baig, J.A.; Kazi, T.G. Evaluation of water quality parameters in drinking water of district Bannu, Pakistan: Multivariate study. Sustain. Water Qual. Ecol. 2014, 3–4, 114–123. [Google Scholar] [CrossRef]
- Khan, S.; Shahnaz, M.; Jehan, N.; Rehman, S.; Shah, M.T.; Din, I. Drinking water quality and human health risk in Charsadda district, Pakistan. J. Clean. Prod. 2013, 60, 93–101. [Google Scholar] [CrossRef]
- Brahman, K.D.; Kazi, T.G.; Afridi, H.I.; Naseem, S.; Arain, S.S.; Ullah, N. Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: A multivariate study. Water Res. 2013, 47, 1005–1020. [Google Scholar] [CrossRef]
- Rashid, U.; Alvi, S.K.; Perveen, F.; Khan, F.A.; Bhutto, S.; Siddiqui, I.; Bano, A.; Usmani, T.H. Metal contents in the ground waters of Tharparkar district, Sindh, Pakistan, with special focus on arsenic. Pak. J. Sci. Ind. Res. 2012, 55, 49–56. [Google Scholar] [CrossRef]
- Hashmi, I.; Qaiser, S.; Farooq, S. Microbiological quality of drinking water in urban communities, Rawalpindi, Pakistan. Desalin. Water Treat. 2012, 41, 240–248. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, N. Potable Water Quality Characteristics of the Rural Areas of District Hangu, Khyber Pakhtunkhwa-Pakistan. Int. J. Multidiscip. Sci. Eng. 2012, 3, 7–9. [Google Scholar]
- Raza, M.; Hussain, F.; Lee, J.Y.; Shakoor, M.B.; Kwon, K.D. Groundwater status in Pakistan: A review of contamination, health risks, and potential needs. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1713–1762. [Google Scholar] [CrossRef]
- Ayaz, T.; Khan, S.; Khan, A.Z.; Lei, M.; Alam, M. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). J. Environ. Manag. 2020, 255, 109833. [Google Scholar] [CrossRef] [PubMed]
- Memon, Y.I.; Qureshi, S.S.; Kandhar, I.A.; Qureshi, N.A.; Saeed, S.; Mubarak, N.; Khan, S.U.; Saleh, T.A. Statistical analysis and physicochemical characteristics of groundwater quality parameters: A case study. Int. J. Environ. Anal. Chem. 2021, 1–22. [Google Scholar] [CrossRef]
- Usmani, Z.; Kumar, V.; Varjani, S.; Gupta, P.; Rani, R.; Chandra, A. Municipal solid waste to clean energy system: A contribution toward sustainable development. Curr. Dev. Biotechnol. Bioeng. Resour. Recovery Wastes 2020, 2020, 217–231. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.Y.; Xue, C. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resour. Conserv. Recycl. X 2020, 6, 100036. [Google Scholar] [CrossRef]
- Farid, S.; Baloch, M.K.; Ahmad, S.A.; Khan, I. Water pollution: Major issue in urban areas. Int. J. Water Resour. Environ. Eng. 2012, 4, 55–65. [Google Scholar] [CrossRef]
- Soomro, M.; Khokhar, M.; Hussain, W.; Hussain, M. Drinking water Quality challenges in Pakistan. Pak. Counc. Res. Water Resour. Lahore 2011, 17–28. [Google Scholar]
- Nawab, J.; Khan, S.; Khan, M.A.; Sher, H.; Rehamn, U.U.; Ali, S.; Shah, S.M. Potentially Toxic Metals and Biological Contamination in Drinking Water Sources in Chromite Mining-Impacted Areas of Pakistan: A Comparative Study. Expo. Health 2017, 9, 275–287. [Google Scholar] [CrossRef]
- Nawab, J.; Khan, S.; Ali, S.; Sher, H.; Rahman, Z.; Khan, K.; Tang, J.; Ahmad, A. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: A case study of Malakand Agency, Pakistan. Environ. Monit. Assess. 2016, 188, 286. [Google Scholar] [CrossRef]
- Roohul-Amin; Ali, S.S.; Anwar, Z.; Khattak, J.Z.K. Microbial Analysis of Drinking Water and Water Distribution System in New Urban Peshawar. Curr. Res. J. Biol. Sci. 2012, 4, 731–737. [Google Scholar] [CrossRef]
- Noshin, M.; Batool, S.; Farooqi, A. Groundwater pollution in Pakistan. Groundw. Pollut. Pak. 2021, 13, 309–322. [Google Scholar] [CrossRef]
- Khan, K.; Lu, Y.; Khan, H.; Zakir, S.; Ihsanullah; Khan, S.; Khan, A.A.; Wei, L.; Wang, T. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. J. Environ. Sci. 2013, 25, 2003–2013. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J. Environ. Manag. 2015, 162, 306–325. [Google Scholar] [CrossRef] [PubMed]
- van Geen, A.; Farooqi, A.; Kumar, A.; Khattak, J.A.; Mushtaq, N.; Hussain, I.; Ellis, T.; Singh, C.K. Field testing of over 30,000 wells for arsenic across 400 villages of the Punjab plains of Pakistan and India: Implications for prioritizing mitigation. Sci. Total Environ. 2019, 654, 1358–1363. [Google Scholar] [CrossRef]
- Qaiser, S.; Hashmi, I.; Nasir, H. Chlorination at Treatment Plant and Drinking Water Quality: A Case Study of Different Sectors of Islamabad, Pakistan. Arab. J. Sci. Eng. 2014, 39, 5665–5675. [Google Scholar] [CrossRef]
- Waqar, A.; Ali, M. Different Perspectives on Water Quality of Local Filtration Plants in Pakistan. In Proceedings of the 2nd Conference on Sustainability in Civil Engineering, Islamabad, Pakistan, 12 August 2020; pp. 1–8. [Google Scholar]
- Rawan, B.; Ullah, W.; Ullah, R.; Akbar, T.A.; Ayaz, Z.; Javed, M.F.; Din, I.; Ullah, S.; Aziz, M.; Mohamed, A.; et al. Assessments of Roof-Harvested Rainwater in Disctrict Dir Lower, Khyber Pakhtunkhwa Pakistan. Water 2022, 14, 3270. [Google Scholar] [CrossRef]
- Yaqub, G.; Hamid, A.; Asghar, S. Rain water quality assessment as air quality indicator in Pakistan. Bangladesh J. Sci. Ind. Res. 2019, 54, 161–168. [Google Scholar] [CrossRef]
- Pathan, M.A.; Lashari, R.A.; Maira, M. Physical and Chemical Contamination Studies of Drinking Water in the Vicinity of Jamshoro Area (Jetharo Village) Sindh, Pakistan. Int. J. Eng. Sci. Comput. 2018, 8, 17985. [Google Scholar]
- Hasan, M.; Shang, Y.; Akhter, G.; Jin, W. Evaluation of Groundwater Suitability for Drinking and Irrigation Purposes in Toba Tek Singh District, Pakistan. Irrig. Drain. Syst. Eng. 2017, 6, 185. [Google Scholar] [CrossRef]
- Brahman, K.D.; Kazi, T.G.; Afridi, H.I.; Rafique, T.; Baig, J.A.; Arain, S.S.; Ullah, N.; Panhwar, A.H.; Arain, S. Evaluation of fresh and stored rainwater quality in fluoride and arsenic endemic area of Thar Desert, Pakistan. Environ. Monit. Assess. 2014, 186, 8611–8628. [Google Scholar] [CrossRef]
- Chughtai, M.; Mustafa, S.; Mumtaz, M. Study of Physicochemical Parameters of Rainwater: A Case Study of Karachi, Pakistan. Am. J. Anal. Chem. 2014, 2014, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Chughtai, M.; Mustafa, S.; Mahmood, R.; Mumtaz, M. Physicochemical Assessment of Rainwater of Karachi, Pakistan. Eur. Acad. Res. 2014, 1, 4099–4108. [Google Scholar]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-blundo, D.; Shen, Y. Bioeconomy of Sustainability: Drivers, Opportunities and Policy Implications. Sustainability 2022, 14, 200. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M. Perspectives and Challenges on Sustainability: Drivers, Opportunities and Policy Implications in Universities. Sustainability 2023, 15, 3564. [Google Scholar] [CrossRef]
- Ali, S.; Azam, F.; Naveed, H.M.; Abid, W. Impact of Prestigious Indicators on Sustainable Growth of Small and Medium-Sized Enterprises in Pakistan. Asian J. Econ. Empir. Res. 2020, 7, 251–257. [Google Scholar] [CrossRef]
- Shehzadi, M.; Afzal, M.; Khan, M.U.; Islam, E.; Mobin, A.; Anwar, S.; Khan, Q.M. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res. 2014, 58, 152–159. [Google Scholar] [CrossRef]
- Shahid, M.; Niazi, N.K.; Dumat, C.; Naidu, R.; Khalid, S.; Rahman, M.M.; Bibi, I. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ. Pollut. 2018, 242, 307–319. [Google Scholar] [CrossRef]
- Abiriga, D.; Vestgarden, L.S.; Klempe, H. Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Sci. Total Environ. 2020, 737, 140307. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Shoukat, M.A.; Alam, S. Use, Contamination and Exposure of Pesticides in Pakistan: A Review. Pak. J. Agri. Sci 2020, 57, 131–149. [Google Scholar] [CrossRef]
- Qureshi, A.S.; McCornick, P.G.; Sarwar, A.; Sharma, B.R. Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan. Water Resour. Manag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef] [Green Version]
- Mukherji, A.; Scott, C.; Molden, D.; Maharjan, A. Megatrends in Hindu Kush Himalaya: Climate Change, Urbanisation and Migration and Their Implications for Water, Energy and Food. In Water Resources Development and Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 125–146. [Google Scholar] [CrossRef]
- Sleet, P. Water Resources in Pakistan: Scarce, Polluted and Poorly Governed; Future Directions International: Nedlands, Australia, 2019. [Google Scholar]
- Haidary, A.; Amiri, B.J.; Adamowski, J.; Fohrer, N.; Nakane, K. Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan. Water Resour. Manag. 2013, 27, 2217–2229. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Niazi, N.K.; Bibi, I.; Shahid, M.; Sharif, F.; Bashir, S.; Shaheen, S.M.; Wang, H.; Tsang, D.C.W.; Ok, Y.S.; et al. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci. Total Environ. 2018, 645, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Shahid, M.; Khalid, S.; Natasha; Shabbir, Z.; Bakhat, H.F.; Murtaza, B.; Farooq, A.; Akram, M.; Shah, G.M.; et al. Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. Environ. Geochem. Health 2020, 42, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Kamrani, S.; Rezaei, M.; Amiri, V.; Saberinasr, A. Investigating the efficiency of information entropy and fuzzy theories to classification of groundwater samples for drinking purposes: Lenjanat Plain, Central Iran. Environ. Earth Sci. 2016, 75, 1370. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of Water Quality Parameters Using Temporal Remote Sensing Spectral Reflectance in Arid Environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Avdan, Z.Y.; Kaplan, G.; Goncu, S.; Avdan, U. Monitoring the Water Quality of Small Water Bodies Using High-Resolution Remote Sensing Data. ISPRS Int. J. Geo Inf. 2019, 8, 553. [Google Scholar] [CrossRef] [Green Version]
- Villa, S.; Sassanelli, C. The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature. Energies 2020, 13, 6654. [Google Scholar] [CrossRef]
- Sassanelli, C.; Arriga, T.; Zanin, S.; D’Adamo, I.; Terzi, S. Industry 4.0 Driven Result-oriented PSS: An Assessment in the Energy Management. Int. J. Energy Econ. Policy 2022, 12, 186–203. [Google Scholar] [CrossRef]
- D’Adamo, I. The Profitability of Residential Photovoltaic Systems. A New Scheme of Subsidies Based on the Price of CO2 in a Developed PV Market. Soc. Sci. 2018, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- De Paola, F.; Sambito, M.; Piazza, S.; Freni, G. Optimal Deployment of the Water Quality Sensors in Urban Drainage Systems. Environ. Sci. Proc. 2022, 21, 42. [Google Scholar] [CrossRef]
- Le Blanc, D. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Osborn, D.; Cutter, A.; Ullah, F. Understanding the Transformational Challenge for Developed Countries. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/1684SF_-_SDG_Universality_Report_-_May_2015.pdf (accessed on 1 March 2023).
- Khan, M.A.; Khan, J.A.; Ali, Z.; Ahmad, I.; Ahmad, M.N. The challenge of climate change and policy response in Pakistan. Environ. Earth Sci. 2016, 75, 412. [Google Scholar] [CrossRef]
- Alcamo, J. Water quality and its interlinkages with the Sustainable Development Goals. Curr. Opin. Environ. Sustain. 2019, 36, 126–140. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; van Oel, P.R. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6. Water 2017, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- Arora, N.K.; Mishra, I. Sustainable development goal 6: Global Water Security. Environ. Sustain. 2022, 5, 271–275. [Google Scholar] [CrossRef]
- Herrera, V. Reconciling global aspirations and local realities: Challenges facing the Sustainable Development Goals for water and sanitation. World Dev. 2019, 118, 106–117. [Google Scholar] [CrossRef]
- Azadi, F.; Ashofteh, P.S.; Loáiciga, H.A. Reservoir Water-Quality Projections under Climate-Change Conditions. Water Resour. Manag. 2019, 33, 401–421. [Google Scholar] [CrossRef]
- Kumar, L.; Nadeem, F.; Sloan, M.; Restle-Steinert, J.; Deitch, M.J.; Naqvi, S.A.; Kumar, A.; Sassanelli, C. Fostering Green Finance for Sustainable Development: A Focus on Textile and Leather Small Medium Enterprises in Pakistan. Sustainability 2022, 14, 11908. [Google Scholar] [CrossRef]
- Michels-Brito, A.; Rodriguez, D.A.; Cruz Junior, W.L.; de Souza Vianna, J.N. The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability. Renew. Sustain. Energy Rev. 2021, 147, 111238. [Google Scholar] [CrossRef]
- Mukate, S.; Wagh, V.; Panaskar, D.; Jacobs, J.A.; Sawant, A. Development of new integrated water quality index (IWQI) model to evaluate the drinking suitability of water. Ecol. Indic. 2019, 101, 348–354. [Google Scholar] [CrossRef]
Agency/Department Name | Website |
---|---|
Pakistan Environmental Protection Agency (PEPA) | https://www.elaw.org/system/files/Law-PEPA-1997.pdf, accessed on 20 March 2023 |
Sindh Environmental Protection Agency (SEPA) | https://hseforum.pk/forums/discussion/sindh-environmental-quality-standards/, accessed on 20 March 2023 |
Punjab Environment Protection Department (PEPA) | https://epd.punjab.gov.pk/system/files/Punjab%20Environmental%20Quality%20Standards%20for%20%20Drinking%20Water.pdf, accessed on 20 March 2023 |
KPK Environmental Protection Agency | https://epakp.gov.pk/, accessed on 20 March 2023 |
Baluchistan Environmental Protection Agency | https://bepa.gob.pk/, accessed on 20 March 2023 |
Year | Sample Location | Number of Samples | Pollution Source | Flagged Pollutants and Parameters | Method Used | Health Issues Assessment | References |
---|---|---|---|---|---|---|---|
2022 | Basho Valley, Gilgit Baltistan | 23 | Incoming pollution load from upstream channels | Cu, Zn, Mn, Mo, TCC, TFC, and TFS | Lab analysis, WQI, and statical analysis | x | [46] |
Kallar Kahar wetland, Punjab | 5 | Tourism, fishing, urban discharge, and open littering | Microplastics | Lab analysis and comparison | - | [47] | |
Indus Drainage System | 26 | Anthropogenic | Mn, Co, Cu, Zn, Cr Ni, Cd, Hg, and Pb | Lab analysis, risk assessment | x | [48] | |
Punjnad Headworks | 27 | Anthropogenic | Pb, As, Al, and Ba | Lab and statistical analyses, and risk assessment | x | [49] | |
Tehsil Swabi | 15 | Flood runoff, biological contamination, and anthropogenic activities | Mg and HMs | Lab, statistical analysis, and risk assessment | x | [50] | |
Chu Tran Valley | 24 | Agricultural activities, erosion, and domestic discharge | Heavy metals | WQI, PCA, and IDW | x | [51] | |
Malakand | 27 | Anthropogenic | Cu, Fe, K, Mg, Al, Ca, Cr, Mn, Ni, P, and Zn | Lab and statistical analyses, and risk assessment | x | [52] | |
Sutlej River | 400 | Livestock and human sources | Fecal coliform bacteria | Lab analysis, SWAT, and SSPs | x | [53] | |
Eastern Peshawar basin | 34 | Industrial outlets | Heavy metals | Lab and statistical analyses | - | [54] | |
Khyber Pakhtunkhwa | 120 | Not specified | Cu, Zn, Pb, Zn, Pb, Cu, Cr, Co, Ni, Hg, Cr, Co, Ni, Hg, Zn, Cu, Cr, Pb, Co, Ni, and Hg | Lab experiments and risk assessment | x | [55] | |
Phuleli Canal | 8 | Industrial outlets | pH, EC, TDS, COD, CA, Mg, Na, K, BOD, COD, and fecal coliforms | Lab experiments | x | [56] | |
Mirpurkhas | 8 | - | Salinity | Lab experiments | - | [57] | |
Faisalabad | 2 | Industrial outlets | Sulfate ions, TDS, and barium ions | Lab analysis | x | [58] | |
2021 | Kot Addu, Punjab | 90 | Not specified | As, Cd, and Pb | Lab analysis and multivariate statistical analysis | x | [59] |
Bajaur | 75 | Geogenic and anthropogenic activities | Cd, Pb, and Mn | Lab analysis, risk assessment, and questionnaire Survey | x | [34] | |
Swat | 9 | Sewer waters | Escherichia coli | Lab analysis, statistical analysis, and questionnaire Survey | x | [60] | |
Skardu | 45 | Not specified | Cd | Lab analysis, spatial analysis, and statistical analysis | - | [61] | |
Rawal Dam | 148 | Tourist | pH, EC, TDS, alkalinity, hardness, Cl, DO, SO4, Ca, Mg, Fe, Cd, Ni, Cu, As, and F | Lab analysis, machine learning techniques, and WQI | - | [62] | |
Ravi River | 15 | Industrial, domestic, and natural | TDS, COD, BOD, DO, TN, Cu, Pb, As, Cr, Mn, Zn, and Cd | Lab analysis, GIS, and statistical analysis | x | [63] | |
Upper Indus River | 642 | Minerals, natural and anthropogenic | Bicarbonate | Gene expression programming, artificial neural networks, and linear and non-linear regression models | - | [64] | |
RightBank Outfall Drain and Manchar Lake | 14 | Irrigation | EC, TDS, TH, SO4, Cl, BOD, COD, Na, K, Ca, Mg, Cr, Ni, and Al, Pb, Cd, and fecal coliform | Lab analysis, WQI, and statistical analysis | - | [65] | |
Sutlej River | 97 | Anthropogenic | Ca−, Mg−, HCO3−, Ca−, Mg−, Cl−, and SO4 | Lab analysis, WQI, and statistical analysis | x | [66] | |
Nawabshah | 18 | Agro-industrial and sewage | pH, TDS, EC, total hardness, and calcium | Lab analysis | - | [67] | |
2020 | Harnai, Balochistan | 24 | Not specified | Nitrate | Lab analysis | x | [68] |
Abbottabad | 100 | Not specified | Turbidity, EC, and pH | Lab analysis | x | [69] | |
Hattar Industrial Estate | 60 | Industries | Cd, Cr, Ni, Pb, and Zn | Lab analysis, risk assessment, and statistical analysis | x | [70] | |
Lower Jhelum Canal | 20 | Industrial pollution | E. coli | Lab analysis, WQI, and GIS | x | [71] | |
Swat River | 30 | Natural and anthropogenic | Cu, Ni, and Pb | Lab analysis, risk assessment, and statistical analysis | x | [72] | |
Central Indus Basin | 12 | Mining activities | Fe, Mn, Ni, Cd, and Se | Lab analysis | x | [73] | |
2019 | KhyberPakhtunkhwa and Gilgit-Baltistan | 181 | Anthropogenic | EC, turbidity, and As | Lab analysis risk assessment, and statistical analysis | x | [74] |
Faisalabad | 37 | Textiles, ice, pharmaceuticals, flour, cotton, sugar, and food | Cu, Fe, Pb, Al, As, Ba, Cd, Cr, Ni, and Zn | Lab analysis and health risk assessment | x | [75] | |
Lower Sindh | 8 | Industry and agriculture | Cu, Mn, Ni, and Zn | Lab analysis and health risk assessment | x | [76] | |
Lower Indus Plain | 360 | Irrigation | As | Lab analysis | x | [77] | |
Industrial Hub of Pakistan | 13 | Industries | Cr | Lab analysis | x | [78] | |
Mangla Lake, Rawal Lake, and Simly Lake | 6 | Anthropogenic | Cr, Cd, Co, Pb, and Ni | Lab analysis, risk assessment, and statistical analysis | x | [79] | |
2018 | Swat | 58 | Human and animal fecal material | Coliform bacteria | Lab analysis, questionnaire survey, and statistical analysis | x | [80] |
Jaffarabad | 25 | Natural disasters, residues from pesticides, fertilizers, and other domestic and industrial wastes | Turbidity, hardness, TDS, Cl, SO4−2, and Fe | Lab analysis and risk assessment | x | [81] | |
Indus Delta | 50 | Industrial sewage and agricultural and industrial wastes | As | Lab analysis, statistical analysis, WQI, and SPI | - | [82] | |
Indus River Basin | 84 | Geogenic and anthropogenic | TDS, pH | Lab analysis | - | [83] | |
Lahore | 15 | Domestic and industrial | BOD5, COD, Cu, Zn, Fe, Pb, Co, Ni, and Cd | Lab and statistical analyses | - | [84] | |
Lower Indus Plain | 48 | Domestic and industrial | EC, TDS, hardness, cations, and anions | Lab analysis | x | [85] | |
2017 | Rasul Barrage, River Jhelum | 18 | Not specified | TDS, turbidity, Fe, Cr, and Ni | Lab and statistical analyses | x | [86] |
Mansehra | 24 | Human | NO3−, PO4−, Fe, Pb, and Cd | Lab and statistical analyses | x | [87] | |
Jhelum | 292 | Natural and anthropogenic | TDS | Lab and Statistical analysis | - | [88] | |
Faisalabad | 92 | Textile industries | Pb, Cd, COD, and COD | GIS, lab analysis, and statistical analysis | x | [89] | |
2016 | Coastal Areas of Sindh | 34 | Industrial waste | As, Mg, Mn, Cr, Cu, Fe, Pb, and Ni | Lab and statistical analyses | x | [90] |
Mangla Dam | 120 | Anthropogenic | Cd, Cu, Zn, Co, Pb, Ni, As, Fe, Cd, Co, Pb, Ni, As, Fe, Zn, Cu, and Mn | Lab and statistical analyses | - | [91] | |
Peshawar | 50 | Natural | TDS, Cu, Pb, Cr, Cl, and Nitrites | Lab analysis | x | [92] | |
Faisalabad | 225 | Not specified | TDS | Lab analysis | - | [93] | |
Jamshoro | 67 | Irrigation | TDS, EC, salinity, turbidity, and pH | Lab and statistical analyses | x | [94] | |
Gulshan-e-Iqbal Karachi | 6 | Industrial and domestic | pH, EC, and TDS | Lab analysis | x | [95] | |
Punjab | 1600 | Domestic | TDS, F, and Fe | Lab and statistical analyses | - | [96] | |
2015 | Pakistan | 753 | Natural and anthropogenic | As and c | Lab and statistical analyses and risk prediction | x | [97] |
Northern Pakistan | 33 | Natural and anthropogenic | Mn, Fe, Ni, Cr, and Co | Lab and statistical analyses and risk prediction | x | [98] | |
Rawalpindi and Islamabad | 30 | Not specified | TTHMs and chloroform | Lab analysis and risk assessment | x | [99] | |
Lahore | 9 | Not specified | Cr, Fe, and Cu | Lab analysis | - | [100] | |
Nawabshah | 60 | Point and nonpoint sources | TDS, pH, bicarbonates, Hardness, Cl, and SO4. | Lab analysis | x | [101] | |
Nowshera | 39 | Domestic | Cr, Ni, Pb, Cd, and As | Lab analysis and risk assessment | x | [102] | |
Quetta City | 16 | Agriculture and domestic | TDS and EC | Lab analysis | x | [103] | |
2014 | Panjkora River, Lower Dir | 6 | Not specified | ZN, Ir, and Mg | Lab analysis | x | [104] |
Haripur Basin | 32 | Natural and anthropogenic | Pb, Co, Cr, Cu, Cd, As, Hg Fe, Mn, Zn, Ni, and Zn | Lab and statistical analyses and risk assessment | x | [105] | |
Tando Muhammad Khan | 14 | Not specified | TDS, Cl, SO4, Ca, Na, hardness, and As. | Lab analysis | - | [106] | |
Manchar Lake | 10 | Anthropogenic | pH, EC, salinity, TDS, Alkalinity, nitrates, Cl, and total hardness | Lab analysis | - | [107] | |
Hingol River, Balochistan, | 22 | Natural and anthropogenic | Pb, Ni, Zn, Mn, Fe, As, Cr, and Cu | Lab analysis | - | [108] | |
2013 | Mianwali | 28 | Anthropogenic | BOD, COD, TDS, EC, pH, and heavy metals | Lab analysis | - | [109] |
Pakistan | 747 | Natural and anthropogenic | Fluoride | Lab analysis | x | [110] | |
Bahawalpur | 20 | Natural and anthropogenic | EC, TDS, hardness, pH, Ni, Na, and K | Lab analysis | x | [111] | |
Badin | 18 | Anthropogenic | pH, EC, and TDS | Lab and statistical analyses | x | [112] | |
2012 | Jamshoro | 57 | Natural and anthropogenic | As | Lab analysis | - | [113] |
Indus River | 27 | Natural and anthropogenic | Cd, Pb, Hg, and Cu | Lab and statistical analyses | - | [114] | |
Total | 73 | 7452 | 48 |
Year | Sample Location | Number of Samples | Pollution Source | Flagged Pollutants and Parameters | Method Used | Health Issues Assessment | References |
---|---|---|---|---|---|---|---|
2022 | Tehsil Swabi | 26 | Flood runoff, biological contamination, and anthropogenic activities | Mg and HMs | Lab and statistical analyses | x | [50] |
Eastern Peshawar Basin | 36 | Industrial outlets | Heavy metals | Lab and statistical analyses | - | [54] | |
Industrial Zone of Faisalabad | 60 | Madhuana drain’s recharge | pH, EC, Fe, Mn, Cu, and Cr | Lab experiments and GIS | x | [139] | |
Khyber Pakhtunkhwa | 120 | Not specified | Co, Ni, Cu, Cr, Pb, Hg, Cu, Zn, Pb, Cu, Cr, Zn, Pb, C, Co, Ni, Hg, Zn, Co, Ni, and Hg | Lab experiments and risk assessment | x | [55] | |
Taluka Ratodero | 25 | Agricultural fertilizers, industrial waste, and drainage | EC, TDS, Cl, Fu, Pb, Ni, and Cd | Lab experiments and WQI | x | [140] | |
Gujranwala | 200 | Not specified | pH, EC, TH, Ca, Mg, Cl, and heavy metals | Lab experiments, risk assessment, and statistical and spatial data analyses | x | [141] | |
Tharparkar | 25 | Natural and anthropogenic | EC, TDS, F, and As | Lab experiments, risk assessment, and statistical and spatial data analyses | x | [2] | |
Rajanpur | 200 | Not specified | Ca, Na, HCO3, Cl, Mn, and SO4 | Lab experiments and statistical and spatial data analyses | x | [142] | |
Badin | 1 | Not specified | - | VES | - | [143] | |
Larkana | 43 | Anthropogenic | EC, Cl, Ca, Mg, and hardness | Lab experiments, WQI, and SPI | - | [144] | |
Nowshera KPK | 48 | Not specified | TDS and Cl | Lab experiments and map | x | [145] | |
Kamber-Shahdadkot | 46 | Industrialization and urbanization | pH, TDS | Lab experiments, WQI, and GIS | x | [146] | |
Batkhela | 60 | Anthropogenic and natural | CaHCO3, NaHCO3, and NaCl | Geostatistical analysis and risk assessment | x | [147] | |
Bahawalnagar | 40 | Natural | As | Lab and statistical analyses | x | [148] | |
Pakistan | 2160 | Natural and anthropogenic | F− | Lab analysis and modeling | x | [135] | |
Jhelum | 82 | Natural | F−, As, nitrate, and bacteriological | Lab experiments, WQI, and risk assessment | x | [118] | |
Mardan | 13 | Landfilling | (TDS), pH, EC, TH, NO3−, TC, Cr, Ni, Zn, Cd, TC SO4−2, NO2−, Ca+2, and Na+, | Questionnaire survey and lab and statistical analyses | - | [149] | |
2021 | Kot Addu, Punjab | 90 | Not specified | As, Cd, and Pb | Lab analysis and multivariate statistical analysis | x | [59] |
Peshawar | 217 | Agricultural activities, sewerage lines, toilets, seepage, and percolation of polluted water | Nitrate and Ca | Lab analysis, spatial analysis, and risk assessment | x | [150] | |
Bajaur | 88 | Geogenic and anthropogenic activities | Cd, Pb, and Mn | Lab analysis, risk assessment, and questionnaire Survey | x | [34] | |
Central Punjab | 20 | Leaching | Zn, Fe, Cu, Cr, Ni, Cd, Co, and Pb | Lab analysis | x | [151] | |
Swat | 32 | Sewer water | Escherichia coli | Lab analysis, statistical analysis, and questionnaire survey | x | [60] | |
Rawal Dam | 30 | Tourist | pH, EC, TDS, Tur, alkalinity, hardness, Cl, DO, Fe, F, SO4, Ca, Mg, Cd, Ni, Cu, Mn, and As | Lab analysis, machine learning techniques, and WQI | - | [62] | |
Dokri | 40 | Precipitation | Cl and As | Lab analysis, GIS, and WQI | - | [152] | |
Isa Khel, Mianwali | 43 | Not specified | EC and fluoride | Lab analysis | - | [153] | |
Jhelum Basin | 59 | Air pollution through factories | Na+, Ca2+, Mg2+, K+, HCO3, SO4, Cl, NO3, F, and As | Lab analysis, GIS, and WQI | x | [21] | |
Lahore | 39 | Anthropogenic activities | Pb, Cr, Ni, and Cd | Lab analysis | - | [154] | |
River Sutlej | 111 | Anthropogenic activities | EC, HCO3, Cl, and SO4 | Lab analysis | x | [155] | |
Southern Punjab | 68 | Silicate minerals and anthropogenic | HCO3−, SO42−, Cl−, F−, Na+, Ca2+, Mg2+, and K+ | Lab and Statistical analyses | - | [156] | |
Lahore | 1305 | Textile mills and paper, electronic, plastic, paint, and pharmaceutical industries | Fe, NO3−, K, F, SO42−, and As | Lab analysis, WQI, and entropy water quality index | x | [157] | |
Sanghar | 61 | Anthropogenic and geogenic cause | As | Lab and statistical analyses and hadrochemical facies | - | [158] | |
2020 | Sindh | 425 | Not specified | TDS, EC, Cl, turbidity, and hardness | Lab analysis and WQI | x | [159] |
Sindh Industrial Trading Estate, Karachi | 24 | Industrial | pH, EC, TDS, TH, Na, K, Ca, M, Cl, SO4, HCO3, NO3, Fe, and Zn | Lab analysis and GIS | - | [160] | |
Vehari | 129 | Not specified | Pb, Cd, and Fe | Lab analysis and risk assessment | x | [161] | |
Vehari | 75 | Anthropogenic | As | Lab analysis and risk assessment | x | [162] | |
Malir Karachi | 8 | Domestic and industrial | E. coli | Lab analysis and WQI | x | [163] | |
Lower Jhelum Canal | 20 | Industrial pollution | E. coli | Lab analysis, WQI, and GIS | x | [71] | |
Sujawal | 94 | Anthropogenic and geogenic causes | Ca | Lab analysis, WQI, and SPI | x | [164] | |
Central Indus Basin | 50 | Mining activities | Fe, Mn, Ni, Cd, and Se | Lab analysis | x | [73] | |
Islamkot, Tharparkar | 40 | Natural | pH, EC, TDS, salinity, Cl, total alkalinity, Fl, and As | Lab analysis, WQI, and GIS | x | [165] | |
Punjab | 242 | Agriculture | EC and residual sodium carbonate (SAR) | Lab and spatial variability analyses | - | [166] | |
Karachi | 42 | Plumbing | As, TDS, hardness, and chloride | Lab analysis | x | [167] | |
2019 | Indus Delta | 180 | Anthropogenic and geogenic causes | TDS, Cl, Ca, and Mg | Lab analysis, WQI, and SPI | x | [164] |
Thatta | 100 | Not specified | TDS, Cl, and Ca | Lab analysis, WQI, GIS, and SPI | - | [168] | |
Punjab and Sindh | 6 | Anthropogenic | TSS, E. coli, HCO3−, SO42− | Lab analysis | - | [169] | |
Balochistan | 30 | Anthropogenic and geogenic causes | F−, As, Hg, Ni, Cd, Cr, Fe, and Pb | Lab and statistical analyses | - | [170] | |
Faisalabad | 48 | Textiles, ice, pharmaceuticals, flour, cotton, sugar, and food | Al, As, Ba, Cd, Cr, Cu, Fe, Pb, Ni, and Zn | Lab analysis, WQI, and health risk assessment | x | [75] | |
Bajaur Agency | 44 | Anthropogenic | Na+ | Lab analysis and HCA | x | [171] | |
Gujranwala | 08 | Anthropogenic | Bacterial, Cr, Cu, Zn, As, Co, Ni, and Cd. | Lab analysis and GIS | x | [172] | |
Lower Indus Plain | 360 | Irrigation | As | Lab analysis | x | [77] | |
Central Sindh | 59 | Anthropogenic and natural sources | Ca, Mg, Cl, and Na-Cl | Lab analysis and WQI | x | [173] | |
Industrial Hub of Pakistan | 31 | Industries | Cr | Lab analysis | x | [78] | |
Tharparkar | 2170 | Natural | TDS and F | Lab and statistical analyses | - | [174] | |
2018 | Gujrat | 10 | Industries | Heavy metals | Lab and statistical analyses and PCA | x | [175] |
Peshawar | 52 | Anthropogenic and natural sources | Fe, Cu, pH, TSS, Cl, Cu Zn, Ni, and Pb | Lab and statistical analysis | x | [176] | |
Swat | 139 | Human and animal fecal material | Coliform bacteria | Lab analysis, questionnaire survey, and statistical analysis | x | [80] | |
Jaffarabad | 50 | Natural disasters, residues from pesticides, fertilizers, and other domestic and industrial waste | Turbidity, hardness, TDS, Cl, SO4−2, and Fe | Lab analysis and risk assessment | x | [81] | |
Eastern Punjab, Pakistan | 66 | Not specified | As | Lab analysis, saturation indices, and statistical analysis | - | [177] | |
New Karachi Town | 25 | Domestic | TDS, Mg, K, Ca, Na, Cl, SO4, and HCO3 | Lab analysis and WQI | - | [178] | |
Nagarparkar | 29 | Natural | EC, TDS, Ca, lead, Ni, and Zn | Lab analysis and WQI | - | [179] | |
Sindh | 13 | Domestic and pit | Alkalinity, HCO3, Ca, CO3, Turb, Cl, Mg, pH, K, Na, TDS, SO4, NO3, and microbials | Lab analysis | x | [119] | |
Sukkur | 20 | Not specified | TDS, sodium, fluoride, and magnesium | Lab analysis | - | [180] | |
Shaheed Benazir Abad | 40 | Agriculture and industry | TDS, Cl, sulfate, Na, and hardness | Lab analysis | x | [25] | |
2017 | Lahore | 380 | Natural and anthropogenic | As | Lab analysis and GIS | x | [181] |
Indus Valley | 1200 | Natural and anthropogenic | As and pH | Lab analysis and GIS | x | [182] | |
Mansehra | 40 | Human | NO3−, PO43−, Fe, Pb, and Cd | Lab and statistical analysis | x | [87] | |
Hakra Command Area | 134 | Not specified | EC | Lab analysis | - | [133] | |
Lahore | 73 | Natural and anthropogenic | TDS and turbidity | Lab analysis, WQI, and GIS | x | [88] | |
Khipro | 39 | Geological processes and source rock | pH, EC, TDS, TH, Na+, K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3− | Lab analysis | - | [183] | |
2016 | Peshawar | 74 | Industries | Pb, Cr, Cd, and Ni | Lab, statistical analysis, pollution index, and risk assessment | x | [126] |
Lahore | 983 | Anthropogenic | pH, TDS, and Mg | Lab analysis, WQI, and GIS | x | [184] | |
Southern Lahore | 50 | Natural | Fluoride | Lab analysis | x | [185] | |
Lakki Marwat | 17 | Not specified | Zn, lead, and Cd | Lab analysis | x | [186] | |
Khyber Pakhtunkhwa | 54 | Solid waste and sewage | Giardia, Crypto, T. Gondi, Fasciola, B. coli, and entamoeba | Lab and statistical analysis | x | [187] | |
Lower Indus Plain | 218 | Sewage, urban runoff, and industrial wastewater | EC, TDS, Na, Cl, SO4, HCO3, turbidity, and hardness | Lab analysis, WQI, and GIS | x | [188] | |
Mailsi, Punjab | 44 | Anthropogenic and natural sources | As | Lab and statistical analyses | x | [189] | |
Islamabad | 42 | Domestic | Fecal coliform bacteria | Lab analysis | - | [190] | |
Tharparkar | 200 | Natural | As | Lab analysis | x | [191] | |
Sindh | 200 | Natural | As | Lab analysis | x | [192] | |
2015 | Pakistan | 1903 | Natural and anthropogenic | Ca, Cr, Fe, Ni, and Pb | Lab and statistical analyses and risk prediction | x | [97] |
Northern Pakistan | 82 | Natural and anthropogenic | Mn, Fe, Ni, Cr, and Co | Lab and statistical analyses and risk prediction | x | [98] | |
Nawabshah | 65 | Point and nonpoint sources | TDS, pH, bicarbonates, hardness, chloride, and sulfate | Lab analysis | x | [101] | |
Badin | 170 | Not specified | TDS, turbidity, and pH | Lab analysis | x | [193] | |
2014 | Peshawar | 105 | Not specified | TDS, EC, hardness, Ca, Mg, and Cl | GIS and lab and statistical analyses | - | [138] |
Haripur Basin | 98 | Natural and anthropogenic | Fe, Mn, Zn, Ni, Pb, Co, Cr, Cu, Cd, As, Hg, and Zn | Lab and statistical analyses and risk assessment | x | [105] | |
Rawalpindi | 262 | Natural and anthropogenic | pH, TDS, and EC | GIS, lab analysis, and WQI | - | [194] | |
Lahore | 340 | Poor drainage systems | TDS, pH, alkalinity, and turbidity | Lab analysis and GIS | - | [195] | |
Punjab | 36 | Human sewage, agricultural | Fe, Ir, Ba, Al, and Cr | Lab analysis | - | [196] | |
Dir Lower | 11 | Not specified | EC | Lab and Statistical analyses | - | [197] | |
Bannu | 197 | Refuse dump and domestic sewage | pH, EC, TDS, hardness, salinity, alkalinity, Na, K, Li, Ca, Mg, Ba, Cu, Fe, Mn, Ni, and Zn | Lab and statistical analyses | - | [198] | |
2013 | Charsadda | 951 | Anthropogenic | Pb, Cd, Fe, Ni, and Zn. | GIS, lab and statistical analyses, and risk assessment | x | [199] |
Tharparkar | 30 | Natural | As and F | Lab and statistical analyses | - | [200] | |
2012 | Tharparkar | 99 | Natural | Fe, Ca, Cu, and Zn | Lab analysis | - | [201] |
Rawalpindi | 96 | Anthropogenic | TDS, turbidity, TOC, and E-Coli | Lab analysis | x | [202] | |
Hangu | 35 | Natural and anthropogenic | Fecal coliforms, pH, and turbidity | Lab analysis | x | [203] | |
Total | 97 | 18220 | 63 |
Year | Sample Location | Number of Samples | Pollution Source | Flagged Pollutants and Parameters | Method Used | Health Issues Assessment | References |
---|---|---|---|---|---|---|---|
2020 | Rawalpindi and Islamabad | 85 | Not specified | Electrical conductivity, alkalinity, and arsenic | Lab analysis | x | [123] |
Pakistan | 638 | Not specified | Microbiological, Fe, and Mn | Lab analysis | x | [219] | |
2014 | Islamabad | 80 | Not specified | E. coli | Lab analysis | x | [218] |
Total | 03 | 803 | 03 |
Year | Sample Location | Number of Samples | Pollution Source | Flagged Pollutants and Parameters | Method Used | Health Issues Assessment | References |
---|---|---|---|---|---|---|---|
2022 | Lower Dir | 35 | Vehicular and industrial pollution and spray drift | Fe and Pb | Lab analysis and risk assessment | x | [220] |
2019 | Punjab | 20 | Industries, fuel burning, and vehicles | Cd and Pb | Lab analysis | - | [221] |
2018 | Jamshoro | 4 | Natural | Alkalinity, nitrogen, sodium, Cl, silicates, and phosphate | Lab analysis | x | [222] |
2017 | Toba Tek Singh | 72 | Not specified | pH, EC, and TDS | Lab analysis | - | [223] |
2014 | Tharparkar | 9 | Natural | As and F | Lab analysis and statistical analysis | - | [224] |
Karachi | 54 | Industries, fuel burning, and vehicles | NO3− | Lab analysis | x | [225] | |
Karachi | 35 | Industries, fuel burning, and vehicles | TDS and F | Lab analysis | x | [226] | |
Total | 7 | 229 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, L.; Kumari, R.; Kumar, A.; Tunio, I.A.; Sassanelli, C. Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review. Sustainability 2023, 15, 6246. https://doi.org/10.3390/su15076246
Kumar L, Kumari R, Kumar A, Tunio IA, Sassanelli C. Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review. Sustainability. 2023; 15(7):6246. https://doi.org/10.3390/su15076246
Chicago/Turabian StyleKumar, Love, Ramna Kumari, Avinash Kumar, Imran Aziz Tunio, and Claudio Sassanelli. 2023. "Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review" Sustainability 15, no. 7: 6246. https://doi.org/10.3390/su15076246
APA StyleKumar, L., Kumari, R., Kumar, A., Tunio, I. A., & Sassanelli, C. (2023). Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review. Sustainability, 15(7), 6246. https://doi.org/10.3390/su15076246