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Abstract: Along with the continuous development of renewable energy sources (RES) such as wind
power and photovoltaic, a large proportion of RES were connected to the power grid. However, the
volatility and intermittency of RES threaten the safe and stable operation of the power system. Virtual
power plants (VPPs) were introduced to solve such problems. In order to study the cooperation mode
of integrating wind-solar-storage for multi VPPs, this paper established multi-objective individual
and joint dispatching model for single VPP and multi VPPs with wind-solar-storage, respectively.
Then, this paper analyzed the cooperation and the fair distribution of benefits between VPPs. By
establishing the competitive strategies of the participating subjects and integrating the Shapley
value to effectively distribute the benefits, the cooperative game theory was applied to effectively
enhance the benefit in the VPP, to maximize the economic benefits, and to reduce the RES uncertainty
risks and carbon emissions, which provided new ideas for the subsequent research on the optimal
operation of RES and their engineering applications. NSGA-II was adopted to solve the multi-
objective optimization problem. The strategy achieved a 10.1% reduction on the original peak load. It
could effectively reduce the peak load of the VPP and ensure the accuracy of load regulation, to reach
12% of the total capacity of the VPP.

Keywords: virtual power plant; renewable energy source; cooperative game theory; Shapley value

1. Introduction
1.1. Background and Significance

At present, along with the gradual depletion of fossil fuel and the deterioration of
the environment worldwide, the energy revolution attracted worldwide attention as an
important part. Fossil fuels such as coal, oil and natural gas are still an important part of
today’s energy structure. Since the total amount of fossil energy is limited, the imbalance of
its distribution and its huge demand became a problem around the world. Therefore, the
continuous improvement of energy structure and the increase in power system flexibility
became important means to achieve the development for low-carbon energy.

Under the strategy of “carbon peak” and “carbon neutrality”, renewable energy
sources (RES), primarily wind and solar, is stochastic, intermittent and fluctuating. Mean-
while, the high proportion of RES integrated into the distribution grid has a huge impact
on the grid. Virtual power plant (VPP) applies advanced communication technology to
collaboratively control multiple distributed energy resources (DER) of different areas and
varying types [1,2]. It integrates wind turbine (WT), photovoltaic (PV), energy storage sys-
tem (ESS) and flexible load. Through rational construction and coordinated optimization,
flexible dispatching of controllable power sources can smooth out the randomness and
volatility of RES [3]. After achieving overall controllability of external power output, it can
participate in the power market such as other power plants.
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VPP realizes a new kind of power system with RES as the main source. Through
advanced communication technologies and software systems, VPPs realize the aggregation
and coordinated optimization of DERs [4]. VPP can participate in the power market and
grid operation as a special power plant with a coordinated power management system.
Thus, it is able to aggregate multiple DERs to participate in the electricity market and
ancillary service market operation, solving the problems of power constraint and low
energy efficiency.

1.2. Research Status
1.2.1. Status of Optimal Scheduling of VPP

It is necessary to aggregate the operating status, operating cost and operating efficiency
of DERs to participate in the power market together with traditional power plants, such
as thermal and hydro power plants. Therefore, VPP, the exchange of internal resources
with the external grid, can sell electricity to customers and participate in electricity markets,
responding to demand-side management measures such as time-of-use tariffs for external
loads [5,6].

Regarding optimal scheduling within the VPP, the coordination and optimization
of internal resources to maximize the operational efficiency and benefits of the VPP are
the main issues. Ref. [7] extended the object of VPP aggregation to cogeneration units.
Through the exchange of electricity and thermal energy in the industrial park, an optimal
scheduling model of day-ahead cogeneration for VPP was established to achieve optimal
scheduling of VPP. It applied mixed integer linear programming (MILP) algorithm for
optimization. Ref. [8] proposed an optimal scheduling model for VPP that accounted for the
synergy of electricity to gas. It could shift the waste gas energy consumption through joint
scheduling to smooth out RES fluctuations, to reduce costs and carbon emissions. In [9],
an array of optimization solutions were developed and applied for a community-oriented
VPP aggregating renewable energy generation units. The scheduling of the VPP aims to
maximize revenues and reduce penalties while addressing market constraints. In [10],
a VPP solution for managing both the generation and demand sides using game theory
to explore the cooperation among prosumers was presented. The profit of the VPP was
allocated based on the Shapley value. In [11], an economic optimal dispatch model of VPP
with peak and frequency regulation was developed. In the model, the VPP contained WT
and ESS. The hybrid simulated annealing-genetic algorithm with self-adaptive parameters
was adopted to cope with the non-linearity and compute the economic bidding plans
for VPP.

1.2.2. Status of Demand Response in VPP

Demand response (DR), as an interactive means within the power system, effectively
directs customers’ electricity consumption by changing prices. It provides incentives to
improve system economics and reliability [12]. VPP, as a virtual public equipment, drives
demand-side and supply-side exchanges through the market. As there are multiple DERs,
EES and flexible loads within VPP, VPP can be considered as a way of DR and use its
characteristics to achieve the same effects as an electric power plant. In [13], the proposed
VPP energy management optimization model was solved by applying the improved coop-
erative particle swarm optimization (ICPSO) to ensure the comfort of flexible load users.
In [14], an incentive and price VPP model for DR under the condition of DR’s uncertainty
was established. However, it did not consider flexible loads such as air conditionings and
smart refrigerators inside the DR. In [15], electric vehicles as energy storage units were
established and established its VPP optimal dispatch model, using the flexibility of charging
and discharging electric vehicles. It could smooth out the volatility of WT, which did not
consider the superiority of joint optimal dispatch of VPP on the supply and demand sides.
In [16], a VPP based on conditional value-at-risk covering DER, ESS, and flexible loads was
established. Meanwhile, it designed a two-stage stochastic planning energy management
model to limit the risk in a manageable range and ensure the maximization of VPP benefits.
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1.2.3. Status of Game Theory in VPP

A VPP participating in electricity market bidding mainly reflects the aggregation of
multiple VPPs. VPPs forms multiple DERs as a whole to participate in the competition of
electricity market and trade with each other to obtain respective economic benefits [17]. In
the field of optimal operation of RES, game theory is widely used in many fields such as
power system planning and operation control. In the game, game parties include electricity
market generating enterprises, transmission operators, industrial parks and end-users.
Additionally, for enterprises, industrial parks and other larger areas, all internal subjects
together form an integrated energy system, working together to maximize energy and
economic benefits and to minimize carbon emissions. In [18], a two-tier VPP dispatching
model was established. The upper layer was a tariff bidding model with the optimization
objective of minimizing the operating cost of VPP. The lower layer was a power bidding
model with the optimization objective of maximizing the economic benefits of each unit
within VPP. It used Stackelberg dynamic game theory to establish a bidding dynamic
game model for analysis. In [19], a VPP for electric vehicles under DR was established. It
established a three-stage multi-tiring power market bidding model by considering VPP
participation in day-ahead market, real-time market and bilateral contract market. The
result could achieve effective control of electric vehicles and DR, reducing VPP operation
cost. In [20], the relationship between VPP and DER was considered, and the study
established a multi-agent system based on VPP double-layer coordination mechanism and
multi-scale rolling optimization model. Between the internal VPP, DER and external multi
VPPs, it used the cooperative game approach.

1.3. Main Work of the Paper

The main contributions of this paper are organized as follows.

(1) Compared with the traditional control strategy, this paper constructs a low-carbon
economy control method based on demand response (DR);

(2) Multi-VPP cooperative game is used to optimize the internal operation cost and
carbon emission of the system.

The rest of the paper is organized as follows. Section 2 establishes the VPP scheduling
optimization model. The cost models of PV, WT, ESS and DR are built. On the basis,
the optimal operation model for a single VPP and multi-VPP joint scheduling model are
established. Section 3 describes methods for optimal solution of VPPs on the premise of
the existing model in Section 2. Section 4 uses the example for two VPP models simulating
to prove the effectiveness and feasibility of the proposed method. Section 5 concludes
the paper.

2. VPP Scheduling Optimization Model

After determining generation demand and other information such as pre-schedule,
radiation intensity, the grid dispatcher performs integrated dispatching according to the
optimal dispatching model combining PV, WT and other DERs [21–23].

In this paper, it was assumed that the VPP contains a multi-energy cooperative op-
timization control module including WT, PV, ESS, electrical refrigeration unit (ERU), ab-
sorption refrigeration unit (ARU), utility power and other power supply. Since most users
only use the single mode for energy supply, they cannot realize information sharing and
multi-energy coupling. Therefore, rooftop PV, distributed WT, ESS and cold flexible load
were assembled to avoid a large number of low-efficiency devices. A VPP structure diagram
was obtained based on the actual area, as shown in Figure 1.
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Figure 1. Structure diagram of a VPP.

Figure 1 illustrates the VPP structure in the industrial park and the directions of
electricity, heat and cold flows, which are divided in three parts: generation, storage and
load, including 6 kinds of equipment which are labelled in the figure. The grid with WT,
PV provided the electricity to the load and other equipment. While the heat pump, ERU
and ESS were active, heat and clod flows were supplied to the load. This section analyzes
two optimization models for individual dispatch of a single VPP and cooperative dispatch
of multiple VPPs.

2.1. Optimal Operation Model for a Single VPP

When the VPPm was optimized separately, the cost models of PV, WT, and ESS were
established. Considering DR, the VPP optimal operation model was established. The
solution flow chart is shown in Figure 2. All the participating subjects were formed into a
grand alliance, and the strategy was the scheduling result of each equipment. The cost that
should be saved was obtained by comparing the cooperative or non-cooperative solutions
in the minor alliance. Then, benefits were distributed to the major alliance after searching
for feasible minor alliance solutions.
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Figure 2. Flowchart of multi-subject game solving for the VPP.

The components of a single VPP can be known from the multi-subject game solution in
the upper layer of the VPP. The process is to determine the cost models of PV, WT, ESS, and
the cost of DR, in preparation for the subsequent establishment of the objective function of
the single VPP and its constraints.

Since PV power generation is more significantly affected by weather, PV power genera-
tion is stochastic and belongs to uncontrollable DER [24]. PV power generation has a higher
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power generation priority than other power generation units within the VPP. Its power
generation is mainly determined by radiation. The calculation formula can be obtained as:

f (PPV) =
Γ(α + β)

Pe
PVΓ(α)Γ(β)

(
PPV
Pe

PV

)α−1(
1−

PPV
Pe

PV

)β−1
(1)

where PPV is the PV power; Pe
PV is the rated value of PV power; α and β is the parameter

of Beta distribution.
When calculating the cost of PV power generation, the electricity price differential and

losses are considered. Thus, the operating cost of PV power generation can be simplified.
The calculation formula can be obtained as:

CPV = −Pt
PV(CS − CSl) (2)

where Pt
PV is the PV power generation at the time of t; CS is the D-value between the PV

benchmark feed-in tariff and the time-of-use tariff; CSl is the operating loss cost.
To calculate the cost of wind power, the formula for WT is similar to that for PV power.

Thus, the formula is as:
Cwt = −Pt

w(Cw − Cwl) (3)

where Pt
w is the output of the wind turbine at the time of t; Cw is the value of the wind

power benchmark feed-in tariff and the time-of-use tariff; Cwl is the operating loss cost.
The ESS used inside the VPP is mainly a battery, which operates in two ways: charging

and discharging. When there is excess power in the VPP power generation unit, the ESS
charges; when the power supply in the VPP is insufficient, the ESS discharges.

To determine the unit storage power of the ESS, the amount of power is related to the
efficiency and loss of charging and discharging. Thus, there is a formula as:

St
bat = St−1

bat (1− σ) + ηCbSt
Cb −

St
Fb

ηFb
(4)

where σ is the loss rate of the ESS; St
Cb and St

Fb indicate the charging and discharging output
of the ESS at the time t; ηCb and ηFb indicate the charging and discharging efficiency of the
ESS, respectively.

Furthermore, corresponding to the charging and discharging cost generated by the
battery fully charged, the operating cost function of the ESS is obtained as shown in

Cbat = St
CbCCb + St

FbCFb (5)

where it considers the depreciation cost of ESS, due to discharge depth, discharge rate and
frequent charging.

To estimate the cost of external power purchase or benefit from power sales, there is
an expression as:

Cbs = PCCg (6)

where PC is the magnitude of the power exchanged between the microgrid and the outside;
is the time-of-use tariff at the moment.

The purpose of DR is to change the original power consumption behavior of users in
the electricity market by responding to price or incentive mechanisms. DR regulates the
power balance of the system by controlling cold flexible loads such as air conditionings
and smart refrigerators in the VPP. Due to the economic contradiction between agency and
the users of flexible loads, the compensation tariff is fixed [25,26]. As the importance of
the load shedding is high, the users’ compensation increases, or the agency receives less
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benefit. Therefore, this paper addressed the above problem by classifying each flexible load
for compensation as:

CVPP,b =
n

∑
i=0

Sr(i)δr(i) (7)

where Sr(i) indicates the amount of load interruptions of importance i; δr(i) indicates the
unit compensation price of load importance i.

2.2. Multi-Objective Optimization of a Single VPP

Multi-objective optimization is used to build the internal optimization model of a
single VPP with application of internal components and the flexible load. The objective
function was established with maximization of economic benefits and minimization of
carbon emissions.

(1) Economic objectives

The economic objective was to ensure the lowest cost of system operation optimization,
which is indicated by

minF = Cbs +
24

∑
t=1

CPV ϕt
PV + Cbat ϕt

bat + Cwt ϕt
wt + CVPP,b ϕt

vpp (8)

where F is the total operational cost of the system; ϕt
PV denotes the PV operating state at

time t, with a value of 0 or 1; ϕt
bat denotes the ESS operating state at time t, with a value of

0 or 1; ϕt
ωt denotes the WT operating state at time t, with a value of 0 or 1; ϕt

vpp denotes
the interruption of the flexible load at time t with a value of 0 or 1. The formula is the
cumulative minimum value of each cost of the virtual plant at 24 h of the day.

(2) Environmental objectives

The environmental objective is to ensure that the emissions of pollutants is minimized,
as expressed by

minPto =
T

∑
t=1

[PCµC + SDbηµb] (9)

where µC and µb are the CO2 emission factors of grid connection power and ESS output
power, respectively; η is the power exchange factor.

A VPP is equivalent to a multi-energy coordinated system. In order to ensure the
stability of energy consumption and minimize the cost, the system needs to achieve a
balance between supply and demand for cooling, heating and electrical loads. Meanwhile,
various energy supply devices in the system must meet their own operational constraints
during operation. All above constitute the constraints of the system operation. The
constraints are as follows.

(1) Constraint on power limit in interconnecting line

|Pc| ≤ Pmax (10)

where PC is the magnitude of power exchanged between microgrid and main grid;
Pmax is the limit of power exchanged between microgrid and main grid.

(2) Constraint on the charge and discharge limits of the battery

0 ≤ PDb ≤ PDb,max , PCb,max ≤ PCb ≤ 0 (11)

where PDb, PDb,max are the discharge power and maximum discharge power of the
ESS; PCb, PCb,max are the charging power and maximum charging power of the ESS.

(3) Constraint on the SOC
SOCmin ≤ SOC ≤ SOCmax (12)
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where SOC is the state of charge of the energy storage battery, SOCmin, SOCmax are
the upper and lower limits of the allowable power during the operation of the ESS.

(4) Constraint on the upper and lower limits of PV and WT’s output

Ps,min ≤ Ps ≤ Ps,max
Pw,min ≤ Pw ≤ Pw,max

(13)

where Ps,min, Ps,max are the maximum active power output and minimum active
power output of PV in MPPT mode; Pw,min, Pw,max are the maximum active power
output and minimum active power output of the WT.

(5) Constraints on interruptible load interruption

ϕt
vppSr,min ≤

n

∑
i=0

Sr(i) ≤ ϕt
vppSr,max (14)

2.3. Multi-VPP Joint Scheduling Model

Based on the multi-objective optimization of a single VPP, a cooperative game model
with multi VPPs was constructed in the cooperative mode. To maximize the profit of
each VPP, the internal members of each VPP was regulated responding to the operational
requirements. Multiple VPPs participate in the market competition as market players in the
electricity market. Each of them improved its own benefit, ensuring the safe and economic
operation of the grid. Therefore, this section adopted the cooperative game approach of
multiple VPPs.

Suppose that the VPPa is optimized individually with the number of scenarios Sa;
the probability of scenario s is γs

a; the scheduling duration is ∆t; the total time is T; the
total number of power supplies N; the power supply n corresponds to the power output
benefit Cn

a .
The main source of benefit for VPP is related to the benefit from the actual output of

the DERs and the cost of VPP due to output deviations. Thus, there is the maximum benefit
for a single VPP optimization.

Ca
VPP = max

Sa

∑
s=1

γs
a

T

∑
t=1

[
N

∑
n=1

Cn
a ·Sas

nt− c+F(∆Sas
t )− c−F(−∆Sas

t )

]
∆t (15)

where c+ and c− indicate the upward and downward standby prices of the power plant; Sas
nt

is the output of power supply n at time t under scenario s for VPPa; ∆Sas
t is the difference

between the planned and actual output; F(x) is the segmentation function, as follows.

F(x) =
{

x x > 0
0 x ≤ 0

(16)

Further for multi-VPP co-optimization, it assumes M VPPs form an alliance B. There-
fore, there is a maximum benefit of VPP alliance B.

Cco
VPP = max

Sa

∑
s=1

γs
b

T

∑
t=1

[
M

∑
m=1

N

∑
n=1

Cn
m·Sms

nt − c+F
(

∆Shs
t

)
− c−F

(
−∆Shs

t

)]
∆t (17)

where Cn
m is the power output benefit corresponding to plant m; Sms

nt is the output of the
VPPm at scenario s for power supply n at the time of t; ∆Shs

t is the difference between the
planned and actual output of the alliance.
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Eventually, M VPPs V1, V2, . . . , Vm can form alliances such as {V1}, {V1, V2, . . . , Vm}.
Thus, there are alliance characteristic functions as

v({Vm}) = 0
v({V1, V2, . . . , Vm}) = c({V1, V2, . . . , Vm})− ∑

x∈{V1,V2,...,Vm}
c(x) (18)

where c({V1, V2, . . . , Vm}) indicates the benefit when m VPP alliances are run optimally;
c(x) indicates the benefit when x is taken as Vm in c(x) for m separate runs of the VPP.

Alternatively, the individual rationality and the group rationality of the cooperative
game are determined simultaneously.

(1) group rationality:

xV1 + xV2 + . . . + xVM = v({V1, V2, . . . , VM}) (19)

(2) individual rationality:
xVm ≥ v({Vm}) (20)

3. Methods for Optimal Solution of VPPs
3.1. Multi-Objective Optimization
3.1.1. NSGA-II

Non-dominated sorting genetic algorithm II (NSGA-II) is an evolutionary algorithm
used to analyze and solve multi-objective optimization problems. Based on the fitness of
each solution within the population, it applies a fast non-dominated ranking algorithm
to stratify the current population of individuals. In the same layer, there is no dominance
relationship among the individuals. Then, to enrich the population diversity, crowding
distance is used to measure the density of individuals near the solved solution. In turn, the
superiority of individuals within the same layer is judged [27–29]. Finally, an elite sampling
strategy for parent–child mixed is developed to reduce the loss rate of good individuals
from the previous generation of the population. It improves the evolutionary speed of the
population and enhances the algorithm timeliness.

Figure 3 indicates the NSGA-II algorithm flowchart, which is divided into three main
parts. The first part is the initial definition. Firstly, the population is initialized. The number
of objective functions and the population size are determined. Additionally, non-dominated
sorting is then performed to determine the number of dominated individuals and the set of
dominated solutions of known individuals. The diversity of individuals in the population
is preserved by selection, crossover and variation. The second part is the elite selection.
The number of new populations after the parent–child merger is determined. Then, the
screened individuals are sorted quickly in non-dominated. They are screened according to
the calculated crowding. The third part is the iteration, where the offspring are selected,
crossed and mutated until the number of iterations is reached.

3.1.2. Model Solving Process

The whole optimized solution is shown in Figure 4. The optimal result was obtained by
updating and sorting the population, and then, the cooperative game problem of multiple
VPPs was solved.

1. Input data. The operating cost of DERs in a VPP is calculated to obtain the total
system operating cost;

2. Randomly generate the initial population. Based on the economic and environmental
objectives, it calculates the individual objective function values that satisfy the power
supply constraints;

3. Fast non-dominated sorting of the initial population. It gets good sires based on
individual stratification and crowding information to obtain offspring populations;
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4. Based on power and output constraints, the elite strategy was applied to select,
crossover and mutate. Then, preserve the diversity of individuals in the population
and select a new generation of same-sized parents;

5. Determine if the maximum number of iterations is reached. if so, exit the calculation.
Otherwise, go back to step (3) and continue;

6. Input the optimized values into the calculation of VPP after iteration to the upper limit,
to solve the cooperative game constraints of multi-VPPs. Then, output the operational
optimized values of each VPP after the solution satisfies each benefit constraint.
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3.2. Cooperative Game

A cooperative game is a game in which participants can jointly reach a binding
and enforceable agreement [30]. Its objectives are mainly alliance formation and game
distribution. The key to the cooperative game is how participants form an alliance and
how to redistribute the alliance payments. Since participants in the alliance are different
VPPs composed of WT, PV and ESS, the marginal benefits per unit of ESS are different.
After determining the multi-VPP objective function and constraints in Section 2.3, it will
establish the cooperative game model.

1. Participants: VPPa contains N1 WTs and N2 PVs internally, in which any ni WTs and
nj PVs can constitute an alliance A of VPPs. Meanwhile, there are N ESSs and M VPPs
externally, of which m VPP grand alliance B;

2. Strategy set: the actual power exchange with the shared energy storage for each
participant of alliance A at each time slot is Pi,t. The alliance B power exchange
is ∆Sas

nt;
3. Characteristic function: alliance A maximizes the VPP benefit Ca

VPP decided by the
actual power exchange Pi,t of each participant, who shared energy storage at each
time slot. The max benefit can be indicated as maxCa

VPP. While for alliance B, there is
maxCco

VPP. Each participant can decide how to make an alliance by comparing its own
benefits under different stable alliance structures.

3.3. Distribution of Benefits

In an alliance formed by a multi-VPP cooperative game, the system reduces bidding
deviations and penalties to increase the total benefit through the usefulness coordination
of each VPP [31]. How to distribute the benefits among VPPs is directly related to the
achievement of multi-VPP cooperation. Therefore, according to the cooperative game
model constructed in this paper, the analysis of certain participants in the alliance leave
the grand alliance to form a new sub-consortium. When two sub-alliances optimize the
operation of their respective systems, the inability of close coupling between equipment
will inevitably lead to waste or shortage of resources. The cost of the system’s energy
supply will also increase fast.

V(S1 ∪ S2) = min
ξ∈S∗(S1∪S2)

max
η∈S∗(I−{S1∪S2})

U(ξ, η) ≤

min
ξ∈S∗(S1∪S2)

{
max

η∈S∗(I−S1)
U(ξ, η) + max

η∈S∗(I−S2)
U(ξ, η)

}
≤{

min
ξ∈S∗(S1)

max
η∈S∗(I−S1)

U(ξ, η) + min
ξ∈S∗(S2)

max
η∈S∗(I−S2)

U(ξ, η)

}
=

V(S1) + V(S2)

(21)

Simultaneously, it can be determined that the eigenfunctions of the cooperative game
model constructed in this paper satisfy the following conditions.

V(S1 ∪ S2) ≤ V(S1) + V(S2), S1 ∩ S2 = ∅ (22)

Cooperative game theory deals with the problem of multi-participant cooperation to
reach the maximum benefit of the alliance and the distribution of the benefit. The Shapley
method is a method of distributing the benefit according to the contribution made by
individuals to the alliance. The key is to distribute equitably according to the degree of
contribution of n members to the goal of the alliance. The more they contribute, the more
the benefit they have [32]. In this section, the Shapley value method was used to study the
multi-VPP benefit distribution problem.

ϕi(v) = ∑
i∈S

ω(|Si|)·[v(S)− v(S− {i})] (23)
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ω(|Si|) =
(|Si| − 1)!(n− |Si|)!

n!
(24)

where ϕi(ν) is the benefit received by the ith member of the alliance; |Si| is the number
of participants in the alliance; ω(|Si|) is the weighting factor of the ith member; n is the
number of members in the cooperative game system of the VPPs; n! is the number of all
possible permutations of the participants in all cooperative games; ν(S) is the operating
benefit of the overall alliance of VPPs; ν(S− {i}) is the operating benefit of the cooperative
alliance after the alliance S removes i.

From the Shapley value, the multi-dimensional contribution of the participating sub-
jects in the alliance is considered. The subjects with more multi-dimensional contribution
are given more benefits as an incentive. The benefits are then allocated to the integrated eco-
nomics and carbon emissions of ESS, thermal storage devices, rooftop PV and distributed
WT within the VPP In turn, the low carbon operation control strategy formed will be
considered into the VPP to participate in electricity market.

4. Example Analysis
4.1. Parameters of the Algorithm

In this section, a regional VPP was used as an arithmetic example for analysis. The
VPP includes one PV plant named PV1 and one WT named W1 inside, whose rated power
generation was 7 MW and 2 MW. All the power of actual generation and planning were
derived from the actual site data, as shown in Table 1.

Table 1. Constants of the regional VPP.

Constants of the VPP Data

SOCmax/SOCmin
The upper/lower limit of the

charge state of the ESS 1/0.4

Pch
ESS/Pdch

ESS The charging/discharging power of the ESS 5 MW/5 MW

Pgrid
max/Pgrid

min
The upper/lower limit of exchange

power between microgrid 30 MW/20 MW

pgrid
peak/pgrid

f lat /pgrid
valley

The prices of peak/flat/valley
in the microgrid exchange

1.230 CNY/(kW·h)/
0.820 CNY/(kW·h)/
0.410 CNY/(kW·h);

pPV
peak/pPV

f lat/pPV
valley The prices of peak/flat/valley in PV

1.384 CNY/(kW·h)/
0.923 CNY/(kW·h)/
0.461 CNY/(kW·h);

pWT
peak/pWT

f lat/pWT
valley The prices of peak, flat, valley in WT

2.153 CNY/(kW·h)/
1.436 CNY/(kW·h)/
0.718 CNY/(kW·h);

The operating loss cost ________ 0.166/(kW·h)
depreciation life of ESS ________ 10 years

depreciation costs of ESS ________ 866 CNY

4.2. Simulations

This section conducts simulation analysis based on the cooperative game model and
benefit distribution method above. Then, the validity of the model is verified by comparing
the operation under different decision variables.

4.2.1. Single VPP Operation Optimization

Based on the models in Sections 2.2 and 2.3, the NSGA-II algorithm was used to solve
the multi-VPP cooperative game model. It set the population size to 400 and the number
of iterations to 50. The Pareto optimal solution set obtained from the solution is shown in
Figure 5.



Sustainability 2023, 15, 6278 12 of 18
Sustainability 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

Figure 5. {V1} Pareto-optimal solution set. 

From Figure 5, it can be concluded that the lowest cost and the lowest CO2 emissions 

were mutually exclusive objectives. The reduction in one side must be accompanied by 

the increase in the other side. Therefore, this paper used the TOPSIS method [33–35] to 

find the relative optimal solution, as shown in the marked points in Figure 5. 

From Figure 6, the optimized power curve was obtained. From the curve above, it 

can be found that the net profit of each VPP in five periods, 23:00–0:00, 0:00–1:00, 1:00–

2:00, 2:00–3:00 and 3:00–4:00, was less than that of other periods, while in three periods of 

11:00–12:00, 12:00–13:00 and 19:00–20:00, the net profit of each VPP was more than that of 

other periods. ESS was mainly charged from 10:00 to 17:00 and discharged from 6:00 to 

9:00 and 18:00 to 22:00, to maintain the normal operation of the VPP. 

 

Figure 6. Optimized 24 h power curve. 

It can be seen from Figure 7 that after changing PV capacity, ESS discharged to main-

tain the normal operation of the system in the period of 3:00–21:00. In the period of 0:00–

1:00 and 1:00–2:00, ESS charges and VPP shaves peaked and filled valleys. It controlled 

the load control accuracy and capacity in the park. 
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From Figure 5, it can be concluded that the lowest cost and the lowest CO2 emissions
were mutually exclusive objectives. The reduction in one side must be accompanied by the
increase in the other side. Therefore, this paper used the TOPSIS method [33–35] to find the
relative optimal solution, as shown in the marked points in Figure 5.

From Figure 6, the optimized power curve was obtained. From the curve above, it can
be found that the net profit of each VPP in five periods, 23:00–0:00, 0:00–1:00, 1:00–2:00,
2:00–3:00 and 3:00–4:00, was less than that of other periods, while in three periods of
11:00–12:00, 12:00–13:00 and 19:00–20:00, the net profit of each VPP was more than that of
other periods. ESS was mainly charged from 10:00 to 17:00 and discharged from 6:00 to
9:00 and 18:00 to 22:00, to maintain the normal operation of the VPP.
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Figure 6. Optimized 24 h power curve.

It can be seen from Figure 7 that after changing PV capacity, ESS discharged to maintain
the normal operation of the system in the period of 3:00–21:00. In the period of 0:00–1:00
and 1:00–2:00, ESS charges and VPP shaves peaked and filled valleys. It controlled the load
control accuracy and capacity in the park.
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In addition, for the independent operation of each subject in the VPP, the respective
operating results were obtained as shown in Table 2.

Table 2. Results of the Operation of Each Subject of the Independent VPP.

Subjects Cost/(×104 CNY) Carbon Emissions/(×103 kg)

Grid 2.532 0.860
ESS 1.421 0.661
PV 1.145 0
WT 0.922 0

The subjects of the single VPP in the table were the microgrid exchange power (grid),
the charging and discharging power of EES (EES), the PV power (PV) and the WT power
(WT). Within the single VPP, the ESS was charged during the valley period and discharged
during the peak period, fully enjoying the peak-valley price difference. and the system
prioritized the consumption of renewable energy, so that the optimal dispatching scheme
can be derived in the sub-alliance {V1} of the independent VPP based on the strategy and
energy price.

4.2.2. Multi-VPP Operation Optimization

In this section, three types of VPPs were used for cooperative games. Firstly, the
total cost and the respective cost of the alliance were determined by the Pareto front.
Additionally, it formed sub alliances of VPP {V1}, {V2}, {V3} with ESS, PV and WT. Finally,
by establishing the alliance {{V1}, {V2}}, {{V1}, {V3}}, {{V2}, {V3}}, {{V1}, {V2}, {V3}}, three
VPPs were computed and the sub-leagues are shown in Table 3.

Table 3. Internal structure of each sub-league.

Sub-League Microgrid
Exchange ESS PV WT

{V1} YES Medium 1 1
{V2} YES Large 3 2
{V3} YES Small 0 1

Since the benefit of the alliance mainly comes from WT and PV, the total benefit of the
alliance is shown in the following formula.

3

∑
i=1

24

∑
t=1

(
KiPt

PVcPV + LiPt
wtcwt

)
(25)
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where Ki, Li are the number of PVs and WTs of the ith virtual power plant in the al-
liance; cPV ,cwt are indicated as PV benefit of 0.391 CNY/(kW·h) and WT benefit of 0.48
CNY/(kW·h), respectively.

Through the calculation, the intra-alliance PV benefit of 9780.16 CNY, total WT benefit
of 12,006.34 CNY, and total benefit of 21,786.5 CNY were obtained. Then, for each VPP, {V1},
{V2} and {V3} formed an alliance for optimization. The respective marginal contribution
rates of the sub-alliance {V1, V2, V3} were obtained by the cost within 24 h of the big alliance.
The big alliance was synthesized by each sub-alliance and so, the total benefit was allocated.
Figure 8 shows the Pareto front and the optimal solution for the total cost-carbon emission
of {V1, V2, V3} alliance.
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The total cost of the alliance and the total carbon emissions are shown in Figure 8. The
overall output of the VPP was more consistent with the load curve when cooperating. It
played a role in peak shaving and valley filling. However, since loads in the VPP takes on
the peak-shaving and valley-filling work in the cooperation [36], it reduces the ability to act
standby in the grid. The standby cost of the VPP increased, which needs to be reallocated
for the cooperation benefits.

From Figure 9, the muti-VPP optimized power curve was obtained. From the curve
above, it was found that the power of {V1}, {V2} and {V3} were shown. The net profit of
each VPP in five periods, 22:00–23:00, 23:00–0:00, 4:00–5:00, 5:00–6:00 and 7:00–8:00, was
less than that of other periods, while in four periods of 11:00–12:00, 12:00–13:00, 13:00–14:00
and 16:00–17:00, the net profit of each VPP was more than that of other periods. ESS was
mainly charged from 9:00 to 17:00 and discharged from 6:00 to 9:00 and 18:00 to 23:00, to
maintain the normal operation of the alliance.

Meanwhile, the improved load curve obtained from the load power curve was com-
pared with the original load curve, as shown in Figure 10. From Figure 10, it was seen that
the DR-oriented VPP could effectively shave the peak. The peak of the original load curve
was 60.278 MW, while the peak of the VPP was 54.019 MW after shaving the peak and
filling the valley. It achieved 10.1% of the peak load of the VPP, and the accuracy of load
regulation in the VPP reached 12% of the total capacity of the VPP.

As a result, through the benefit distribution of each sub-alliance, it can be concluded
that the multi-VPP system constructed based on the cooperative game was involved in the
economic operation of the power grid and low-carbon economic operation. It was well
suited to reduce the peak load of the VPP and could ensure the accuracy of load regulation
within the VPP up to 12% of the total capacity of the VPP.
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4.3. Distribution of Cooperation Benefit

From Sections 3.3 and 4.2, it can be seen that the benefit of a single VPP {V1} of
5446.62 CNY was allocated to the benefits using the Shapley value. It requires consideration
of the marginal contribution of the subject to all the sub-alliances in which it participates.
For sub-alliances, the analysis was as follows.

1. The subject of the ESS can obtain the benefits from the difference between peak and
valley electricity prices. At the same time, since it can improve the RES consumption
as well as system stability and reduce carbon emissions, it obtains higher benefits
than the direct distribution [37].

2. The direct benefit distribution of the grid was 1158.9 CNY. Since the economics of
power purchase by the grid was low, and loads in the peak period coincided with
the price, the benefit distribution was 10,835 CNY, according to the Shapley value of
economics. However, most carbon emissions of the electricity, which was purchased
from the grid, needed to be borne by the power plant. The power purchaser only bore
a small portion of the carbon emissions. Therefore, a small reduction in CO2 emissions
can be achieved. Under the comprehensive analysis, the benefit distribution of the
grid was 11,247 CNY.

3. The direct benefit distribution and the economic Shapley value were both 1077.3 CNY
for the renewable energy mains, because of its high economics and the unchange-
able power output. Meanwhile, since it had good carbon reduction effect, the final
comprehensive benefit distribution was 1083.5 CNY.
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After the benefit distribution, the benefits of the sub-alliance {V1} were obtained.
Further, the cooperative game of each VPP sub-alliance is shown in Table 3. After the
cooperative scheduling by Shapley value, the total benefit distribution value of each sub-
alliance was obtained.

When there was only one participant in each different alliance, i.e., the alliance is {{V1},
{V2}, {V3}}, the VPP alliance degenerated into a situation where the three were independent
of each other. Its benefit considered the single VPPs’ power sales benefit, the respective
benefit of error reduction penalty and the benefit for wind and light abandonment penalty
reduction. The total benefit for the three VPPs was 2.1786 × 105 CNY. Taking VPP1 as an
example, there are three ways for VPP1 to participate in the alliance, namely {{V1, V2}, {V3}},
{{V1, V3}, {V2}} and {V1, V2, V3}. VPP1 decides how to alliance according to its own benefit
in different alliance methods. The results of total alliance benefit and carbon emission
under different alliance are shown in Table 4. From Table 4, when the alliance was {V1, V2,
V3}, all subjects in the alliance were optimally dispatched in cooperation. At this time, the
total alliance benefit was the highest, 2.3526 × 105 CNY. Meanwhile, the carbon emissions
were the lowest, so the cooperative alliance of {V1, V2, V3} would be chosen.

Table 4. Total Alliance Benefits and Carbon Emissions under Different Alliance Approaches.

NO. Alliance Method Total Alliance
Benefit (×105 CNY)

Carbon Emissions
(kg)

1 {{V1}, {V2}, {V3}} 2.1786 5025
2 {{V1, V2}, {V3}} 2.2476 5012
3 {{V1, V3}, {V2}} 2.3380 5015
4 {V1, V2, V3} 2.3526 5004

Additionally, the large alliance {V1, V2, V3} will receive the benefit of 23,526 CNY,
according to the Shapley. It receives the respective benefit as shown in Table 5.

Table 5. Sub- leagues {V1}, {V2}, {V3} Benefits Distribution.

NO. Sub-League Benefit/(×105 CNY)

1 {V1} 0.7058
2 {V2} 1.1763
3 {V3} 0.4705

5. Conclusions

In this paper, a cooperative game model, considering economics and carbon emissions,
was constructed for a cooperative VPP alliance formed by different VPPs. The NSGA-II
optimization algorithm was applied to solve the model. The benefits of the alliance were
allocated using the Shapley value, based on economics and carbon emission reduction. The
results of the study show that:

1. The sub-alliance was constructed by different subjects within the single VPP. Through
cooperation, it can effectively improve the energy utilization efficiency and reduce the
operation cost and CO2 emission in the system.

2. This paper applied the NSGA-II optimization algorithm to solve the cost-carbon
emission function of the alliance. It will have high operational efficiency and the
ability of optimal finding.

3. The Shapley value proposed in this paper, which considered the economics and
carbon emission reduction, could more reasonably allocate the benefits of each subject
in the system. It can motivate more single VPPs to participate in the formation of
cooperative VPP alliances.

4. The data showed that the peak load of the VPP was 54.019 MW, which reduced 10.1%
of the original peak load. It was better suited to reduce the peak load of the VPP
and could ensure the accuracy of load regulation in the VPP to reach 12% of the total
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capacity of the VPP. Meanwhile, the multi-VPP system based on cooperative game
could better achieve the maximum benefit and minimum carbon emission.
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