Modelling Carbon Storage Dynamics of Wood Products with the HWP-RIAL Model—Projection of Particleboard End-of-Life Emissions under Different Climate Mitigation Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.2. Model Used: The HWP-RIAL Model
2.2.1. First Order Decay HWP Model Supplemented with Recycling and Waste-Route-Selection Submodules
2.2.2. Solid Waste Disposal Model
2.3. Scenario Parametrization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Sixth Assessment Report, Climate Change 2022: Mitigation of Climate Change, the Working Group III Contribution. Chapter 7 Agriculture, Forestry, and Other Land Uses (AFOLU); IPCC: Geneva, Switzerland, 2022.
- Verkerk, P.J.; Delacote, P.; Hurmekoski, E.; Kunttu, J.; Matthews, R.; Mäkipää, R.; Mosley, F.; Perugini, L.; Reyer, C.P.O.; Roe, S.; et al. Forest-Based Climate Change Mitigation and Adaptation in Europe. From Science to Policy 14; European Forest Institute: Joensuu, Finland, 2022; ISBN 978-952-7426-22-7. [Google Scholar] [CrossRef]
- Brunet-Navarro, P.; Jochheim, H.; Kroiher, F.; Muys, B. Effect of cascade use on the carbon balance of the German and European wood sectors. J. Clean. Prod. 2018, 170, 137–146. [Google Scholar] [CrossRef]
- Brunet-Navarro, P.; Jochheim, H.; Muys, B. Modelling carbon stocks and fluxes in the wood product sector: A comparative review. Glob. Chang. Biol. 2016, 22, 2555–2569. [Google Scholar] [CrossRef] [Green Version]
- Rüter, S. Projection of Net-Emissions from Harvested Wood Products in European Countries; vTI. Johann Heinrich von Thünen-Institute (vTI): Hamburg, Germany, 2011; p. 63. [Google Scholar]
- Rüter, S. Der Beitrag der Stofflichen Nutzung von Holz zum Klimaschutz; Das Modell WoodCarbonMonitor. Ph.D. Thesis, Technische Universität München, München, Germany, 2016; p. 270. [Google Scholar]
- IPCC. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2014.
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019.
- Aleinikovas, M.; Jasinevičius, G.; Škėma, M.; Beniušienė, L.; Šilinskas, B.; Varnagirytė-Kabašinskienė, I. Assessing the Effects of Accounting Methods for Carbon Storage in Harvested Wood Products on the National Carbon Budget of Lithuania. Forests 2018, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Börcsök, Z.; Schöberl, M.; Molnár, S.; Lakatos, Á.; Ábrahám, J.; Molnár, A. A Faipari Termékekben Tárolt Szén Szerepe a Klímavédelemben. 2011. Available online: http://www.fataj.hu/2011/01/123/1tema.pdf (accessed on 1 March 2023). (In Hungarian).
- Király, E.; Börcsök, Z.; Kocsis, Z.; Németh, G.; Polgár, A.; Borovics, A. Carbon Sequestration in Harvested Wood Products in Hungary an Estimation Based on the IPCC 2019 Refinement. Forests 2022, 13, 1809. [Google Scholar] [CrossRef]
- Kohlmaier, G.; Kohlmaier, L.; Fries, E.; Jaeschke, W. Application of the stock change and the production approach to harvested wood products in the EU-15 countries: A comparative analysis. Eur. J. For. Res. 2007, 126, 209–223. [Google Scholar] [CrossRef]
- Profft, I.; Mund, M.; Weber, G.E.; Weller, E.; Schulze, E.D. Forest management and carbon sequestration in wood products. Eur. J. For. Res. 2009, 128, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; Ningre, F.; Robert, N.; Mothe, F. Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: A case study applied to even-aged oak stands in France. For. Ecol. Manag. 2012, 279, 176–188. [Google Scholar] [CrossRef]
- Budzinski, M.; Bezama, A.; Thrän, D. Estimating the potentials for reducing the impacts on climate change by increasing the cascade use and extending the lifetime of wood products in Germany. Resour. Conserv. Recycl. X 2020, 6, 100034. [Google Scholar] [CrossRef]
- Essel, R.; Breitmayer, E.; Carus, M.; Fehrenbach, H.; Geibler, J.; Bienge, K.; Baur, F. Discussion Paper: Defining Cascading Use of Biomass; Nova-Institut GmbH: Huerth, Germany, 2014; p. 7. [Google Scholar]
- Klein, D.; Höllerl, S.; Blaschke, M.; Schulz, C. The contribution of managed and unmanaged forests to climate change mitigation a model approach at stand level for the main tree species in Bavaria. Forests 2013, 4, 43–69. [Google Scholar] [CrossRef]
- Sokka, L.; Koponen, K.; Keränen, J.T. Cascading Use of Wood in Finland; with Comparison to Selected EU Countries; VTT: Nouméa, New Caledonia, 2015; p. 25. [Google Scholar]
- Vis, M.; Mantau, U.; Allen, B. Study on the Optimised Cascading Use of Wood; European State Forest Association: Brussels, Belgium, 2016; p. 337. [Google Scholar]
- Werner, F.; Taverna, R.; Hofer, P.; Thurig, E.; Kaufmann, E. National and global greenhouse gas dynamics of different forest management and wood use scenarios: A model-based assessment. Environ. Sci. Policy 2010, 13, 72–85. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Esch, P.W.; Groen, T.A.; Jong, B.H.J.; Kanninen, M.; Liski, J.; Masera, O.; Mohren, G.M.J.; Nabuurs, G.J.; Palosuo, T.; et al. CO2FIX V 3.1-A Modelling Framework for Quantifying Carbon Sequestration in Forest Ecosystems; ALTERRA: Wageningen, The Netherlands, 2004; p. 122. [Google Scholar]
- Krankina, O.N.; Harmon, M.E.; Schnekenburger, F.; Sierra, C.A. Carbon balance on federal forest lands of Western Oregon and Washington: The impact of the Northwest forest plan. For. Ecol. Manag. 2012, 286, 171–182. [Google Scholar] [CrossRef]
- EC (1999): Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31999L0031 (accessed on 21 December 2022).
- EC (2018a). Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 Amending Directive 1999/31/EC on the Landfill of Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L0850 (accessed on 21 December 2022).
- EC (2008): Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 21 December 2022).
- EC (2018b). Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018L0851 (accessed on 21 December 2022).
- BioReg. European Wood Waste Statistics Report for Recipient and Model Regions. ‘Absorbing the Potential of Wood Waste in EU Regions and Industrial Bio-based Ecosystems—BioReg’ Ref. Ares(2018)5746538—09/11/2018. 2018. Available online: http://bioreg.eu/assets/delivrables/BIOREG%20D1.1%20EU%20Wood%20Waste%20Statistics%20Report.pdf (accessed on 21 December 2022).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006.
- Pichancourt, J.-B.; Manso, R.; Ningre, F.; Fortin, M. A carbon accounting tool for complex and uncertain greenhouse gas emission life cycles. Environ. Model. Softw. 2018, 107, 158–174. [Google Scholar] [CrossRef]
- Gentil, E.C.; Damgaard, A.; Hauschild, M.; Finnveden, G.; Eriksson, O.; Thorneloe, S.; Kaplan, P.O.; Barlaz, M.; Muller, O.; Matsui, Y.; et al. Models for waste life cycle assessment: Review of technical assumptions. Waste Manag. 2010, 30, 2636–2648. [Google Scholar] [CrossRef]
- Laurent, A.; Clavreul, J.; Bernstad, A.; Bakas, I.; Niero, M.; Gentil, E.; Christensen, T.H.; Hauschild, M.Z. Review of LCA studies of solid waste management systems—Part II: Methodological guidance for a better practice. Waste Manag. 2014, 34, 589–606, ISSN 0956-053X. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, C.; McManus, M.C.; Smith, P. A comparison of carbon accounting tools for arable crops in the United Kingdom. Environ. Model. Softw. 2013, 46, 228–239. [Google Scholar] [CrossRef] [Green Version]
- EC (2014): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Towards a Circular Economy: A Zero Waste Programme for Europe. COM/2014/0398 Final. Available online: https://ec.europa.eu/environment/circular-economy/pdf/circular-economy-communication.pdf (accessed on 21 December 2022).
- EC (2016): Circular Economy Action Plan. European Commissions. Available online: http://ec.europa.eu/environment/circular-economy/index_en.htm (accessed on 21 December 2022).
- EC (2015): Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop; An EU Action Plan for the Circular Economy. COM/2015/0614 final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 21 December 2022).
- Husgafvel, R.; LInkosalmi, L.; Hughes, M.; Kanerva, J.; Dahl, O. Forest sector circular economy development in Finland: A regional study on sustainability driven competitive advantage and an assessment of the potential for cascading recovered solid wood. J. Clean. Prod. 2018, 181, 483–497. [Google Scholar] [CrossRef]
- Jørgensen, S.V.; Hauschild, M.Z.; Nielsen, P.H. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials. LCA for agricultural practices and biobased industrial products. Int. J. Life Cycle Assess. 2015, 20, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Ellen Macarthur Foundation. Towards the Circular Economy 3. Accelerating the Scale-Up across Global Supply Chains. 2014. Available online: http://www3.weforum.org/docs/WEF_ENV_TowardsCircularEconomy_Report_2014.pdf (accessed on 21 December 2022).
- OECD. The Bioeconomy to 2030: Designing a Policy Agenda. Main Findings and Policy Conclusions. OECD International Futures Project, 2009. 322. Available online: https://www.oecd.org/futures/long-termtechnologicalsocietalchallenges/thebioeconomyto2030designingapolicyagenda.htm (accessed on 21 December 2022).
- Cherubini, F.; Peters, G.; Berntsen, T.; Strømman, A.; Hertwich, E. CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy 2011, 3, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Toppinen, A. Corporate responsibility and sustainable competitive advantage in forest-based industry: Complementary or conflicting goals? For. Pol. Econ. 2011, 13, 113–123. [Google Scholar] [CrossRef]
- Garcia, R.; Freire, F. Carbon footprint of particleboard: A comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. J. Clean. Prod. 2014, 66, 199–209. [Google Scholar] [CrossRef]
- Werner, F.; Richter, K. Wooden building products in comparative LCA. Int. J. Life Cycle Assess. 2007, 12, 470–479. [Google Scholar] [CrossRef]
- Deilmann, C.; Reichenbach, J.; Krauß, N.; Gruhler, K. Zukunft Bauen; Forschung für die Praxis—Materialströme im Hochbau Potenziale für eine Kreislaufwirtschaft, Bundesinstitut für Bau- Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR). 2017. Available online: https://www.bbsr.bund.de/BBSR/DE/Veroeffentlichungen/ZukunftBauenFP/2017/band-06-dl.pdf?__blob=publicationFile&v=2 (accessed on 21 December 2022).
- NIR. National Inventory Report for 1985–2020. Hungary. Chapter: Land-Use, Land-Use Change and Forestry; Somogyi, Z., Szakálas, J., Tobisch, T., Eds.; Hungarian Meteorological Service: Budapest, Hungary, 2022. [Google Scholar]
- National Waste Management Plan 2021–2027. Ministry of Innovation and Technology. 2021. Available online: https://kormany.hu/dokumentumtar/orszagos-hulladekgazdalkodasi-terv-2021-2027 (accessed on 21 December 2022). (In Hungarian).
- National Environmental Information System. 2022. Available online: http://web.okir.hu/en/ (accessed on 21 December 2022).
- Brunet-Navarro, P.; Jochheim, H.; Muys, B. The effect of increasing lifespan and recycling 41 rate on carbon storage in wood products from theoretical model to application for the European 42 wood sector. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 1193–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasinevičius, G.; Lindner, M.; Verkerk, P.J.; Aleinikovas, M. Assessing impacts of wood 14 utilisation scenarios for a Lithuanian bioeconomy: Impacts on carbon in forests and harvested 15 wood products and on the socio-economic performance of the forest-based sector. Forests 2017, 16, 133. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Smyth, C.E.; Lemprière, T.C.; Rampley, G.J.; Kurz, W.A. Climate change mitigation 45 strategies in the forest sector: Biophysical impacts and economic implications in British Columbia, Canada. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 257–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, S.H.; Kurz, W.A.; Mcfarlane, P.N. Inward-versus outward-focused bioeconomy 41 strategies for British Columbia’s forest products industry: A harvested wood products carbon 42 storage and emission perspective. Carbon Balance Manag. 2021, 16, 30. [Google Scholar] [CrossRef]
- Sikkema, R.; Styles, D.; Jonsson, R.; Tobin, B.; Byrne, K.A. A market inventory of construction wood for residential building in Europe—In the light of the Green Deal and new circular economy ambitions. Sustain. Cities Soc. 2023, 90, 104–370. [Google Scholar] [CrossRef]
- Peñaloza, D.; Erlandsson, M.; Berlin, J.; Wålinder, M.; Falk, A. Future scenarios for climate mitigation of new construction in Sweden: Effects of different technological pathways. J. Clean. Prod. 2018, 187, 1025–1035. [Google Scholar] [CrossRef]
- Maris, G.; Flouros, F. The green deal, national energy and climate plans in Europe: Member states’ compliance and strategies. Adm. Sci. 2021, 11, 75. [Google Scholar] [CrossRef]
- Saravia-Cortez, A.M.; Herva, M.; García-Diéguez, C.; Roca, E. Assessing environmental sustainability of particleboard production process by ecological footprint. J. Clean. Prod. 2013, 52, 301–308. [Google Scholar] [CrossRef]
- Hashim, R.; Nadhari, W.N.A.W.; Sulaiman, O.; Kawamura, F.; Hiziroglu, S.; Sato, M.; Sugimoto, T.; Seng, T.G.; Tanaka, R. Characterization of raw materials and manufactured binderless particleboard from oil palm biomass. Mater. Des. 2011, 32, 246–254. [Google Scholar] [CrossRef]
- Wei, X.; Xiang, S. The environmental characteristics analysis in the production process of the particleboard. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE), Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar] [CrossRef]
- IFC (International Finance Corporation). Environmental, Health, and Safety Guidelines for Board and Particle-Based Products. World Bank Group. Available online: https://www.ifc.org/wps/wcm/connect/4b5bb82a-97a7-4d46-93e0-d7f274cefa83/Final%2B-%2BBoard%2Band%2BPBP.pdf?MOD=AJPERES&CVID=nPtf5qX (accessed on 22 January 2023).
- Wilson, J. Life-cycle inventory of particleboard in terms of resources, emissions, energy and carbon. Wood Fiber Sci. 2010, 42, 90–106. [Google Scholar]
- Ratajczak, E.; Bidzińska, G.; Szostak, A.; Herbeć, M. Resources of post-consumer wood waste originating from the construction sector in Poland. Resour. Conserv. Recycl. 2015, 97, 93–99. [Google Scholar] [CrossRef]
- Erlandsson, M.; Sundquist, J. Environmental Consequences of Different Recycling Alternatives for Wood Waste. A Report for a Nordic Cooperation Project on the EC Recovery Target for Construction and Demolition Waste (CDW). Stockholm (SE): Swedish Environmental Research Institute; 2014 April. p. 11, Report No.: B2182. Sponsored by Ångpanneföreningen’s Foundation for Research and Development and Foundation (Åforsk, project 12-318) and the Foundation for IVL Swedish Environmental Research Institute (SIVL). Available online: http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1551966&dswid=1757 (accessed on 1 March 2023).
- Steierer, F. Current Wood Resources Availability and Demands. National and Regional Wood Resource Balances EU/EFTA Countries. UNECE-FAO. Timber and Forestry Study Papers 2010. 51. ECE/TIM/DP/51. Available online: https://unece.org/fileadmin/DAM/timber/publications/DP-51_for_web.pdf (accessed on 1 March 2023).
- Kharazipour, A.; Kües, U. Chapter: Recycling of Wood Composites and Solid Wood Products. In Wood Production, Wood Technology, and Biotechnological Impacts; Kües, U., Ed.; Universitätsverlag Göttingen: Göttingen, Germany, 2007; pp. 509–533. [Google Scholar]
- Harms, S.; Flamme, S. Wood waste recycling in Germany. R’99 Congress (Recovery, Recycling, Re-integration), February 1999. Available online: https://www.environmental-expert.com/articles/article434/article434.htm (accessed on 21 December 2022).
- Speak, A.; Escobedo, F.J.; Russo, A.; Zerbe, S. Total urban tree carbon storage and waste management emissions estimated using a combination of LiDAR, field measurements and an end-of-life wood approach. J. Clean. Prod. 2020, 256, 120420. [Google Scholar] [CrossRef]
- Oonk, H. Efficiency of landfill gas collection for methane emission reduction. Greenh. Gas Meas. Manag. 2012, 2, 129–145. [Google Scholar] [CrossRef]
Half-Life (Year) | Density (Oven Dry Mass over Air Dry Volume) (Mg/m3) | Carbon Fraction | C Conversion Factor (per Air Dry Volume) (Mg C/m3) | |
---|---|---|---|---|
Particleboard | 25 | 0.596 | 0.451 | 0.269 |
Waste Model Parameters | |
---|---|
DOCf (fraction of DOC dissimilated) | 0.5 |
k (methane generation rate constant, years−1) | 0.02 |
Half-life of wood waste (years) | 35 |
OX (oxidation factor, fraction) | 0.1 |
MCF (methane correction factor for aerobic decomposition in the year of deposition, fraction) | 1 |
F (fraction of methane in developed gas) | 0.5 |
Parametrization of the Scenarios | ||||
---|---|---|---|---|
2020 | 2050 | 2130 | ||
BAU | Half-life (years) | 25 | 25 | 25 |
Landfilled wood waste % | 15 | 15 | 15 | |
Recycled wood waste % | 20 | 20 | 20 | |
CH4 recovery % | 12 | 12 | 12 | |
HL | Half-life (years) | 35 | 35 | 35 |
Landfilled wood waste % | 15 | 15 | 15 | |
Recycled wood waste % | 20 | 20 | 20 | |
CH4 recovery % | 12 | 12 | 12 | |
RECYCL | Half-life (years) | 25 | 25 | 25 |
Landfilled wood waste % | 15 | 15 | 15 | |
Recycled wood waste % | 20 | 50 | 80 | |
CH4 recovery % | 12 | 12 | 12 | |
LF | Half-life (years) | 25 | 25 | 25 |
Landfilled wood waste % | 15 | 5 | 3 | |
Recycled wood waste % | 20 | 20 | 20 | |
CH4 recovery % | 12 | 12 | 12 | |
CH4-rec | Half-life (years) | 25 | 25 | 25 |
Landfilled wood waste % | 15 | 15 | 15 | |
Recycled wood waste % | 20 | 20 | 20 | |
CH4 recovery % | 12 | 25 | 50 | |
Combined | Half-life (years) | 35 | 35 | 35 |
Landfilled wood waste % | 15 | 5 | 3 | |
Recycled wood waste % | 20 | 50 | 80 | |
CH4 recovery % | 12 | 25 | 50 | |
X.1 | Half-life (years) | 25 | 25 | 25 |
Landfilled wood waste % | 65 | 65 | 65 | |
Recycled wood waste % | 20 | 20 | 20 | |
CH4 recovery % | 12 | 12 | 12 | |
X.2 | Half-life (years) | 25 | 25 | 25 |
Landfilled wood waste % | 65 | 65 | 65 | |
Recycled wood waste % | 20 | 20 | 20 | |
CH4 recovery % | 12 | 25 | 50 |
Emission Reduction in the Percentage of BAU Emissions (%) | ||
---|---|---|
Scenario | 2050 | 2130 |
HL | 22 | 11 |
RECYCL | 17 | 18 |
LF | −4 | 3 |
CH4-rec | 1 | 5 |
Combined | 32 | 37 |
X.1 | 34 | −28 |
X.2 | 37 | −7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Király, É.; Kis-Kovács, G.; Börcsök, Z.; Kocsis, Z.; Németh, G.; Polgár, A.; Borovics, A. Modelling Carbon Storage Dynamics of Wood Products with the HWP-RIAL Model—Projection of Particleboard End-of-Life Emissions under Different Climate Mitigation Measures. Sustainability 2023, 15, 6322. https://doi.org/10.3390/su15076322
Király É, Kis-Kovács G, Börcsök Z, Kocsis Z, Németh G, Polgár A, Borovics A. Modelling Carbon Storage Dynamics of Wood Products with the HWP-RIAL Model—Projection of Particleboard End-of-Life Emissions under Different Climate Mitigation Measures. Sustainability. 2023; 15(7):6322. https://doi.org/10.3390/su15076322
Chicago/Turabian StyleKirály, Éva, Gábor Kis-Kovács, Zoltán Börcsök, Zoltán Kocsis, Gábor Németh, András Polgár, and Attila Borovics. 2023. "Modelling Carbon Storage Dynamics of Wood Products with the HWP-RIAL Model—Projection of Particleboard End-of-Life Emissions under Different Climate Mitigation Measures" Sustainability 15, no. 7: 6322. https://doi.org/10.3390/su15076322
APA StyleKirály, É., Kis-Kovács, G., Börcsök, Z., Kocsis, Z., Németh, G., Polgár, A., & Borovics, A. (2023). Modelling Carbon Storage Dynamics of Wood Products with the HWP-RIAL Model—Projection of Particleboard End-of-Life Emissions under Different Climate Mitigation Measures. Sustainability, 15(7), 6322. https://doi.org/10.3390/su15076322