Predicting the Behavioral Intention of Greek University Faculty Members to Use Moodle
Abstract
:1. Introduction
2. Literature Review
3. Method
3.1. Research Tool
3.2. Sample
3.3. Data Analysis Strategy
4. Results
4.1. Measurement Model
4.2. Structural Model
5. Discussion
6. Implications and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- 1.
- Behavioral Intention to Use (BI)
- 2.
- Perceived Ease of Use (PEU)
- 3.
- Perceived Usefulness (PU)
- 4.
- Perceived Self-Efficacy (PSE)
- 5.
- Subjective Norms (SNs)
- 6.
- Technological Complexity (TC)
References
- Al-Nuaimi, M.N.; Al-Emran, M. Learning management systems and technology acceptance models: A systematic review. Educ. Inf. Technol. 2021, 26, 5499–5533. [Google Scholar] [CrossRef]
- Lavidas, K.; Komis, V.; Achriani, A. Εxplaining faculty members’ behavioral intention to use learning management. J. Comput. Educ. 2022, 9, 707–725. [Google Scholar] [CrossRef]
- Mustafa, A.S.; Ali, N. The Adoption and Use of Moodle in Online Learning: A Systematic Review. Inf. Sci. Lett. 2023, 12, 341–351. Available online: https://digitalcommons.aaru.edu.jo/isl/vol12/iss1/29 (accessed on 22 December 2022).
- Gamage, S.H.; Ayres, J.R.; Behrend, M.B. A systematic review on trends in using Moodle for teaching and learning. Int. J. STEM Educ. 2022, 9, 1–24. [Google Scholar] [CrossRef] [PubMed]
- AlQudah, A.A. Accepting Moodle by academic staff at the University of Jordan: Applying and extending tam in technical support factors. Eur. Sci. J. 2014, 10, 183–200. [Google Scholar] [CrossRef]
- Saleem, N.E.; Al-Saqri, M.N.; Ahmad, S.E. Acceptance of Moodle as a teaching/learning tool by the faculty of the department of information studies at Sultan Qaboos University, Oman, based on UTAUT. Int. J. Knowl. Content Dev. Technol. 2016, 6, 5–27. [Google Scholar] [CrossRef] [Green Version]
- Chaw, L.Y.; Tang, C.M. What makes learning management systems effective for learning? J. Educ. Technol. Syst. 2018, 47, 152–169. [Google Scholar] [CrossRef]
- Taamneh, A.; Alsaad, A.; Elrehail, H.; Al-Okaily, M.; Lutfi, A.; Sergio, R.P. University lecturers acceptance of moodle platform in the context of the COVID-19 pandemic. Glob. Knowl. Mem. Commun. 2022. [Google Scholar] [CrossRef]
- Murillo, G.G.; Novoa-Hernández, P.; Rodríguez, R.S. Technology Acceptance Model and Moodle: A systematic mapping study. Inf. Dev. 2021, 37, 617–632. [Google Scholar] [CrossRef]
- Ismatovna, A.Y. Moodle–As an Effective Learning Management System in the Modern Digital World. Int. J. Incl. Sustain. Educ. 2023, 2, 37–51. Available online: http://inter-publishing.com/index.php/IJISE/article/view/1225 (accessed on 30 March 2022).
- Karacapilidis, N.; Malefaki, S.; Charissiadis, A. A novel framework for augmenting the quality of explanations in recommender systems. Intell. Decis. Technol. 2017, 11, 187–197. [Google Scholar] [CrossRef]
- Karacapilidis, N.E. Solutions and Innovations in Web-Based Technologies for Augmented Learning: Improved Platforms, Tools, and Applications; Information Science Reference/IGI Global: Hershey, PA, USA, 2009. [Google Scholar]
- Domalis, G.; Karacapilidis, N.; Karachristos, C.; Komis, V.; Manta, K.; Misirli, A.; Tsakalidis, D.; Filippidi, A. Augmented Intelligence for Pedagogically Sustained Training and Education. In Smart Education and e-Learning—Smart Pedagogy. SEEL-22 2022.: Smart Innovation, Systems and Technologies; Uskov, V.L., Howlett, R.J., Jain, L.C., Eds.; Springer: Singapore, 2022; Volume 305. [Google Scholar]
- Teo, T. Modelling technology acceptance in education: A study of pre-service teachers. Comput. Educ. 2009, 52, 302–312. [Google Scholar] [CrossRef]
- Escobar-Rodriguez, T.; Monge-Lozano, P. The acceptance of Moodle technology by business administration students. Comput. Educ. 2012, 58, 1085–1093. [Google Scholar] [CrossRef]
- Teo, T.; Zhou, M.; Fan, A.C.W.; Huang, F. Factors that influence university students’ intention to use Moodle: A study in Macau. Educ. Technol. Res. Dev. 2019, 67, 749–766. [Google Scholar] [CrossRef]
- Hsu, H.H. The Acceptance of Moodle: An Empirical Study Based on UTAUT. SciRes 2012, 3, 44–46. [Google Scholar] [CrossRef] [Green Version]
- Alharbi, S.; Drew, S. Using the technology acceptance model in understanding academic, behavioural intention to use learning management systems. Int. J. Adv. Comput. Sci. Appl. 2014, 5, 143–155. [Google Scholar] [CrossRef]
- Cigdem, H.; Topcu, A. Predictors of instructors’ behavioral intention to use learning management system: A Turkish vocational college example. Comput. Hum. Behav. 2015, 52, 22–28. [Google Scholar] [CrossRef]
- Kaewsaiha, P.; Chanchalor, S. Factors affecting the usage of learning management systems in higher education. Educ. Inf. Technol. 2021, 26, 2919–2939. [Google Scholar] [CrossRef]
- Fathema, N.; Shannon, D.; Ross, M. Expanding the technology acceptance model (TAM) to examine faculty use of learning management systems (LMSs) in higher education institutions. MERLOT J. Online Learn. Teach. 2015, 11, 210–232. [Google Scholar] [CrossRef]
- Mohammed, R.Y.; Opeyemi, R.Q. Factors influencing the use of moodle e-learning platform for teaching in faculty of education, Ahmadu Bello University, Zaria. Samaru J. Inf. Stud. 2020, 20, 131–138. [Google Scholar]
- Wichadee, S. Factors related to faculty members’ attitude and adoption of a learning management system. Turk. Online J. Educ. Technol. 2015, 14, 53–61. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. Manag. Inf. Syst. Res. Cent. 1989, 13, 319–340. Available online: http://www.jstor.org/stable/249008 (accessed on 22 December 2022). [CrossRef] [Green Version]
- Davis, F.; Bagozzi, R.; Warshaw, P. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Personal computing: Toward a conceptual model of utilization. MIS Q. 1991, 15, 125–143. [Google Scholar] [CrossRef]
- Bryman, A. Social Research Methods; Oxford University Press: London, UK, 2016. [Google Scholar]
- Lavidas, K.; Petropoulou, A.; Papadakis, S.; Apostolou, Z.; Komis, V.; Jimoyiannis, A.; Gialamas, V. Factors Affecting Response Rates of The Web Survey with Teachers. Computers 2022, 11, 127. [Google Scholar] [CrossRef]
- Compeau, D.; Higgins, C. Computer self-efficacy: Development of a measure and initial test. MIS Q. 1995, 19, 189–211. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modelling (PLS-SEM), 2nd ed.; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Sanchez, G.; Trinchera, L.; Russolillo, G. Plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package Version 0.4.9. 2017. Available online: https://CRAN.R-project.org/package=plspm (accessed on 20 December 2021).
- R Core Team. R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 20 December 2021).
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Amankwah, F.; Sarfo, F.K.; Aboagye, M.O.; Konin, D.; Dzakpasu, R.K. Concerns of university teachers about the adoption of the Moodle learning management system in a Ghanaian University campus. Educ. Inq. 2022, 1–21. [Google Scholar] [CrossRef]
- Tzavara, A.; Lavidas, K.; Komis, V.; Misirli, A.; Karalis, T.; Papadakis, S. Using personal learning environments before, during and after the pandemic: The case of “e-me”. Educ. Sci. 2023, 13, 87. [Google Scholar] [CrossRef]
- Lavidas, K.; Papadakis, S.; Manesis, D.; Grigoriadou, A.S.; Gialamas, V. The Effects of Social Desirability on Students’ Self-Reports in Two Social Contexts: Lectures vs. Lectures and Lab Classes. Information 2022, 13, 491. [Google Scholar] [CrossRef]
- Ling, L.W.; Downe, A.G.; Ahmad, W.F.W.; Lai, T.T. Determinants of computer usage among educators: A comparison between the UTAUT and TAM models. In Proceedings of the 2011 National Postgraduate Conference, Perak, Malaysia, 19–20 September 2011; IEEE: New York, NY, USA, 2011; pp. 1–6. [Google Scholar]
Mean (SD) | (Skewness) − (Kurtosis) | λ | α | AVE | |
---|---|---|---|---|---|
1. Behavioural Intention to Use (BI) | 0.86 | 0.78 | |||
BI1 | 6.48 (0.65) | (−1.11) − (1.18) | 0.84 | ||
BI2 | 5.93 (0.95) | (−0.69) − (−0.04) | 0.89 | ||
BI3 | 6.31 (0.83) | (−0.98) − (0.13) | 0.92 | ||
2. Perceived Ease of Use (PEU) | 0.91 | 0.77 | |||
PEU1 | 5.47 (1.10) | (−1.10) − (1.27) | 0.90 | ||
PEU2 | 5.84 (0.94) | (−0.62) − (−0.07) | 0.86 | ||
PEU3 | 5.52 (1.02) | (−0.88) − (1.01) | 0.86 | ||
PEU4 | 5.42 (1.11) | (−0.88) − (0.84) | 0.91 | ||
3. Perceived Usefulness (PU) | 0.90 | 0.78 | |||
PU1 | 5.52 (1.24) | (−0.78) − (0.08) | 0.93 | ||
PU2 | 5.02 (1.31) | (−0.42) − (−0.57) | 0.84 | ||
PU3 | 5.65 (1.07) | (−0.61) − (0.32) | 0.92 | ||
PU4 | 6.20 (0.78) | (−0.65) − (−0.26) | 0.80 | ||
4. Perceived Self-Efficacy (PSE) | 0.77 | 0.81 | |||
PSE1 | 5.04 (1.27) | (−0.55) − (−0.25) | 0.91 | ||
PSE2 | 4.85 (1.61) | (−0.54) − (−0.59) | 0.89 | ||
5. Subjective Norms (SNs) | 0.83 | 0.85 | |||
SN1 | 4.65 (1.21) | (−0.14) − (−0.13) | 0.95 | ||
SN2 | 4.73 (1.17) | (0.09) − (−0.36) | 0.89 | ||
6 Technological Complexity (TC) | 0.80 | 0.83 | |||
TC1 | 2.82 (1.51) | (0.83) − (−0.05) | 0.91 | ||
TC2 | 3.25 (1.47) | (0.42) − (−0.99) | 0.91 |
Construct | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1. BI | 0.885 | |||||
2. PEU | 0.607 * | 0.875 | ||||
3. PU | 0.822 * | 0.662 * | 0.883 | |||
4 TH PSE | 0.365 * | 0.632 * | 0.393 * | 0.901 | ||
5. SN | 0.419 * | 0.261 * | 0.487 * | 0.153 * | 0.923 | |
6. TC | −0.451 * | −0.534 * | −0.395 * | −0.381 * | −0.039 | 0.912 |
Direct Effect (β) | 95% CI of β | Result | |||
---|---|---|---|---|---|
H1 | PEU → BI | 0.114 | −0.120 | 0.352 | Not confirmed |
H2 | PU → BI | 0.729 | 0.564 | 0.901 | Confirmed |
H3 | PEU → PU | 0.575 | 0.423 | 0.721 | Confirmed |
H4 | SN → BI | 0.034 | −0.099 | 0.143 | Not confirmed |
H5 | SN → PU | 0.337 | 0.165 | 0.502 | Confirmed |
H6 | PSE → PEU | 0.502 | 0.270 | 0.697 | Confirmed |
H7 | PSE → BI | 0.002 | −0.194 | 0.183 | Not confirmed |
H8 | TC → PEU | −0.343 | −0.569 | −0.138 | Confirmed |
Total Effect (β) | 95% CI of β | ||
---|---|---|---|
PU → BI | 0.729 | 0.564 | 0.901 |
PEOU → BI | 0.533 | 0.341 | 0.737 |
SN → BI | 0.280 | 0.086 | 0.430 |
PSE → BI | 0.269 | 0.078 | 0.451 |
TC → BI | −0.183 | −0.372 | −0.057 |
PEOU → PU | 0.575 | 0.423 | 0.721 |
SN → PU | 0.337 | 0.165 | 0.502 |
PSE → PU | 0.288 | 0.148 | 0.429 |
TC → PU | −0.197 | −0.366 | −0.071 |
PSE → PEOU | 0.502 | 0.270 | 0.697 |
TC → PEOU | −0.343 | −0.569 | −0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavidas, K.; Papadakis, S.; Filippidi, A.; Karachristos, C.; Misirli, A.; Tzavara, A.; Komis, V.; Karacapilidis, N. Predicting the Behavioral Intention of Greek University Faculty Members to Use Moodle. Sustainability 2023, 15, 6290. https://doi.org/10.3390/su15076290
Lavidas K, Papadakis S, Filippidi A, Karachristos C, Misirli A, Tzavara A, Komis V, Karacapilidis N. Predicting the Behavioral Intention of Greek University Faculty Members to Use Moodle. Sustainability. 2023; 15(7):6290. https://doi.org/10.3390/su15076290
Chicago/Turabian StyleLavidas, Konstantinos, Stamatis Papadakis, Andromachi Filippidi, Christopher Karachristos, Anastasia Misirli, Aggeliki Tzavara, Vassilis Komis, and Nikos Karacapilidis. 2023. "Predicting the Behavioral Intention of Greek University Faculty Members to Use Moodle" Sustainability 15, no. 7: 6290. https://doi.org/10.3390/su15076290
APA StyleLavidas, K., Papadakis, S., Filippidi, A., Karachristos, C., Misirli, A., Tzavara, A., Komis, V., & Karacapilidis, N. (2023). Predicting the Behavioral Intention of Greek University Faculty Members to Use Moodle. Sustainability, 15(7), 6290. https://doi.org/10.3390/su15076290