Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. SWAT Model Input Data
2.3. Remote Sensing and SWAT Modeling Approach
3. SWAT-Modeling Framework for HESS
3.1. Water-Related Provisioning Services
3.1.1. Total Runoff (HESS1)
3.1.2. Natural Livestock Feed Production (HESS3)
3.1.3. Fuelwood from Natural Forest (HESS4)
3.2. Water-Related Regulating Services
3.2.1. Dry Season Flow (HESS5)
3.2.2. Total Groundwater Recharge (HESS6)
3.2.3. Root Zone Storage (HESS8)
3.2.4. Sustaining Regional Rainfall (HESS9)
3.2.5. Peak Flow Attenuation (HESS10)
3.2.6. Carbon Sequestration (HESS11)
3.2.7. Microclimate Cooling (HESS13)
3.3. Water-Related Habitat/Supporting Services
Meeting Environmental Flow Requirements (HESS16)
4. Spatial Mapping of HESS for Day Basin
4.1. Water-Related Provisioning Services
4.2. Water-Related Regulating Services
4.3. Water-Related Habitat/Supporting Services
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculation of Intermediate Parameters for HESS Quantification
Horizontal Fast Overland Flow
Percolation
Lateral Groundwater Movement
Maximum Increase in Biomass
Heat Fluxes
References
- Millennium Ecosystem Assessment (Program) (Ed.) Ecosystems and Human Well-Being: Wetlands and Water Synthesis: A Report of the Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005; ISBN 978-1-56973-597-8. [Google Scholar]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002; ISBN 978-0-387-95439-4. [Google Scholar]
- Holland, R.A.; Darwall, W.R.T.; Smith, K.G. Conservation Priorities for Freshwater Biodiversity: The Key Biodiversity Area Approach Refined and Tested for Continental Africa. Biol. Conserv. 2012, 148, 167–179. [Google Scholar] [CrossRef]
- Brauman, K.A. Hydrologic Ecosystem Services: Linking Ecohydrologic Processes to Human Well-being in Water Research and Watershed Management. WIREs Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint of Humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. AQUASTAT FAO’s Information System on Water and Agriculture; FAO: Rome, Italy, 2021. [Google Scholar]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.-H.; Artmann, M.; Pauleit, S. The Uptake of the Ecosystem Services Concept in Planning Discourses of European and American Cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef] [Green Version]
- Harrison-Atlas, D.; Theobald, D.M.; Goldstein, J.H. A Systematic Review of Approaches to Quantify Hydrologic Ecosystem Services to Inform Decision-Making. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2016, 12, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing Water Ecosystem Services for Water Resource Management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- CGIAR Research Program on Water, Land and Ecosystems (WLE). Ecosystem Services and Resilience Framework; International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE): Colombo, Sri Lanka, 2014. [Google Scholar]
- Ha, L.T.; Bastiaanssen, W.G.M.; Simons, G.W.H.; Poortinga, A. A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring. Sustainability 2023, 15, 6182. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G.M.; Molden, D. Water Accounting Plus (WA+)—A Water Accounting Procedure for Complex River Basins Based on Satellite Measurements. Hydrol. Earth Syst. Sci. 2013, 17, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.; Karimi, P.; Rebelo, L.-M.; Duan, Z.; Senay, G.; Muttuwatte, L.; Smakhtin, V. Earth Observation Based Assessment of the Water Production and Water Consumption of Nile Basin Agro-Ecosystems. Remote Sens. 2014, 6, 10306–10334. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P. Ecosystem Services in a Changing Environment. Sci. Total Environ. 2020, 702, 135008. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Milton, S.J.; Jarmain, C.; Colvin, C.A.; Saayman, I.; Vlok, J.H. Linking Ecosystem Services and Water Resources: Landscape-Scale Hydrology of the Little Karoo. Front. Ecol. Environ. 2007, 5, 261–270. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Heinemeyer, A.; Gillings, S.; Roy, D.B.; Thomas, C.D.; Gaston, K.J. The Impact of Proxy-Based Methods on Mapping the Distribution of Ecosystem Services. J. Appl. Ecol. 2010, 47, 377–385. [Google Scholar] [CrossRef]
- European Commission. Directorate General for the Environment. Mapping and Assessment of Ecosystems and Their Services: Indicators for Ecosystem Assessments under Action 5 of the EU Biodiversity Strategy to 2020: 2nd Report—Final, February 2014; Publications Office: Luxembourg, 2014.
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and Mapping Multiple Ecosystem Services Change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.L.; Birdsey, R.A. Measurement Guidelines for the Sequestration of Forest Carbon; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2007; 42p. [CrossRef] [Green Version]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Economics of Ecosystems and Biodiversity (Project) (Eds.) The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: London, UK; Washington, DC, USA, 2010; ISBN 978-1-84971-212-5. [Google Scholar]
- Skidmore, A.K.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Environmental Science: Agree on Biodiversity Metrics to Track from Space. Nature 2015, 523, 403–405. [Google Scholar] [CrossRef] [Green Version]
- Saad, R.; Koellner, T.; Margni, M. Land Use Impacts on Freshwater Regulation, Erosion Regulation, and Water Purification: A Spatial Approach for a Global Scale Level. Int. J. Life Cycle Assess. 2013, 18, 1253–1264. [Google Scholar] [CrossRef]
- Simons, G.; Bastiaanssen, W.; Ngô, L.; Hain, C.; Anderson, M.; Senay, G. Integrating Global Satellite-Derived Data Products as a Pre-Analysis for Hydrological Modelling Studies: A Case Study for the Red River Basin. Remote Sens. 2016, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.; Brown, T.A. Carbon in the Vegetation and Soils of Great Britain. J. Environ. Manag. 1997, 49, 413–433. [Google Scholar] [CrossRef] [Green Version]
- McGuire, A.D.; Christensen, T.R.; Hayes, D.; Heroult, A.; Euskirchen, E.; Kimball, J.S.; Koven, C.; Lafleur, P.; Miller, P.A.; Oechel, W.; et al. An Assessment of the Carbon Balance of Arctic Tundra: Comparisons among Observations, Process Models, and Atmospheric Inversions. Biogeosciences 2012, 9, 3185–3204. [Google Scholar] [CrossRef] [Green Version]
- Kiptala, J.; Mul, M.; Mohamed, Y.; Bastiaanssen, W.; van der Zaag, P. Mapping Ecological Production and Benefits from Water Consumed in Agricultural and Natural Landscapes: A Case Study of the Pangani Basin. Remote Sens. 2018, 10, 1802. [Google Scholar] [CrossRef] [Green Version]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to Model Ecosystem Services: A Systematic Review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Angerer, J.P. 16. Technologies, Tools and Methodologies for Forage Evaluation in Grasslands and Rangelands. In National Feed Assessments; FAO: Quebec City, QC, Canada, 2012; pp. 165–200. [Google Scholar]
- Awan, U.K.; Ismaeel, A. A New Technique to Map Groundwater Recharge in Irrigated Areas Using a SWAT Model under Changing Climate. J. Hydrol. 2014, 519, 1368–1382. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Alkemade, R.; Klein Goldewijk, K.; Petz, K. Mapping Ecosystem Functions and Services in Eastern Europe Using Global-Scale Data Sets. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part i: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Villa, F.; Athanasiadis, I.N.; Rizzoli, A.E. Modelling with Knowledge: A Review of Emerging Semantic Approaches to Environmental Modelling. Environ. Model. Softw. 2009, 24, 577–587. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A Comparison of Tools for Modeling Freshwater Ecosystem Services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef]
- Tallis, H.; Polasky, S. Mapping and Valuing Ecosystem Services as an Approach for Conservation and Natural-Resource Management. Ann. N. Y. Acad. Sci. 2009, 1162, 265–283. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A Simple Hydrologically Based Model of Land Surface Water and Energy Fluxes for General Circulation Models. J. Geophys. Res. 1994, 99, 14415. [Google Scholar] [CrossRef]
- Dechmi, F.; Burguete, J.; Skhiri, A. SWAT Application in Intensive Irrigation Systems: Model Modification, Calibration and Validation. J. Hydrol. 2012, 470–471, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Van Griensven, A.; Ndomba, P.; Yalew, S.; Kilonzo, F. Critical Review of SWAT Applications in the Upper Nile Basin Countries. Hydrol. Earth Syst. Sci. 2012, 16, 3371–3381. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Jayakrishnan, R.; Srinivasan, R.; Santhi, C.; Arnold, J.G. Advances in the Application of the SWAT Model for Water Resources Management. Hydrol. Process. 2005, 19, 749–762. [Google Scholar] [CrossRef]
- Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z. Assessment of Crop Growth and Soil Water Modules in SWAT2000 Using Extensive Field Experiment Data in an Irrigation District of the Yellow River Basin. J. Hydrol. 2008, 352, 139–156. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X. Improving SWAT for Simulating Water and Carbon Fluxes of Forest Ecosystems. Sci. Total Environ. 2016, 569–570, 1478–1488. [Google Scholar] [CrossRef] [Green Version]
- Radcliffe, D.E.; Reid, D.K.; Blombäck, K.; Bolster, C.H.; Collick, A.S.; Easton, Z.M.; Francesconi, W.; Fuka, D.R.; Johnsson, H.; King, K.; et al. Applicability of Models to Predict Phosphorus Losses in Drained Fields: A Review. J. Environ. Qual. 2015, 44, 614–628. [Google Scholar] [CrossRef]
- Krysanova, V.; White, M. Advances in Water Resources Assessment with SWAT—An Overview. Hydrol. Sci. J. 2015, 60, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Ha, L.T.; Bastiaanssen, W.G.M.; Van Griensven, A.; Van Dijk, A.I.J.M.; Senay, G.B. Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin. Water 2018, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- Paca, V.H.d.M.; Espinoza-Dávalos, G.E.; Hessels, T.M.; Moreira, D.M.; Comair, G.F.; Bastiaanssen, W.G.M. The Spatial Variability of Actual Evapotranspiration across the Amazon River Basin Based on Remote Sensing Products Validated with Flux Towers. Ecol. Process. 2019, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Sriwongsitanon, N.; Suwawong, T.; Thianpopirug, S.; Williams, J.; Jia, L.; Bastiaanssen, W. Validation of Seven Global Remotely Sensed ET Products across Thailand Using Water Balance Measurements and Land Use Classifications. J. Hydrol. Reg. Stud. 2020, 30, 100709. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, R.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Defourny, P.; van Bogaert, E.; Herold, M.; Kooistra, L.; Kalogirou, V.; Arino, O. Producing Global Land Cover Maps Consistent over Time to Respond the Needs of the Climate Modelling Community. In Proceedings of the 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), Trento, Italy, 12–14 July 2011; pp. 161–164. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mcd15a2hv006/ (accessed on 22 March 2023).
- Nietsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. SWAT: Soil and Water Assessment Tool User’s Manual; Texas Water Resources Institute, USDA Agricultural Research Service: College Station, TX, USA, 2002. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P. Calibration of a Distributed Hydrological Model Based on Satellite Evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- Strauch, M.; Volk, M. SWAT Plant Growth Modification for Improved Modeling of Perennial Vegetation in the Tropics. Ecol. Model. 2013, 269, 98–112. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J.R. Soil and Water Asessment Tool Theoritical Documentation Version 2009. Texas Water Resources Institute Technical: College Station, TX, USA, 2011. [Google Scholar]
- Soil Conservation Service U.S.S.C. SCS National Engineering Handbook, Section 4: Hydrology; Department of Agriculture: Washington, DC, USA, 1972; 762p.
- Herrero, M.; Havlik, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blummel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass Use, Production, Feed Efficiencies, and Greenhouse Gas Emissions from Global Livestock Systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [Green Version]
- Sassen, M.; Sheil, D.; Giller, K.E. Fuelwood Collection and Its Impacts on a Protected Tropical Mountain Forest in Uganda. For. Ecol. Manag. 2015, 354, 56–67. [Google Scholar] [CrossRef]
- Ponce-Hernandez, R.; Koohafkan, P.; Antoine, J. Assessing Carbon Stocks and Modelling Win-Win Scenarios of Carbon Sequestration through Land-Use Changes; Food and Agriculture Organization: Roma, Italy, 2004. [Google Scholar]
- Ahmad, M.-D.; Bastiaanssen, W.G.M. Retrieving Soil Moisture Storage in the Unsaturated Zone Using Satellite Imagery and Bi-Annual Phreatic Surface Fluctuations. Irrig. Drain. Syst. 2003, 17, 141–161. [Google Scholar] [CrossRef]
- Savenije, H.H.G. The Runoff Coefficient as the Key to Moisture Recycling. J. Hydrol. 1996, 176, 219–225. [Google Scholar] [CrossRef]
- Keys, P.W.; Wang-Erlandsson, L.; Gordon, L.J. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service. PLoS ONE 2016, 11, e0151993. [Google Scholar] [CrossRef]
- Van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and Fate of Atmospheric Moisture over Continents: Origin and Fate of Atmospheric Moisture Over Continents. Water Resour. Res. 2010, 46, W09525. [Google Scholar] [CrossRef] [Green Version]
- Coerver, B. Regional Precipitation and Evaporation Patterns in South East Asia Based on ERA5 Data (Internal Note) 2007.
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe,, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Proceedings of the Third Authors/Experts Meeting: Industrial Processes and Product Use, Washington, DC, USA, 27–29 July 2006. [Google Scholar]
- Trischler, J.; Sandberg, D.; Thörnqvist, T. Estimating the Annual Above-Ground Biomass Production of Various Species on Sites in Sweden on the Basis of Individual Climate and Productivity Values. Forests 2014, 5, 2521–2541. [Google Scholar] [CrossRef] [Green Version]
- Vleeshouwers, L.M.; Verhagen, A. Carbon Emission and Sequestration by Agricultural Land Use: A Model Study for Europe: Carbon Sequestration by European Agriculture. Glob. Chang. Biol. 2002, 8, 519–530. [Google Scholar] [CrossRef]
- Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981; Volume 279, pp. 252–267. [Google Scholar]
- Duan, Z.; Bastiaanssen, W.G.M. Evaluation of Three Energy Balance-Based Evaporation Models for Estimating Monthly Evaporation for Five Lakes Using Derived Heat Storage Changes from a Hysteresis Model. Environ. Res. Lett. 2017, 12, 024005. [Google Scholar] [CrossRef]
- Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E. The Surface Heat Island of Rotterdam and Its Relationship with Urban Surface Characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, Y.A.; Bastiaanssen, W.G.M.; Savenije, H.H.G. Spatial Variability of Evaporation and Moisture Storage in the Swamps of the Upper Nile Studied by Remote Sensing Techniques. J. Hydrol. 2004, 289, 145–164. [Google Scholar] [CrossRef]
- Smakhtin, V.; Revenga, C.; Döll, P. A Pilot Global Assessment of Environmental Water Requirements and Scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Smakhtin, V.; Eriyagama, N. Developing a Software Package for Global Desktop Assessment of Environmental Flows. Environ. Model. Softw. 2008, 23, 1396–1406. [Google Scholar] [CrossRef]
- Tuinenburg, O.A.; Hutjes, R.W.A.; Stacke, T.; Wiltshire, A.; Lucas-Picher, P. Effects of Irrigation in India on the Atmospheric Water Budget. J. Hydrometeorol. 2014, 15, 1028–1050. [Google Scholar] [CrossRef]
- Iroumé, A.; Mayen, O.; Huber, A. Runoff and Peak Flow Responses to Timber Harvest and Forest Age in Southern Chile. Hydrol. Process. 2006, 20, 37–50. [Google Scholar] [CrossRef]
- Simons, G.; Poortinga, A.; Bastiaanssen, W.G.M.; Saah, D.S.; Troy, D.; Hunink, J.E.; de Klerk, M.; Rutten, M.; Cutter, P.; Rebelo, L.-M.; et al. On Spatially Distributed Hydrological Ecosystem Services: Bridging the Quantitative Information Gap Using Remote Sensing and Hydrological Models; White paper; FutureWater: Wageningen, The Netherlands, 2017. [Google Scholar]
- Gaur, S. Distributed Hydrological Modelling Under Climate Change: A Way-Forward For Accounting, Planning and Management of Water Resources; IIT Kharagpur: Kharagpur, India, 2022. [Google Scholar]
- Gaur, S.; Singh, B.; Bandyopadhyay, A.; Stisen, S.; Singh, R. Spatial Pattern-based Performance Evaluation and Uncertainty Analysis of a Distributed Hydrological Model. Hydrol. Process. 2022, 36, e14586. [Google Scholar] [CrossRef]
- Terrado, M.; Acuña, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of Climate Extremes on Hydrological Ecosystem Services in a Heavily Humanized Mediterranean Basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Molden, D. Accounting for Water Use and Productivity; IWMI: Ruhunupura, Sri Lanka, 1997. [Google Scholar]
- Molden, D.; Sakthivadivel, R. Water Accounting to Assess Use and Productivity of Water. Int. J. Water Resour. Dev. 1999, 15, 55–71. [Google Scholar] [CrossRef]
- Hellegers, P.J.G.J.; Soppe, R.; Perry, C.J.; Bastiaanssen, W.G.M. Combining Remote Sensing and Economic Analysis to Support Decisions That Affect Water Productivity. Irrig. Sci. 2009, 27, 243–251. [Google Scholar] [CrossRef]
- Choudhury, B.J.; DiGirolamo, N.E. A Biophysical Process-Based Estimate of Global Land Surface Evaporation Using Satellite and Ancillary Data I. Model Description and Comparison with Observations. J. Hydrol. 1998, 205, 164–185. [Google Scholar] [CrossRef]
- Ritzema, H. (Ed.) Subsurface Flow to D Subsurface flows to drains. In Drainage Principles and Applications; ILRI Publication: Wageningen, The Netherlands, 1994; pp. 283–294.rains. [Google Scholar]
- Monteith, J.L. Climate and the Efficiency of Crop Production in Britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977, 281, 277–294. [Google Scholar] [CrossRef]
Data | Description | Resolution | Source |
---|---|---|---|
DEM | SRTM 30 m global DEM | 30 m | Farr, T.G. et al. (2007) [49] |
Soil | Coupled FAO and ISRIC soil maps | 1 km | Ha et al. (2018) [46] |
Land cover | GlobCover global land cover map | 300 m | Arino et al., 2008 [50] |
Precipitation | Daily precipitation from CHIRPS | 5 km | Ha et al. (2018) [46] |
Meteorology | GLDAS | 25 km | NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) [51] |
ET | Ensemble ET | 500 m | Ha et al. (2018) [46] |
LAI | MODIS LAI | 250 m | MOD15-LAI data (NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, U.S.) [52] |
Ecosystem Services | Average | Gross Value | Per Capita | |||
---|---|---|---|---|---|---|
Unit | Value | Unit * | Value | Unit | Value | |
HESS 1: Total runoff | m3/ha | 7482 | MCM | 4706 | m3/cap | 392 |
HESS 3: Natural livestock feed production | ton/ha | 0.3 | MTonnes | 0.2 | ton/cap | 0.01 |
HESS 4: Fuelwood from natural forest | ton/ha | 0.013 | MTonnes | 0.008 | ton/cap | 0.001 |
HESS 5: Dry season flow (“baseflow”) | m3/s | 12 | MCM | 372 | m3/cap | 31 |
HESS 6: Groundwater recharge | m3/ha | 3820 | MCM | 2403 | m3/cap | 200 |
HESS 8: Rootzone water storage | m3/ha | 1493 | MCM | 939 | m3/cap | 78 |
HESS 9: Sustaining rainfall | m3/ha | 701 | MCM | 441 | m3/cap | 37 |
HESS 10: Peak flow attenuation | % | 5.1 | - | - | - | - |
HESS 11: Carbon sequestration | ton/ha | 0.22 | MTonnes | 0.14 | ton/cap | 0.01 |
HESS 13: Micro-climate cooling | °C | 2.7 | - | - | - | - |
HESS 17: Meeting environmental flow requirements | % | 92 | - | - | - | - |
Ecosystem Services | Gradient/Slope of HESS Trend | Interpretation of Trend and Impacts on HESS | Implication into River Basin Plans and Management |
---|---|---|---|
HESS 1: Total runoff | 159 | Increasing | Sustain basin management practices, implementation of IWRM |
HESS 3: Natural livestock feed production | 0.0044 | Increasing | Sustain basin management practices |
HESS 4: Fuelwood from natural forest | 0.0008 | Increasing | Sustain basin management practices |
HESS 5: Dry season flow (“baseflow”) | 0.0215 | Increasing | Improve application of IWRM and land-water management or Natural-based Solutions (NbS) practice |
HESS 6: Groundwater recharge | 122.3 | Increasing | Apply Managed Aquifer Recharge (MAR) to better improve groundwater management |
HESS 8: Rootzone water storage | −61.7 | Decreasing | Improve basin management to facilitate soil-water interaction. Improve basin permeability through green building and permeable landscapes. |
HESS 9: Sustaining rainfall | −0.68 | Decreasing | Improve basin management, IWRM, and NbS to improve basin-scale soil moisture circulation |
HESS 11: Carbon sequestration | 0.0013 | Increasing | Sustain current basin management practices, apply carbon credit system |
HESS 13: Micro-climate cooling | −0.0191 | Decreasing | Apply NbS, green building to reduce urban heat island effect. Improve IWRM and land-use planning |
HESS 17: Meeting environmental flow requirements | −0.4249 | Decreasing | Introduce IWRM in the basin, revise water plans, including sharing and allocation to prioritize e-flow contribution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, L.T.; Bastiaanssen, W.G.M. Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model. Sustainability 2023, 15, 6247. https://doi.org/10.3390/su15076247
Ha LT, Bastiaanssen WGM. Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model. Sustainability. 2023; 15(7):6247. https://doi.org/10.3390/su15076247
Chicago/Turabian StyleHa, Lan Thanh, and Wim G. M. Bastiaanssen. 2023. "Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model" Sustainability 15, no. 7: 6247. https://doi.org/10.3390/su15076247
APA StyleHa, L. T., & Bastiaanssen, W. G. M. (2023). Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model. Sustainability, 15(7), 6247. https://doi.org/10.3390/su15076247