Touristification and Conflicts of Interest in Cruise Destinations: The Case of Main Cultural Tourism Cities on the Spanish Mediterranean Coast
Abstract
:1. Introduction
2. Study Area
- The total number of airline passengers increased in all years of the period analysed in the case of Barcelona, and for Malaga, except in 2012. In that year, Malaga received 2611 fewer flights than in the previous one due to the air traffic instability of two national airlines. One stopped flying at the end of January, meaning there were only 58 flights compared to 1412 in the previous year. The workers of the other company went on strike several times to protest against the workforce adjustment plan to adapt to a low-cost company. Despite the 2012 decline in Malaga, the annual number of airline passengers increased year-on-year in both cities, with an average growth rate of 80% over the same period [53].
- There was no clear trend in the number of visitors arriving by cruise ship each year, with the figures rising and falling. Even though only Barcelona achieved a growth rate close to 50%, Malaga posted practically net growth over the whole period under consideration. However, it should be noted that Malaga had achieved 35% growth in the early 2010s due to the new cruise terminals, but the number of cruise passengers fell to its lowest point in 2013 as the number of cruise ships arriving dropped by 15.88%, with 47 fewer ships. Despite the fact that annual arrivals steadily increased from then onwards, the total number of cruise passengers in 2019 was practically the same as ten years previously [54].
3. Methodology
3.1. Indicator System
- Citizen Initiatives (I1): Social organisations such as neighbourhood associations, urban movements or citizen participation platforms engaged in the conflicts of interest resulting from tourism specialisation. Thus, the qualitative software Atlas.ti 22 was used to conduct a content analysis of the most-read newspapers in Barcelona and Malaga to identify protest and resistance movements in the press. The sum of daily readers on paper or Kiosko y Más and Orbit is the indicator to measure the significant press impact provided by the AIMC media audit (see Table 3). Newspapers with local circulation in Barcelona (La Vanguardia) and Malaga (Diario SUR, Málaga hoy, and La Opinión de Málaga) are considered, but those covering regional or national news or dealing with sport and off-topic quantitative data in economics were not included.
- 2.
- Population (I2): Total residents by census tract of municipalities selected were used. The municipal census data according to the official registry of inhabitants were obtained from Spanish National Statistics Institute listings [52]. Taking 2019 as the analysis date, georeferencing processes were performed to relate population data listings batched by census code assignation to every census section polygons from the available shape files posted on municipal open-data platforms [57,58]. The latter cartography base was used to define the surface area in hectares once the waterfront was redrawn according to the real coastline covering the land area alone; with defining the population density being the overall aim.
- 3.
- Housing (I3): The cadastral information available from the Spanish Sede Electrónica del Catastro platform [59] is the basis for the housing statistics. Data compiled for residential use in comma separated values (csv) format were downloaded for the municipalities of Barcelona and Malaga. Those housing census listings contain ample information—except for the name of the property-owner and cadastral value—such as the property register code, address, building data (floor area, year of construction) and even the location with latitude and longitude coordinates. Thus, the stored geographical coordinates correspond to the centroid of each plot or building, and a point layer map in a GIS geodatabase was created to assign a sum of properties to every census tract. Housing listings gathered at census section level were also filtered taking analysis date as up to and including the 2019 construction year.
- 4.
- Airbnb (I4): Airbnb listings are obtained from the Inside Airbnb platform [60]. It is an open-access dataset with the supply of regulated and informal short-term rentals in main world tourist destinations. P2P accommodation posted on Airbnb refer not only to entire homes or apartments, but also private and shared rooms, and each offer is web-scraped to one day a month. Moreover, the number of beds per listing is also collected and therefore considered instead of the sum of accommodation to take into account the contribution of Airbnb for floating city users. Data compiled for Barcelona and Malaga are available monthly in text files called listing.csv throughout 2019. Although December was the month with the highest number of listings in 2019 (see Table 4), the data collected in summer are considered to be representative due to the high tourist activity, so the dataset collected at just before or shortly after the beginning of the month of August were used, as had been the case in previous studies for the months of July [14] and August [26,35]. Once the collection date had been selected, the Airbnb listing month in question was converted to a point layer using the latitude and longitude coordinates included in the spatial database in order for a sum of listings to be assigned to every census tract.
- 5.
- Tourist Accommodation (I5): Regulated tourist establishments and service buildings operating up to and including 2019. The following six typologies are considered to be tourist accommodation: (1) short-term rentals excluding nonregulated P2P accommodation, together with the traditional accommodation sector; (2) hotels; (3) tourist apartments; (4) guest houses; (5) boarding houses and (6) shelters. Tourist accommodation data were mainly taken from the municipal or regional registers of Barcelona [61,62,63,64] and Malaga [65]. The records for each type of tourist accommodation considered contain data on the registration date, postal address and geographical coordinates, but the number of rooms and beds for each typology is not always available. Therefore, the geolocation of these accommodation facilities was carried out using official listings with latitude and longitude coordinates by GIS. It should be noted that shelter listings are not available from the authorities in the case of Malaga; http requests were therefore conducted to web scrape a shelter geodatabase taken from Google Maps. Thus, official and Google Maps listings with latitude and longitude coordinates make it possible to geolocate all tourist establishments by points, batched by GIS to assign a sum of listings by every census tract.
- 6.
- Cultural Amenity (I6): Cultural and art facilities that were active in 2019. The following six local recreational amenities offering cultural services are considered: (1) auditoriums, (2) cinemas outside of the commercial route and film archives—commercial cinemas are not included, (3) cultural centres, together with cultural foundations and civic centres, (4) main tourist points—monuments with the sightseeing highlights, (5) museums within other culture and leisure spaces such as art galleries, conference rooms and showrooms, and (6) theatres. Data stored in several ‘.csv‘ files openly published by the municipal governments of Barcelona [66,67,68] and Malaga [69,70,71,72,73,74,75,76,77] were downloaded. Cultural services listings contain information on several leisure spaces and could be filtered by category according to the cultural amenity in question. Moreover, all records for every establishment store the geographic coordinates, allowing geolocation of cultural facilities at point level, with the aim of assigning how many recreational activities are spread across each of the census tract of both cities.
- 7.
- Terraces (I7): Authorised terraces for restaurants and food shops in public space trading in 2019. These are hospitality services authorised for activity outdoors. Data on terraces were taken from the census of permits for ordinary terraces in public-use spaces in Barcelona [78] and Malaga [79]. Terrace listings contain data on surface area and location—full postal address and the geographic coordinates—for both cities, but just the number of tables and chairs in the case of Barcelona. Therefore, the longitude and latitude coordinates were used to create two-point layers/terraces in each municipality. Although the area occupied by each stored terrace was available, their presence at census tract level was measured in terms of the number of restaurants with outdoor service because the defined indicators are mainly standardised by the number of residents apart from the population (I2) index normalised in hectares.
- 8.
- Nightlife (I8): Music and drinks venues—such as bars and pubs, cocktails, discotheques, karaoke, nightclubs, ballrooms and flamenco shows—operating in 2019. Data on music and drinks’ spaces were taken from the census of nightlife venues in the city of Barcelona [80]. Open data collected for Barcelona were downloaded and stored in a file called opendatabcn_cultura_espais-de-musica-i-copes.csv, which contained information on the typology of entertainment venues, the registration date and the geographic coordinates. The latitude and longitude coordinates were used to create a point layer for each record in GIS. However, official listings from Malaga were not available, so web scraping was used as a research instrument to gather information on nightlife establishments posted on Google Maps. Downloading generated ‘.csv’ files for each http request with the following Spanish word searches: ‘discotecas’, ‘copas’, ‘pubs’ and ‘tablaos flamencos’. The resulting listings include the Google Maps location for each record and those data were geolocated by GIS once all listings had been filtered to delete duplicates. The point layers created with the geolocated leisure establishments for Barcelona and Malaga were batched according to the census tract in which each record was located.
- 9.
- Souvenir Shops (I9): The 2019 ground floor premises census was the basis for souvenir shop listings. Data on souvenir shops were taken from the economic activities census of the city of Barcelona [81]. A file called 2019_censcomercialbcn_detall.csv was downloaded. It contains ample information on each listing with respect to the economic activity (sector and name) and location (postal address and geographical coordinates). The records categorised by ‘souvenirs’ and ‘souvenirs i basars’ were selected and geolocated by GIS from the x and y coordinates stored. In the case of Malaga, the souvenirs shops belonging to the Malaga Cruise Shops networks in October 2019 were considered [82]. The souvenir shops on the municipal census welcome visitors and open their doors even at weekends and bank holidays. Each record on the shop listings contains the location based on the full postal address and those data were geolocated using Google Maps address matching. The resulting point layers for souvenir shops in Barcelona and Malaga were batched at census section level to measure their presence in each census tract.
3.2. Data Analysis
- Data batched by census tract were standardised for descriptive statistics but separately in each city, in order to determine the tourism intensification and the degree of concentration of the socio-demographic variables.
- Normalised data tagged by ranges were used to produce density maps for each indicator. A colour gradient was defined to show where the offer is spread through the same intervals for both cities, with the aim of measuring the concentration spatially and identifying common patterns.
- Pearson correlations coefficients between indicators were calculated to define the relationship among them for each city, including the level of significance to measure how strongly the variables correlate.
- Regression analysis to investigate the drivers of the spatial distribution of protest and resistance movements together with all stakeholders involved in the conflicts of interest resulting from tourism specialisation. A classic linear standard regression model—Ordinary Least Squares (OLS) estimation—was used. The outcome variable is the number of citizen initiatives per 100,000 inhabitants (I1) at census section level, which is linked to the tourism intensification indicators (I4–9) following the multiple linear regression function:yI1 = β0 + βI4xI4 + βI5xI5 +… + βI9xI9 + ε, where:
- yI1 is the response variable and refers to the citizen initiative index (I1);
- xI4 to xI9 are the predictor variables which refer to the tourism intensification indicators (I4–9);
- β0 is the constant term, and βI4 to βI9 are the regression coefficients to be estimated for the independent variables (xi); and
- ε is the model’s error.
- The Global Moran’s Index tool was used to measure the spatial autocorrelation based simultaneously on locations and feature values for all the defined indicators in each city, with the aim of evaluating whether the pattern expressed is clustered, dispersed or random.
- Univariate spatial autocorrelation (Anselin Local Moran’s Index) was used to produce Local Indicator of Spatial Association (LISA; [93]) maps to measure the level of spatial penetration of the tourism specialisation and the agglomeration of socio-demographic values by clusters in both cities.
- The bivariate Global Moran’s Index was used to measure the degree to which the presence of citizen initiatives (I1) at a location is correlated with its neighbours for each tourism intensification index (I4–9).
4. Results and Discussion
4.1. Spatial Representation of Tourism Intensification
4.2. Pearson Correlations
4.3. Multiple Regression Models (OLS)
4.4. Spatial Autocorrelation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollmer, L. Estrategias Contra la Gentrificación: Por una Ciudad Desde Abajo, 1st ed.; Katakrak Liburuak: Pamplona, Spain, 2019; ISBN 978-84-16946-26-6. [Google Scholar]
- Brossat, I. Airbnb: La ciudad uberizada, 1st ed.; Katakrak Liburuak: Pamplona, Spain, 2019; ISBN 978-84-16946-25-9. [Google Scholar]
- Gotham, K.F. Tourism Gentrification: The Case of New Orleans’ Vieux Carre (French Quarter). Urban Stud. 2005, 42, 1099–1121. [Google Scholar] [CrossRef]
- Gravari-Barbas, M.; Guinand, S. Tourism and Gentrification in Contemporary Metropolises: International Perspectives, 1st ed.; Routledge: London, UK, 2017; ISBN 978-1-138-64278-2. [Google Scholar]
- Colomb, C.; Novy, J. Protest and Resistance in the Tourist City, 1st ed.; Colomb, C., Novy, J., Eds.; Routledge: London, UK, 2017; ISBN 978-1-138-85671-4. [Google Scholar]
- Airbnb. About Us. Available online: https://news.airbnb.com/about-us/ (accessed on 12 February 2023).
- DiNatale, S.; Lewis, R.; Parker, R. Short-term rentals in small cities in Oregon: Impacts and regulations. Land Use Policy 2018, 79, 407–423. [Google Scholar] [CrossRef]
- Rodríguez-Pérez de Arenaza, D.; Hierro, L.Á.; Patiño, D. Airbnb, sun-and-beach tourism and residential rental prices. The case of the coast of Andalusia (Spain). Curr. Issues Tour. 2022, 25, 3261–3278. [Google Scholar] [CrossRef]
- Adamiak, C.; Szyda, B.; Dubownik, A.; García-Álvarez, D. Airbnb Offer in Spain—Spatial Analysis of the Pattern and Determinants of Its Distribution. ISPRS Int. J. Geo-Inf. 2019, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Adamiak, C. Mapping Airbnb supply in European cities. Ann. Tour. Res. 2018, 71, 67–71. [Google Scholar] [CrossRef]
- Valente, R.; Russo, A.P.; Vermulen, S.; Milone, F.L. Tourism pressure as a driver of social inequalities: A BSEM estimation of housing instability in European urban areas. Eur. Urban Reg. Stud. 2022, 29, 332–349. [Google Scholar] [CrossRef]
- Adamiak, C. Current state and development of Airbnb accommodation offer in 167 countries. Curr. Issues Tour. 2022, 25, 3131–3149. [Google Scholar] [CrossRef] [Green Version]
- Roelofsen, M. The Socio-Spatial Impacts of Airbnb. In Hospitality, Home and Life of Tourism in the Platform Economies, 1st ed.; Palgrave Macmillan: Cham, Switzerland, 2022; Chapter 3; pp. 37–66. ISBN 978-3-031-04009-2. [Google Scholar]
- Antunes, G.; Ferreira, J. Short-term rentals: How much is too much—Spatial patterns in Portugal and Lisbon. Tour. Hosp. Manag. 2021, 27, 581–603. [Google Scholar] [CrossRef]
- Schäfer, P.; Braun, N. Misuse through short-term rentals on the Berlin housing market. Int. J. Hous. Mark. Anal. 2016, 9, 287–311. [Google Scholar] [CrossRef]
- Campbell, M.; McNair, H.; Mackay, M.; Perkins, H.C. Disrupting the regional housing market: Airbnb in New Zealand. Reg. Stud. Reg. Sci. 2019, 6, 139–142. [Google Scholar] [CrossRef]
- Crommelin, L.; Troy, L.; Martin, C.; Pettit, C. Is Airbnb a sharing economy superstar? Evidence from five global cities. Urban Policy Res. 2018, 36, 429–444. [Google Scholar] [CrossRef]
- de la Calle Vaquero, M.; García-Hernández, M.; Mendoza de Miguel, S.; Ferreiro-Calzada, E. In Search of Overtourism Indicators in Urban Centre. In Handbook of Research on the Impacts, Challenges, and Policy Responses to Overtourism, 1st ed.; Ribeiro de Almeida, C., Quintano, A., Simancas, M., Huete, R., Breda, Z., Eds.; IGI Global: Hershey, PA, USA, 2020; Chapter 16; pp. 302–324. ISBN 978-1-7998-2224-0. [Google Scholar]
- Celata, F.; Capineri, C.; Romano, A. A room with a (re)view. Short-term rentals, digital reputation and the uneven spatiality of platform-mediated tourism. Geoforum 2020, 112, 129–138. [Google Scholar] [CrossRef]
- Rabiei-Dastjerdi, H.; McArdle, G.; Hynes, W. Which came first, the gentrification or the Airbnb? Identifying spatial patterns of neighbourhood change using Airbnb data. Habitat Int. 2022, 125, 102582. [Google Scholar] [CrossRef]
- Jiao, J.; Bai, S. Cities reshaped by Airbnb: A case study in New York City, Chicago, and Los Angeles. Environ. Plan. A Econ. Space 2020, 52, 10–13. [Google Scholar] [CrossRef]
- Hübscher, M.; Schulze, J.; zur Lage, F.; Ringel, J. The impact of Airbnb on a non-touristic city. A Case study of short-term rentals in Santa Cruz de Tenerife (Spain). Erdkunde 2020, 74, 191–204. [Google Scholar] [CrossRef]
- Arias-Sans, A.; Quaglieri-Domínguez, A.; Paolo Russo, A. Home-sharing as transnational moorings: Insights from Barcelona. City Anal. Urban Chang. Theory Action 2022, 26, 160–178. [Google Scholar] [CrossRef]
- Cerdá-Mansilla, E.; Rubio, N.; García-Henche, B.; Campo, S. Airbnb y la turistificación de los barrios en las ciudades: Un análisis de segmentación por barrios del alojamiento extrahotelero en Madrid. Investig. Turísticas 2022, 10, 210–238. [Google Scholar] [CrossRef]
- Hübscher, M.; Borst, M. On the relationship between short-term rentals and gentrification: The case of Airbnb in Munich (Germany). Geografie 2023, 128, 1–24. [Google Scholar] [CrossRef]
- Cerezo-Medina, A.; Romero-Padilla, Y.; García-López, A.; Navarro-Jurado, E.; Sortino-Barrionuevo, J.F.; Guevara-Plaza, A. Comparative analysis of short-term rental homes and traditional accommodation in Andalusian tourist cities: Intensity, density, and potential expansion areas. Curr. Issues Tour. 2022, 25, 1782–1797. [Google Scholar] [CrossRef]
- Encalada-Abarca, L.; Cardoso Ferreira, C.; Rocha, J. Measuring Tourism Intensification in Urban Destinations: An Approach Based on Fractal Analysis. Empir. Res. Artic. 2022, 61, 394–413. [Google Scholar] [CrossRef]
- Endrich, M.; Verhaeghe, P.-P.; Costa, R.; Imeraj, L.; Gadeyne, S. The spatial distribution of Airbnb providers in Brussels: Different drivers for different types of hosts? Consum. Behav. Tour. Hosp. 2022, 17, 297–311. [Google Scholar] [CrossRef]
- Kato, H.; Takizawa, A. Population Decline through Tourism Gentrification Caused by Accommodation in Kyoto City. Sustainability 2022, 14, 11736. [Google Scholar] [CrossRef]
- Gutiérrez, J.; García-Palomares, J.C.; Romanillos, G.; Salas-Olmedo, M.H. The eruption of Airbnb in tourist cities: Comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona. Tour. Manag. 2017, 62, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Bertocchi, D.; Visentin, F. “The Overwhelmed city”: Physical and Social Over-Capacities of Global Tourism in Venice. Sustainability 2019, 11, 6937. [Google Scholar] [CrossRef] [Green Version]
- Elorrieta Sanz, B.; García Martín, M.; Cerdan Schwitzguébel, A.; Torres-Delgado, A. La ‘guerra de las terrazas’: Privatización del espacio público por el turismo en Sevilla y Barcelona. Cuad. Tur. 2021, 47, 229–259. [Google Scholar] [CrossRef]
- Contu, G.; Frigau, L.; Conversano, C. Price indicators for Airbnb accommodations. Qual. Quant. 2022. [Google Scholar] [CrossRef]
- Jiang, H.; Mei, L.; Wei, Y.; Zheng, R.; Guo, Y. The influence of the neighbourhood environment on peer-to-peer accommodations: A random forest regression analysis. J. Hosp. Tour. Manag. 2022, 51, 105–118. [Google Scholar] [CrossRef]
- Crisci, M.; Benassi, F.; Rabiei-Dastjerdi, H.; McArdle, G. Spatio-temporal variations and contextual factors of the supply of Airbnb in Rome. An initial investigation. Lett. Spat. Resour. Sci. 2022, 15, 237–253. [Google Scholar] [CrossRef] [PubMed]
- Singh-Garha, N. The spatial penetration of Airbnb in the main tourist cities of Spain: Extent and Determinants. Doc. d’Anàlisi Geogràfica 2022, 68, 167–194. [Google Scholar] [CrossRef]
- Singh-Garha, N.; Botelho Azevedo, A. Geografy of AirBnb in Barcelona and Lisboa. Finisterra 2021, 56, 151–173. [Google Scholar] [CrossRef]
- Kondo, T.; Miyamae, S. Transnational displacement by short-term rentals in Japan’s depopulating society: Dilemma between rent gap emergence and inbound tourist accommodations. Jpn. Archit. Rev. 2022, 5, 212–224. [Google Scholar] [CrossRef]
- Martínez-Caldentey, M.A.; Blázquez-Salom, M.; Murray, I. Habitabilidad y Airbnb: El alquiler de la vivienda en el distrito Centro de Madrid. Cuad. Tur. 2020, 46, 367–393. [Google Scholar] [CrossRef]
- Parralejo, J.-J.; Díaz-Parra, I.; Pedregal, B. Procesos sociodemográficos y alquileres turísticos en centros históricos. Los casos de Sevilla y Cádiz. EURE—Rev. Estud. Urbano Reg. 2022, 48, 1–23. [Google Scholar] [CrossRef]
- Martínez-Caldentey, M.A.; Murray, I.; Blázquez-Salom, M. En la ciudad de Madrid todos los caminos conducen a Airbnb. Investig. Turísticas 2020, 19, 1–27. [Google Scholar] [CrossRef]
- Shabrina, Z.; Morphet, R. Understanding patterns and competitions of short- and long-term rental markets: Evidence from London. Trans. GIS 2022, 26, 2914–2931. [Google Scholar] [CrossRef]
- Shabrina, Z.; Arcaute, E. Airbnb and its potential impact on the London housing market. Urban Stud. 2022, 59, 197–221. [Google Scholar] [CrossRef]
- Ardura Urquiaga, A.; Lorente-Riverola, I.; Ruiz Sanchez, J. Platform-mediated short-term rentals and gentrification in Madrid. Urban Stud. 2020, 57, 3095–3115. [Google Scholar] [CrossRef]
- Grisdale, S. Displacement by disruption: Short-term rentals and the political economy of “belonging anywhere” in Toronto. Urban Geogr. 2021, 42, 654–680. [Google Scholar] [CrossRef] [Green Version]
- Wachsmuth, D.; Weisler, A. Airbnb and the rent gap: Gentrification through the sharing economy. Environ. Plan. A Econ. Space 2018, 50, 1147–1170. [Google Scholar] [CrossRef]
- Celata, F.; Romano, A. Overtourism and online short-term rental platforms in Italian cities. J. Sustain. Tour. 2022, 30, 1020–1039. [Google Scholar] [CrossRef]
- Ioannides, D.; Röslmaier, M.; van der Zee, E. Airbnb as an instigator of ‘tourism bubble’ expansion in Utrecht’s Lombok neighbourhood. Tour. Geogr. 2019, 21, 822–840. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ayllon, S. Urban Transformations as an Indicator of Unsustainability in the P2P Mass Tourism Phenomenon: The Airbnb Case in Spain through Three Case Studies. Sustainability 2018, 10, 2933. [Google Scholar] [CrossRef] [Green Version]
- Observatorio de la Cultura. Lo Mejor de la Cultura en España. Available online: https://www.lafabrica.com/observatorio-de-la-cultura/ediciones-anteriores/ (accessed on 4 January 2023).
- de la Calle Vaquero, M. Turistificaicón de centros urbanos: Clarificando el debate. Boletín Asoc. Geógrafos Españoles 2019, 83, 2829. [Google Scholar] [CrossRef] [Green Version]
- Ministerio de Asuntos Económicos y Transformación Digital. Instituto Nacional de Estadística. Available online: https://www.ine.es/ (accessed on 20 September 2022).
- Aeropuertos Españoles y Navegación Aérea. Estadísticas de Tráfico Aéreo—Informes Anuales. Available online: https://www.aena.es/es/estadisticas/informes-anuales.html (accessed on 5 January 2023).
- Puertos del Estado. Estadísticas Tráfico Portuario. Available online: https://www.puertos.es/es-es/estadisticas/Paginas/default.aspx (accessed on 5 January 2023).
- European Commission. NUTS—Nomenclature of Territorial Units for Statistics. Available online: https://ec.europa.eu/eurostat/web/nuts/background (accessed on 6 November 2021).
- European Commission. Correspondence Table LAU—NUTS 2016, EU-28 and EFTA/Available Candidate Countries—2019. Available online: https://ec.europa.eu/eurostat/web/nuts/local-administrative-units (accessed on 6 November 2021).
- Ajuntament de Barcelona. Unitats Administratives de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/20170706-districtes-barris (accessed on 20 September 2022).
- Instituto de Estadística y Cartografía de Andalucía. Datos Espaciales de los Indicadores Estadísticos de Población de Andalucía por Secciones Censales. Available online: https://www.juntadeandalucia.es/institutodeestadisticaycartografia/poblacion_registros/datos-espaciales.htm (accessed on 23 December 2021).
- Ministerio de Hacienda y Función Pública. Sede Electrónica del Catastro. Available online: https://www.sedecatastro.gob.es/ (accessed on 1 September 2022).
- Cox, M. Inside Airbnb: Adding Data to the Debate. Available online: http://insideairbnb.com/ (accessed on 14 July 2020).
- Ajuntament de Barcelona. Altres Tipus D’allotjaments de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/allotjaments-altres (accessed on 20 September 2022).
- Ajuntament de Barcelona. Habitatges d’ús Turístic de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/habitatges-us-turistic (accessed on 20 September 2022).
- Ajuntament de Barcelona. Hotels de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/allotjaments-hotels (accessed on 20 September 2022).
- Ajuntament de Barcelona. Pensions de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/allotjaments-pensions (accessed on 24 December 2020).
- Junta de Andalucía. Establecimientos y Servicios Turísticos. Available online: https://www.juntadeandalucia.es/organismos/turismoculturaydeporte.html (accessed on 24 December 2020).
- Ajuntament de Barcelona. Espais de la Ciutat de Barcelona on es fa Cinema, Teatre i Concerts. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/culturailleure-cinemesteatresauditoris (accessed on 20 September 2022).
- Ajuntament de Barcelona. Llista d’espais i Equipaments de Cultura i Lleure de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/equipament-cultura-i-lleure (accessed on 20 September 2022).
- Ajuntament de Barcelona. Punts d’interès Turístic de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/punts-informacio-turistica (accessed on 20 September 2022).
- Ayuntamiento de Málaga. Auditorios. Available online: https://datosabiertos.malaga.eu/dataset/auditorios (accessed on 22 December 2020).
- Ayuntamiento de Málaga. Centros Culturales. Available online: https://datosabiertos.malaga.eu/dataset/centros-culturales (accessed on 22 December 2020).
- Ayuntamiento de Málaga. Cines. Available online: https://datosabiertos.malaga.eu/dataset/cines (accessed on 20 September 2022).
- Ayuntamiento de Málaga. Espacios Alternativos. Available online: https://datosabiertos.malaga.eu/dataset/espacios-alternativos (accessed on 22 December 2020).
- Ayuntamiento de Málaga. Galerías de Arte. Available online: https://datosabiertos.malaga.eu/dataset/galerias-de-arte (accessed on 22 December 2020).
- Ayuntamiento de Málaga. Monumentos. Available online: https://datosabiertos.malaga.eu/dataset/monumentos (accessed on 22 December 2020).
- Ayuntamiento de Málaga. Museos. Available online: https://datosabiertos.malaga.eu/dataset/museos (accessed on 22 December 2020).
- Ayuntamiento de Málaga. Salas de Exposiciones. Available online: https://datosabiertos.malaga.eu/dataset/salas-de-exposiciones (accessed on 22 December 2020).
- Ayuntamiento de Málaga. Teatros. Available online: https://datosabiertos.malaga.eu/dataset/teatros (accessed on 22 December 2020).
- Ajuntament de Barcelona. Autoritzacions de Terrasses Ordinàries a l’espai d’ús Públic de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/terrasses-comercos-vigents (accessed on 20 September 2022).
- Ayuntamiento de Málaga. Ocupación en vía Pública de Mesas y Sillas—Planos. Available online: https://datosabiertos.malaga.eu/dataset/ocupacion-en-via-publica-de-mesas-y-sillas-planos (accessed on 22 December 2020).
- Ajuntament de Barcelona. Espais de Música i Copes de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/culturailleure-espaismusicacopes (accessed on 20 September 2022).
- Ajuntament de Barcelona. Cens d’activitats Econòmiques en Planta Baixa de la Ciutat de Barcelona. Available online: https://opendata-ajuntament.barcelona.cat/data/ca/dataset/cens-activitats-comercials (accessed on 20 September 2022).
- Ayuntamiento de Málaga. Malaga Cruise Shops. Available online: https://visita.malaga.eu/profesional/es/malaga-cruise-shops (accessed on 10 November 2021).
- Chamizo-Nieto, F.J.; Nebot-Gómez de Salazar, N.; Rosa-Jiménez, C.; Reyes-Corredera, S. Indicators for measuring tourism intensification in urban areas through their associative network: Case studies from the Spanish Mediterranean coast. Eur. J. Tour. Res. 2022, 32, 3202. [Google Scholar] [CrossRef]
- Egio-Rubio, C.J.; Fernández Toledo, P. Tratamiento en la prensa digital de un fenómeno geográfico: La turisificación. Cuad. Tur. 2020, 46, 249–267. [Google Scholar] [CrossRef]
- Huízar Sanchéz, M. de los A.; López Ramos, L.; Baños Francia, J.A. La modernización de Puerto Vallarta ¿Renovación urbana o turistificación asistida? PASOS Rev. Tur. y Patrim. Cult. 2020, 18, 831–842. [Google Scholar] [CrossRef]
- Mansilla López, J.A. No es turismofobia, es lucha de clases. Políticas urbanas, malestar social y turismo en un barrio de Barcelona. Rev. Nodo 2019, 13, 42–60. [Google Scholar] [CrossRef]
- Adelman, R.M.; Balta Ozgen, A.; Rabii, W. Buffalo’s West Side Story: Migration, Gentrification, and Neighborhood Change. City Community 2019, 18, 770–791. [Google Scholar] [CrossRef]
- Gin, J.; Taylor, D.E. Movements, neighborhood change, and the media—Newspaper coverage of anti-gentrification activity in the San Francisco Bay Area: 1995–2005. In Environment and Social Justice: An International Perspective (Research in Social Problems and Public Policy, Vol. 18), 1st ed.; Taylor, D.E., Ed.; Emerald Publishing Limited: Bingley, UK, 2010; Chapter 2; pp. 75–114. ISBN 978-0-85724-183-2. [Google Scholar]
- Ley, D.; Teo, S.Y. Gentrification in Hong Kong? Epistemology vs. Ontology. Int. J. Urban Reg. Res. 2014, 38, 1286–1303. [Google Scholar] [CrossRef]
- Hassanli, N.; Small, J.; Darcy, S. The representation of Airbnb in newspapers: A critical discourse analysis. Curr. Issues Tour. 2022, 25, 3186–3198. [Google Scholar] [CrossRef]
- Lehmann, J.; Weber, F.; Graf-Vlachy, L.; König, A. Talking institutions in the sharing economy: A content analysis of actor quotes in the print media and a taxonomy of discursive strategies. In Information Systems for a Sharing Society, Proceedings of the 27th European Conference on Information Systems (ECIS 2019), Kista, Sweden, 8–14 June 2019; vom Brocke, J., Gregor, S., Muller, O., Eds.; Association for Information Systems: Stockholm-Uppsala, Sweden, 2020; pp. 1–16. [Google Scholar]
- Ozdemir, G.; Turker, D. Institutionalization of the sharing in the context of Airbnb: A systematic literature review and content analysis. Anatolia 2019, 30, 601–613. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ajuntament de Barcelona. Pla Especial Urbanístic d’Allotjaments Turístics (PEUAT). Available online: https://ajuntament.barcelona.cat/pla-allotjaments-turistics/es (accessed on 5 February 2023).
- Garay-Tamajón, L.; Lladós-Masllorens, J.; Meseguer-Artola, A.; Morales-Pérez, S. Analyzing the influence of short-term rental platforms on housing affordability in global urban destination neighborhoods. Tour. Hosp. Res. 2022, 22, 444–461. [Google Scholar] [CrossRef]
- Blanco-Romero, A.; Blázquez-Salom, M.; Cànoves, G. Barcelona, Housing Rent Bubble in a Tourist City. Social Responses and Local Policies. Sustainability 2018, 10, 2043. [Google Scholar] [CrossRef] [Green Version]
- Paül i Agustí, D. La Capital Europea de la Cultura de España 2016. Análisis comparativo de Donostia-San Sebastián, ciudad designada, y las candidaturas de Málaga y Zaragoza. Cuad. del Ateneo 2017, 56, 242–264. [Google Scholar]
- Ramos Lizana, M. Málaga, ciudad de museos. Mus. Rev. Asoc. Prof. Museólogos España 2008, 12, 217–253. [Google Scholar]
- Área de Turismo del Ayuntamiento de Málaga. Museos Málaga—Amor al arte: Málaga, ciudad de museos. Available online: https://visita.malaga.eu/es/que-ver-y-hacer/visitas/museos-malaga (accessed on 5 February 2023).
- Jover, J.; Díaz-Parra, I. Who is the city for? Overtourism, lifestyle migration and social sustainability. Tour. Geogr. 2022, 24, 9–32. [Google Scholar] [CrossRef]
- Chamizo-Nieto, F.J.; Nebot-Gómez de Salazar, N.; Rosa-Jiménez, C.; Reyes-Corredera, S.; Brito-Henriques, E. Indicadores de intensidad de uso turístico y conflicto social. Un estudio comparado de ciudades portuarias del arco mediterráneo. In Investigación y Transferencia de las Ciencias Sociales Frente a un Mundo en Crisis, 1st ed.; Bermúdez Vázquez, M., Chaves Montero, A., Eds.; Dykinson: Madrid, Spain, 2022; Chapter 78; pp. 1553–1583. ISBN 978-84-1377-924-9. [Google Scholar]
- Majewska, J. Inter-regional agglomeration effects in tourism in Poland. Tour. Geogr. 2015, 17, 408–436. [Google Scholar] [CrossRef]
Year | Barcelona | Malaga | |||||
---|---|---|---|---|---|---|
Cultural Activities 1 | Airline Passengers 2 | Cruise Passengers 3 | ||||
Score (%) | Ranking (#) | Travellers (No.) | Ranking (#) | Travellers (No.) | Ranking (#) | |
2009 | 83.5 | 2 | 1 | 13 | 27,421,682 | 11,622,429 | 2 | 4 | 2,151,465 | 487,955 | 1 | 5 |
2010 | 77 | 7.5 | 2 | 10 | 29,209,536 | 12,064,521 | 2 | 4 | 2,347,976 | 659,123 | 1 | 5 |
2011 | 78 | 8.5 | 2 | 9 | 34,398,226 | 12,823,117 | 2 | 4 | 2,657,244 | 638,845 | 1 | 5 |
2012 | 88 | 7.5 | 2 | 10 | 35,144,503 | 12,581,944 | 2 | 4 | 2,408,634 | 651,517 | 1 | 5 |
2013 | 86.5 | 18 | 2 | 5 | 35,216,828 | 12,925,186 | 2 | 4 | 2,599,232 | 397,098 | 1 | 6 |
2014 | 73.5 | 23.5 | 2 | 5 | 37,558,981 | 13,748,976 | 2 | 4 | 2,364,292 | 407,870 | 1 | 5 |
2015 | 67.5 | 21 | 2 | 5 | 39,711,237 | 14,404,206 | 2 | 4 | 2,540,302 | 418,503 | 1 | 5 |
2016 | 78 | 35 | 2 | 5 | 44,154,722 | 16,673,151 | 2 | 4 | 2,683,594 | 444,176 | 1 | 5 |
2017 | 56.9 | 35.6 | 2 | 5 | 47,284,346 | 18,626,581 | 2 | 4 | 2,712,247 | 509,644 | 1 | 5 |
2018 | 64.5 | 40.9 | 2 | 5 | 50,172,689 | 19,021,779 | 2 | 4 | 3,041,963 | 507,421 | 1 | 5 |
2019 | 72.1 | 54.8 | 2 | 4 | 52,688,455 | 19,858,656 | 2 | 4 | 3,137,918 | 476,973 | 1 | 6 |
Δ2009–19 | −11.4 | +52.8 | −1 | +9 | +92.14% | +70.86% | 0 | 0 | +45.85% | −2.25% | 0 | −1 |
Ref._Indicator Name Unit | Definition | Data Collection Barcelona | Malaga | Source Barcelona | Malaga |
---|---|---|---|
I1_Citizen Initiatives No. of citizen initiatives/ 100,000 inhab. | Reported citizen initiatives in most-read local newspapers: neighbourhood associations, urban movements, emerging platforms and other stakeholders that take part in the conflicts of interest between residents, tourists, and other actors involved. | Agents mentioned in news items published up to and including 2019 from mainstream local newspapers according to the number of daily readers measured by the Asociación para la Investigación de Medios de Comunicación (AIMC) media audit. | Most-read local newspaper (no. of readers from April 2019 to March 2020): La Vanguardia (395,000) | Diario SUR (148,000), Málaga hoy (16,000), and La Opinión de Málaga (10,000) |
I2_Population No. of residents/ha | Population density calculated using the official register of inhabitants. | 1 January 2020 | 31 December 2019 | Municipal census data in 2019 [52] |
I3_Housing No. of houses/ 100,000 inhab. | Residential use: properties from the housing census listings. | Year of construction up to and including 2019. | National cadastral Information—Sede Electrónica del Catastro [59] |
I4_Airbnb No. of beds/ 100,000 inhab. | Airbnb listings: entire home/apartment, private room and shared room. | 12 August 2019 | 30 July 2019 | Inside Airbnb platform [60] |
I5_Tourist Accommodation No. of tourist accom./ 100,000 inhab. | Regulated tourist accommodation: (1) P2P accommodation (2) Hotel (3) Tourist apartment (4) Guest house (5) Boarding house (6) Shelter | Registrations up to and including the year 2019–last registration date from listings: (1) 1 October 20219 | 30 December 2019 (2) 13 December 2019 | 27 November 2019 (3) 21 September 2018 | 12 December 2019 (4) 23 May 2018 | 19 July 2019 (5) 2019 | 27 June 2019 (6) 23 May 2018 | 2019 | (1–6) Open Data BCN [61,62,63,64] | (1–5) Establecimientos y Servicios Turísticos—Junta de Andalucía [65], (6) Web scraping from Google Maps |
I6_Cultural Amenity No. of amenities/ 100,000 inhab. | Leisure activities and recreational facilities: (1) Auditoriums (2) Cinemas (3) Cultural centres (4) Monuments/main tourist points (5) Museums, together with art galleries, conference rooms and showrooms (6) Theatres | Art and cultural facilities active in 2019—last registration date from listings | Data collection updated monthly since: (1) 24 November 2014 | 25 April 2018 (2) 18 April 2018 | 11 May 2017 (3) 28 June 2017 | 22 June 2020 (4) 6 November 2017 | 22 June 2020 (5) 17 May 2017 | 25 April 2018 (6) 13 December 2019 | 11 May 2017 | Open Data BCN [66,67,68] | Datos Abiertos Ayto. Málaga [69,70,71,72,73,74,75,76,77] |
I7_Terraces No. of terraces/ 100,000 inhab. | Terraces in public space for restaurants and food shops whose authorisation is allowed. | 1 January 2020 | 19 October 2019 | Open Data BCN [78] | Datos Abiertos Ayto. Málaga [79] |
I8_Nightlife No. of establishments/ 100,000 inhab. | List of music and drinks venues | Registrations up to and including the year 2019—last registration date from listings: 30 Septembers 2019 | 2019 | Open Data BCN [80] | Web scraping from Google Maps |
I9_Souvenir Shops No. of shops/ 100,000 inhab. | Souvenirs shops welcome visitors and open their doors even weekends and bank holiday. | Census of ground floor premises categorised by souvenir and/or bazaar uses in 2019 | Shops belonging to the Malaga Cruise Shops network in October 2019 | Open Data BCN [81] | Malaga Cruise Shops—Ayto. Málaga [82] |
City | Ranking (#) | Newspaper | Daily Readers (In 1000s) | Location | Off-Topic | |
---|---|---|---|---|---|---|
Sport | Economy | |||||
Barcelona | 1 | La Vanguardia | 395 | Barcelona | ||
2 | El Periódico | 273 | Catalonia | |||
3 | Mundo Deportivo | 157 | Spain | ● | ||
4 | Sport | 122 | Spain | ● | ||
5 | 20 Minutos | 106 | Spain | |||
6 | Ara | 74 | Catalonia | |||
Baleares Islands | ||||||
Comunidad Valenciana | ||||||
Andorra | ||||||
7 | Marca | 66 | Spain | ● | ||
8 | El País | 59 | Spain | |||
9 | El Punt Avui | 43 | Catalonia | |||
10 | As | 32 | Spain | ● | ||
11 | El Mundo | 26 | Spain | |||
12 | Regió7 | 26 | Catalunya Central, Catalonia | |||
13 | Expansión | 22 | Spain | ● | ||
14 | ABC | 12 | Spain | |||
15 | La Razón | 8 | Spain | |||
16 | Cinco Días | 4 | Spain | ● | ||
17 | Diari de Tarragona | 2 | Campo de Tarragona, Catalonia | |||
Tierras del Ebro, Catalonia | ||||||
18 | Segre | 1 | Ponent, Catalonia | |||
Alto Pirineo y Arán, Catalonia | ||||||
Malaga | 1 | Diario SUR | 148 | Malaga | ||
2 | Marca | 60 | Spain | ● | ||
3 | El País | 38 | Spain | |||
4 | As | 28 | Spain | ● | ||
5 | El Mundo | 20 | Spain | |||
6 | ABC | 17 | Spain | |||
7 | Málaga hoy | 16 | Malaga | |||
8 | La Razón | 10 | Spain | |||
9 | La Opinión de Málaga | 10 | Malaga | |||
10 | Viva | 8 | Andalusia | |||
11 | 20 Minutos | 7 | Spain | |||
12 | Ideal de Andalucía | 6 | Andalusia | |||
13 | Mundo Deportivo | 4 | Spain | ● | ||
14 | La Vanguardia | 2 | Spain | |||
15 | Sport | 2 | Spain | ● | ||
16 | Expansión | 2 | Spain | ● | ||
17 | El Periódico | 1 | Andalusia | |||
18 | Diario de Sevilla | 1 | Seville | |||
19 | Cinco Días | 1 | Spain | ● |
Month | Barcelona | Malaga | ||
---|---|---|---|---|
Date Collection | Airbnb Listings | Date Collection | Airbnb Listings | |
1 | 14 January 2019 | 18,033 | 22 December 2018 | 4894 |
2 | 6 February 2019 | 17,763 | 30 January 2019 | 4899 |
3 | 8 March 2019 | 17,807 | 24 February 2019 | 4925 |
4 | 10 April 2019 | 17,899 | 31 March 2019 | 5056 |
5 | 14 May 2019 | 18,302 | 1 May 2019 | 5236 |
6 | 7 June 2019 | 18,837 | 30 May 2019 | 5442 |
7 | 10 July 2019 | 19,833 | 30 June 2019 | 5738 |
8 | 12 August 2019 | 20,556 | 30 July 2019 | 5983 |
9 | 17 September 2019 | 20,404 | 1 September 2019 | 6085 |
10 | 16 October 2019 | 20,147 | 30 September 2019 | 6051 |
11 | 9 November 2019 | 20,428 | 31 October 2019 | 6028 |
12 | 10 December 2019 | 20,843 | 30 November 2019 | 6145 |
City No. of Census Tracts (N) | Statistic | Indicators | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Socio-Demographic | Tourism Intensification | |||||||||
I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | ||
Barcelona 1068 | Min. | 0 | 1.53 | 9005.1 | 0 | 0 | 0 | 0 | 0 | 0 |
Max. | 693.13 | 1838.19 | 65,837.6 | 84,826.76 | 14,759.93 | 1523.7 | 3141.67 | 1584.65 | 3363.91 | |
Sum | 16,549.86 | 484,884.33 | 45,323,967.82 | 4,141,419.26 | 670,469.29 | 55,303.12 | 382,240.63 | 37,547.28 | 24,773.56 | |
Mean | 15.5 | 454.01 | 42,438.17 | 3877.73 | 627.78 | 51.78 | 357.9 | 35.16 | 23.2 | |
SD | 55.06 | 290.3 | 5422.35 | 6117.03 | 1298.22 | 118.97 | 403.72 | 122.87 | 143.86 | |
Malaga 434 | Min. | 0 | 0.07 | 17,536.81 | 0 | 0 | 0 | 0 | 0 | 0 |
Max. | 772.8 | 1527.78 | 143,122.1 | 187,789.8 | 35,085.01 | 6017.19 | 11,437.4 | 6931.96 | 5444.13 | |
Sum | 5797.65 | 123,951.3 | 19,480,316.22 | 2346,013.4 | 464,423.57 | 22,113.25 | 130,062.57 | 54,179.85 | 14,764.02 | |
Mean | 13.36 | 285.6 | 44,885.52 | 5405.56 | 1070.1 | 50.95 | 299.68 | 124.84 | 34.02 | |
SD | 68.14 | 267.87 | 12,578.52 | 17,046.98 | 3476.5 | 329.75 | 934.22 | 566.33 | 353.8 |
Indicators | |||||||||
---|---|---|---|---|---|---|---|---|---|
Socio-Demographic | Tourism Intensification | ||||||||
I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | |
I1 | - | −0.123 * | 0.53 *** | 0.769 *** | 0.718 *** | 0.751 *** | 0.721 *** | 0.52 *** | 0.781 *** |
I2 | −0.179 *** | - | −0.02 | −0.143 ** | −0.117 * | −0.11 * | −0.108 * | −0.12 * | −0.08 |
I3 | 0.031 | −0.136 *** | - | 0.69 *** | 0.704 *** | 0.49 *** | 0.622 *** | 0.533 *** | 0.503 *** |
I4 | 0.216 *** | 0.015 | 0.214 *** | - | 0.975 *** | 0.705 *** | 0.831 *** | 0.792 *** | 0.708 *** |
I5 | 0.256 *** | −0.207 *** | 0.022 | 0.226 *** | - | 0.645 *** | 0.771 *** | 0.756 *** | 0.638 *** |
I6 | 0.335 *** | −0.291 *** | 0.022 | 0.13 *** | 0.319 *** | - | 0.779 *** | 0.637 *** | 0.922 *** |
I7 | 0.26 *** | −0.241 *** | 0.11 *** | 0.312 *** | 0.513 *** | 0.209 *** | - | 0.815 *** | 0.851 *** |
I8 | 0.385 *** | −0.14 *** | 0.072 * | 0.281 *** | 0.39 *** | 0.346 *** | 0.434 *** | - | 0.645 *** |
I9 | 0.205 *** | −0.081 ** | 0.05 | 0.224 *** | 0.189 *** | 0.271 *** | 0.219 *** | 0.245 *** | - |
Independent Variables | Dependent Variable: I1 | |
---|---|---|
Barcelona | Malaga | |
I4 | 0.001 ** (0.000) | 0.004 *** (0.001) |
I5 | 0.002 (0.001) | −0.004 (0.002) |
I6 | 0.094 *** (0.014) | 0.017 (0.013) |
I7 | 0.008 (0.005) | 0.000 (0.005) |
I8 | 0.107 *** (0.015) | −0.044 *** (0.005) |
I9 | 0.02 (0.011) | 0.086 *** (0.015) |
Constant | −0.318 (2.152) | 0.295 (1.859) |
Observations | 1068 | 434 |
Adjusted R2 | 0.209 | 0.75 |
F-value | 48.036 *** (df = 6; 1061) | 217.148 *** (df = 6; 427) |
City No. of Census Tracts (N) | Statistic | Indicators | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Socio-Demographic | Tourism Intensification | |||||||||
I1 | I2 | I3 | I4 | I5 | I6 | I7 | I8 | I9 | ||
Barcelona 1068 | Global Moran’s Index | 0.09 | 0.08 | 0.03 | 0.23 | 0.22 | 0.06 | 0.21 | 0.13 | 0.08 |
z-score | 27.59 | 23.75 | 9.1 | 67.04 | 63.96 | 17.82 | 59.94 | 38.71 | 27.76 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Malaga 434 | Global Moran’s Index | 0.04 | 0.17 | 0.09 | 0.12 | 0.12 | 0.03 | 0.05 | 0.06 | 0.02 |
z-score | 10.1 | 38.88 | 20.55 | 28.19 | 28.91 | 10.75 | 12.0 | 16.09 | 6.41 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
City No. of Census Tracts (N) | Statistic | Citizen Initiative (I1) vs. Tourism Intensification (I4–9) | |||||
---|---|---|---|---|---|---|---|
I1–I4 | I1–I5 | I1–I6 | I1–I7 | I1–I8 | I1–I9 | ||
Barcelona 1068 | Global Moran’s Index | 0.194 | 0.18 | 0.17 | 0.205 | 0.263 | 0.228 |
z-score | 15.485 | 14.123 | 13.152 | 15.85 | 19.958 | 18.215 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Malaga 434 | Global Moran’s Index | 0.499 | 0.48 | 0.368 | 0.451 | 0.455 | 0.384 |
z-score | 20.369 | 19.814 | 16.097 | 19.29 | 20.103 | 16.397 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamizo-Nieto, F.J.; Nebot-Gómez de Salazar, N.; Rosa-Jiménez, C.; Reyes-Corredera, S. Touristification and Conflicts of Interest in Cruise Destinations: The Case of Main Cultural Tourism Cities on the Spanish Mediterranean Coast. Sustainability 2023, 15, 6403. https://doi.org/10.3390/su15086403
Chamizo-Nieto FJ, Nebot-Gómez de Salazar N, Rosa-Jiménez C, Reyes-Corredera S. Touristification and Conflicts of Interest in Cruise Destinations: The Case of Main Cultural Tourism Cities on the Spanish Mediterranean Coast. Sustainability. 2023; 15(8):6403. https://doi.org/10.3390/su15086403
Chicago/Turabian StyleChamizo-Nieto, Francisco José, Nuria Nebot-Gómez de Salazar, Carlos Rosa-Jiménez, and Sergio Reyes-Corredera. 2023. "Touristification and Conflicts of Interest in Cruise Destinations: The Case of Main Cultural Tourism Cities on the Spanish Mediterranean Coast" Sustainability 15, no. 8: 6403. https://doi.org/10.3390/su15086403
APA StyleChamizo-Nieto, F. J., Nebot-Gómez de Salazar, N., Rosa-Jiménez, C., & Reyes-Corredera, S. (2023). Touristification and Conflicts of Interest in Cruise Destinations: The Case of Main Cultural Tourism Cities on the Spanish Mediterranean Coast. Sustainability, 15(8), 6403. https://doi.org/10.3390/su15086403