
Citation: Ruseruka, C.; Mwakalonge,

J.; Comert, G.; Siuhi, S.; Ngeni, F.;

Major, K. Pavement Distress

Identification Based on Computer

Vision and Controller Area Network

(CAN) Sensor Models. Sustainability

2023, 15, 6438. https://doi.org/

10.3390/su15086438

Academic Editors: Lev Khazanovich

and Sushobhan Sen

Received: 9 February 2023

Revised: 28 March 2023

Accepted: 30 March 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Pavement Distress Identification Based on Computer Vision
and Controller Area Network (CAN) Sensor Models
Cuthbert Ruseruka 1,* , Judith Mwakalonge 1, Gurcan Comert 2 , Saidi Siuhi 1, Frank Ngeni 1

and Kristin Major 2

1 Department of Engineering, South Carolina State University, Orangeburg, SC 29117, USA;
jmwakalo@scsu.edu (J.M.); ssiuhi@scsu.edu (S.S.); fngeni@scsu.edu (F.N.)

2 Computer Science, Physics, and Engineering Department, Benedict College, 1600 Harden St,
Columbia, SC 29204, USA; gurcan.comert@benedict.edu (G.C.); kristin.major50@my.benedict.edu (K.M.)

* Correspondence: cruseruk@scsu.edu

Abstract: Recent technological developments have attracted the use of machine learning technologies
and sensors in various pavement maintenance and rehabilitation studies. To avoid excessive road
damages, which cause high road maintenance costs, reduced mobility, vehicle damages, and safety
concerns, the periodic maintenance of roads is necessary. As part of maintenance works, road
pavement conditions should be monitored continuously. This monitoring is possible using modern
distress detection methods that are simple to use, comparatively cheap, less labor-intensive, faster,
safer, and able to provide data on a real-time basis. This paper proposed and developed two models:
computer vision and sensor-based. The computer vision model was developed using the You Only
Look Once (YOLOv5) algorithm for detecting and classifying pavement distresses into nine classes.
The sensor-based model combined eight Controller Area Network (CAN) bus sensors available
in most new vehicles to predict pavement distress. This research employed an extreme gradient
boosting model (XGBoost) to train the sensor-based model. The results showed that the model
achieved 98.42% and 97.99% area under the curve (AUC) metrics for training and validation datasets,
respectively. The computer vision model attained an accuracy of 81.28% and an F1-score of 76.40%,
which agree with past studies. The results indicated that both computer vision and sensor-based
models proved highly efficient in predicting pavement distress and can be used to complement each
other. Overall, computer vision and sensor-based tools provide cheap and practical road condition
monitoring compared to traditional manual instruments.

Keywords: pavement maintenance; XGBoost; CAN sensors in roads condition; YOLOv5; sensor-
based model; pavement condition monitoring; Deep Learning models for road condition monitoring

1. Introduction

Road condition monitoring involves routinely surveying the road surface, identifying
roadway deficiencies, and proposing corrective priorities. It continuously monitors the road
to ensure that it provides a safe and smooth riding experience to the passenger and causes
less damage to the vehicles [1]. A timely and well-planned road condition assessment can
reduce roadway maintenance and operational costs. For instance, the total maintenance
costs of paved roads are estimated at 2–3% of initial investment costs [2]. However, delays
in maintenance cause the costs to increase with time [3].

Sahin et al. [4] pointed out five steps for road maintenance and rehabilitation (M&R):
network inventory, condition assessment, needs analysis, project prioritization, and impact
analysis. The road conditions monitoring process as a part of M&R ensures that road distresses
are identified and addressed prevent further deterioration. Feldman et al. [5] classified the
current road conditions monitoring processes into manual and automated categories.

Manual road conditions monitoring involves qualified personnel using traditional
survey forms and walking along the roads to visually check, measure, and record the
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observed distress [6]. This method is labor-intensive, time-consuming, costly, and creates
safety concerns for the surveyors who perform it during the daytime when traffic flows [7].
Sometimes, either one or more lanes must be closed to improve this method’s safety.
However, this brings about another shortcoming, the disruption of traffic flow.

Automated methods that have been used to date involve using special vehicles
equipped with special sensors to detect and capture road defects [5]. These methods
have advantages over manual techniques, such as being less dependent on human labor
and rapid operation, ensuring timely reporting of defects and improved safety. However,
these methods are expensive and cost authorities a lot of money [8].

Researchers have recently conducted several studies using machine learning (ML)
approaches to provide less expensive and highly efficient road condition monitoring
approaches [9]. These approaches involve various ML models developed either to only
detect or to detect and classify pavement defects into multiple categories. The developed
models are either computer vision-based or sensor-based (vibration-based).

The identification of pavement distresses using machine learning (ML) has the poten-
tial to contribute to sustainability in the construction and maintenance of pavements. ML
algorithms can effectively and efficiently detect and classify pavement distresses, leading
to targeted and prioritized maintenance, preventive maintenance, and improved quality
control. This can reduce the overall cost of and resources needed for maintenance and the
extension of pavement lifespan, thereby reducing the need for reconstruction and the envi-
ronmental impact of raw material extraction. Furthermore, extending pavement lifespan
through effective maintenance can contribute to reducing carbon emissions associated with
pavement construction and maintenance.

This paper aims to prepare a computer vision model for detecting and classifying
pavement distresses based on Deep Learning (DL) and compare its performance to the
sensor-based model. The paper also aims to combine eight Controller Area Network (CAN)
bus sensors to develop a sensor-based model that predicts the presence of pavement defects
once vehicles equipped with these sensors are driven over said defects. The two models
can be used by road authorities to automate the process of collecting road condition data.
The sensors’ model can complement the vision-based model in adverse weather conditions,
where computer vision is ineffective.

The remainder of this paper is organized as follows: Section 2 provides a summary
of recent studies that applied machine learning approaches to prepare models for road
condition monitoring, Section 3 discusses the source of data used, model selection, model
training, and results, and Section 4 presents the conclusion and conclusion remarks.

2. Literature Review

In literature, various studies have conducted research to detect and classify pavement
distress using different DL methods based on computer vision and vibrations (sensors).
Computer vision-based models involve the use of images in model training. For instance,
Wang et al. [10] used 5000 images to develop a convolutional neural network (CNN) model
for detecting cracks in asphalt pavements. In this study, the trained model achieved an
accuracy of 96.32 and 94.29% on training and testing data, respectively. Similarly, Kim
et al. [11] developed an AlexNet CNN model trained for crack detection with images
scraped from the internet and achieved precision and recall values greater than 90%. The
model also detected cracks from real-time video with 81% and 88% recall and precision,
respectively. CrackNet CNN was employed by Zhang et al. [12] in developing a model for
automated pixel-level pavement crack detection using 1800 three-dimensional (3D) images.
The testing of 200 3D images showed that the model achieved 90.13%, 87.63%, and 88.86%
values in precision, recall, and F1-score, respectively. Also, Zhang et al. [13] developed a
model for automated pixel-level crack detection on 3D asphalt pavement surfaces using
CrackNet-R recurrent neural network (RNN). The model was trained on 3000 3D images
and tested on 500 3D images. The testing results showed that the model achieved 88.89%
precision, 95.00% recall, and 91.84% F1-score.
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Also, Maeda et al. [14] developed a vision-based DL model based on a Single Shot
MultiBox Detector (SSD) algorithm using 9053 road damage images captured using a
smartphone installed on a car dashboard. The model achieved recall and precision values
of more than 71% and 77%, respectively. Similarly, Maeda et al. [15] investigated road
damage detection using artificial images in DL models developed by generative models,
such as a generative adversarial network (GAN). The results showed that the F1-score of
the model improved by 2% and 5% when the proportion of original images was small and
large, respectively.

Other researchers developed sensor-based models using various sensors to predict the
presence of defects on road surfaces. Aleadelat et al. [16] used smartphone accelerometers
to determine International Roughness Index (IRI) and achieved an adjusted R2 of 0.8. Souza
et al. [17] used sensor data collected from smartphone accelerometers and complexity
invariant distance to develop an ML model. The model achieved a classification accuracy of
80% to 98%. Similarly, Christodoulou et al. [18] used vibration sensors to detect pavement
patch defects using smartphone images. The results showed that the vibration-based
approaches were efficient; however, they failed to cover the entire roadway and could
not detect non-vibration-induced defects. To address this observed shortcoming, a vision
model was developed instead. Also, Sandamal et al. [19] used onboard diagnostic devices
and smartphone sensors to develop a low-cost road condition monitoring system for
detecting road potholes. The system confirmed smartphone sensor data to be effective in
the prediction of potholes.

In her study, Pomoni [20] explored the use of smart tires in vehicles to detect the
tire–road friction. The review of 105 references revealed how different sensors can be
embedded in vehicle tires and assist in the detection of road surface conditions to enhance
driver comfort.

Ameddah et al. [1] developed a model using smartphone sensors based on k-means
clustering algorithms and achieved 88.67% accuracy in real-time road pavement monitoring.
In another study, Ahmed et al. [21] used Traffic Speed Deflectometer (TSD) data to predict
pavement structural conditions using Random Forest, XGBoost, and logistic regression
models. The models achieved 65%, 69%, and 57% accuracy, respectively. Lekshmipathy
et al. [22] compared the performance of vibration-based and vision-based approaches for
automated distress detection using ML. This study employed a vibration-based method
using a smartphone accelerometer and gyroscope as well as a vision-based method using
video processing. The developed models achieved 80% and 84% accuracy for the vibration-
based and vision-based models, respectively. Results were validated manually on-site and
revealed that the first approach is sufficient for routine monitoring purposes while the
latter is more appropriate for detailed analysis.

In summary, the literature review revealed that no past studies had used CAN bus
sensors to predict pavement distress. This study aimed at preparing a pavement detection
model based on CAN bus sensors and compares the performance of said model with
the computer vision-based model. The vision-based model is prepared based on the
YOLOv5 algorithm.

3. Methodology

This section explains the methods used in data collection, processing, model selection,
model preparation, analysis, and evaluation of results. These methods are summarized in
Figure 1 and discussed in more detail in the following subsections.
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3.1. Data Collection
3.1.1. Vision-Based Data

Image datasets used in this study were collected from various sources on the internet
to train the vision-based model. The datasets contained images of road pavement surfaces
collected from multiple countries, including the United States, Japan, India, and the Czech
Republic. The German Asphalt Pavement Distress (GAPs) dataset, which includes a total
of 1969 gray-valued images [23], and the CRACK500 dataset, which consists of 500 Red–
Green–Blue (RGB) images of pavement cracks approximately 2000 × 1500 pixels in size
that were collected on the main campus of Temple University using cell phones were used
in this study [24]. In addition, the Road Damage dataset was used, which consists of
9053 labeled road images 600 × 600 pixels in size, was acquired from a smartphone camera
installed on the dashboard of a car [14]. This paper randomly selected 3500 images from
these datasets using an excel spreadsheet with the “RAND” command. The final dataset
was obtained after the excel spreadsheet was randomized three times. This dataset was
then divided into 80% and 20% ratios for model training and validation, respectively, and
350 images (10% of the image dataset) were added to the training dataset as background
images to reduce the effect of False Positives (FPs) [25].

3.1.2. Sensor-Based Data

The sensor-based dataset was collected from the American Honda Motor Co., Inc.
It was extracted from a data collection called ‘Toward Driving Scene Understanding: A
Dataset for Learning Driver Behavior and Causal Reasoning’ by Ramanishka et al. [26]. The
dataset includes 104 hours of actual human driving in the San Francisco Bay Area collected
using an instrumented vehicle equipped with different sensors with driving speeds ranging
from 0 mph to 120 mph. The dataset comprises video and sensor readings recorded on
various road sections for all types of roads (based on functionality).

Videos

This study selected five videos from the dataset to represent all speeds ranging from
0 mph to 120 mph and all road classes. These videos were used to generate frames (images)
for model testing. Figure 2 below shows sample images with different types of road
surface distress.

Sensors

For every video, there was a set of nine sensor readings recorded. The sensor record-
ings include iso-time stamp, real-time kinematic (RTK) position, real-time kinematic (RTK)
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track, acceleration pedal angle, brake pedal, turn signal (left turn & right turn), steer (steer
angle & steer speed), speed, and yaw. These readings were recorded using Controller Area
Network (CAN) bus sensors. The first three readings were not used in this study since
they are not affected by the road surface condition. Figure 3 presents sample plots for the
remaining sensor readings. The plots are from the first 20,000 (out of 265,000 readings
associated with the five sample videos) readings (y-axis) plotted against the frequencies
(x-axis).
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The videos that were recorded simultaneously with the sensor readings in the above
Figure 3 were analyzed to identify the distresses on the road along the vehicle path. The
distresses of interest in this study were those located only within the right-of-way where
vehicles typically travel. This is because the rest of the distresses did not affect the ride if
the vehicle tire did not pass over them. A value of 1 was assigned for observed distresses,
and a 0 for places with no distresses. Figure 4 below shows a sample distress distribution
along the road.
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3.2. Model Selection
3.2.1. Vision-Based Model

A computer vision model was developed using the YOLOv5 algorithm. It was selected
because of its advantages [27]. These advantages include ease of exporting to other file
formats (exportability), its high accuracy value, ease to use, small memory requirements
of about 88% compared to YOLOv4 (27 MB vs. 244 MB), and its high speed (about 180%
faster than YOLOv4, 140 FPS vs. 50 FPS).

Yolov5 Architecture

Figure 5 presents the architecture of YOLOv5. The model consists of three main parts:
The Backbone, Neck (PAnet), and Head (YOLO Layer). These parts play different roles in
the model. The Backbone extracts vital features from an input image by reducing the spatial
resolution of the input image and increasing its feature (channel) resolution. YOLOv5 uses
Cross Stage Partial Network (CSP-Darknet53) as a backbone. The CSP extracts beneficial
characteristics from an input image and passes them to the model neck. The model neck
creates feature pyramids that aid the model simplification during object scaling. This
simplification helps recognize the same object in various sizes and scales. Feature pyramids
help assist the models in performing efficiently on previously unseen data. The final
detection step is carried out in the Model Head, which uses anchor boxes to construct final
output vectors with class probabilities, abjectness scores, and bounding boxes. It is used to
perform the last stage of operations.
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Distress Classification

The computer vision model’s purpose was to detect and classify pavement distress
into nine groups. The groups include Fatigue/Alligator, Block Cracks, Transverse Cracks,
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Longitudinal Wheel Path Cracks, Longitudinal Non-Wheel Path Cracks, Edge, Joint, and
reflective Cracks, Patches, Potholes, Raveling, Shoving, and Rutting. The classification is
based on the Distress Identification manual by the United States Department of Transporta-
tion [6].

3.2.2. Sensor-Based Model

This study uses Deep Learning (DL) to predict the presence of distress using sensors.
The expected output is either 1 (distress present) or 0 (distress absent). Therefore, a
classification model (type of supervised learning) is selected.

Several classification models have been used to date [28]. In this study, the XGBoost
model has been selected because of its advantages over other approaches. These advantages
include ease of use, high computational efficiency, and high model accuracy compared to
algorithms like Random Forest (RF) and logistic regression [21]. This model was used to
train on all eight sensors combined to predict the distresses.

XGBoost Model Architecture

XGBoost stands for Extreme Gradient Boosting. It is a popular boosting algorithm for
regression and classification purposes. It uses successive iterations to improve the errors of
base estimators by taking multiple weak learners. In this model, decision tree classifiers
are used as base estimators. If data is not complicated, XGBoost creates an ensemble of
linear models. It can also create an ensemble of a gradient-boosted tree (gbtree), which
utilizes a decision tree as a base estimator. It first establishes a base model that predicts the
target variable, and subsequent models are trained to fit the residuals from the previous
steps. The XGBoost algorithm uses decision trees in a sequential form. This algorithm
assigns weights to all the independent variables, which are then fed into the decision tree,
which predicts results. The weight of variables predicted incorrectly by the tree is increased,
and the variables are then fed to the second decision tree. These individual classifiers
then ensemble to give a stronger and more precise prediction model. Figure 6 shows the
flowchart of this model.

(i) Decision Tree

A decision tree is a building block of an XGBoost model. It has a flowchart-like tree
structure, where each internal node denotes a test on an attribute, each branch represents an
outcome of the test, and each leaf node (terminal node) holds a class label. It is commonly
used for classification and regression models. A tree can be seen as a piecewise constant
approximation. The output of an XGBoost model does not depend on a single decision tree
since every decision tree has a high variance. The best method to improve the outcome is to
combine several trees; when multiple trees are combined and perfectly trained on sample
data, the overall (resultant) variance is low. In the case of a classification problem, the final
output is taken using the majority voting classifier.

(ii) Boosting

In the boosting technique, weak classifiers are used to build a robust classifier, achieved
by building weak classifiers in series. The first step involves creating the model from
training data. The second step consists in making the second model that tries to correct the
errors in the first model. The process continues until the complete dataset is predicted or
the maximum number of models is added, as shown in Figure 5.

To assess the prediction performance, the Loss (L) is calculated using Equation (1),
where yi stands for the actual value of data and pi stands for the corresponding predicted
value. The overall loss of the algorithm is shown in Equation (2).

L(yi, pi) =
1
2
(yi − pi)

2 (1)

∑n
i=1 L(yi, pi) =

1
2
(yi − pi)

2 (2)
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3.3. Model Training
3.3.1. Vision-Based Model

The model was trained on the Google Colaboratory (Google Colab) environment. The
training parameters were fine-tuned to achieve desirable results. Table 1 shows the final
values obtained from the training.

Table 1. Training parameters.

S/N Parameter Value

1 Batch Size 40
2 Epochs 150
3 Learning Rate 0.01
4 Optimizer SGD = 1 × 10−2

5 Anchor Sizes Dynamic

3.3.2. Sensor-Based Model

The XGBoost model was trained on a Windows 10 Pro with NVIDIA GEFORCE
GTX GPU, AMD Ryzen 5 4600H with Radeon Graphics 3.00 GHz, and 16 GB RAM using
TensorFlow. All eight sensor readings were combined into a single excel spreadsheet
file for training and to check their influences on the prediction of distress made by the
model. Table 2 shows the hyperparameters used in the initial training. The initial training
aimed to obtain the optimum training parameters. When completed, hyperparameter
tuning was done using GridSearchCV. This optimum value was achieved by setting initial
hyperparameter lists, as shown in Table 2. These values and their ranges are provided by
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XGBoost developers [29]. After initial training, the outputs were plotted to demonstrate
the estimated model’s optimum number of trees and tree depth.

Table 2. (a) Initial training hyperparameters. (b) Hyperparameter sets.

S/N Parameter Value

(a)

1 learning rate 0.1
2 max depth 3
3 n_estimators 5000
4 subsample 0.5
5 colsample_bytree 0.5

(b)

1 learning_rate_list [0.02, 0.05, 0.1]
2 max_depth_list [2, 3, 5]
3 n_estimators_list [1000, 2000, 3000]

Figure 7 shows plots of the results of the model performance. The table indicates that
the model performs best at a maximum depth of 5 and higher values of trees.
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Figure 8 shows the model performance at various learning rates, which shows that the
performance is optimum at 0.05. Therefore, the optimal training parameters are learning
rate = 0.05, maximum depth = 5, and the number of estimators (n_estimators/ number of
trees) = 3000, subsample = 0.5, and colsample_bytree = 0.5.
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3.4. Performance Metrics
3.4.1. Vision-Based Model

The performance of the vision-based model developed using the YOLOv5 algo-
rithm is assessed based on precision, recall, average Mean Precision (mAP), and F1-score.
Equations (3)–(6) show that the four metrics are measures of True Positives (TP), False
Positives (FP), and False Negatives (FN). FP is the measure of how the model makes wrong
predictions, FN measures how the model misses the detections, and TP is the measure of
correct detections done by the model. APk stands for the average precision of class k, and n
stands for the total number of classes.

The F1-score is the harmonic mean of precision and recall. It is a good performance
measure for imbalanced data since it considers how data is distributed [30]. Equation (8)
shows F1-score computation, where P stands for Precision and R stands for recall.

Precision =
True Positives

True Positives + False Positives
(3)

Recall =
True Positives

True Positives + False Negatives
(4)

mean Average Precision (mAP) =
1
n∑k=n

k=1 APk (5)

F1score =
1

1
2 (

1
P + 1

R )
=

2 ∗ P ∗ R
(P + R)

(6)

3.4.2. Sensor-Based Model
Metrics

The performance of an XGBoost model is assessed using a Pearson correlation, accu-
racy, and F1-score. The Pearson correlation coefficient (ρr,p) between two arrays (R,P) is
defined as the covariance between array R and array P divided by the product of their re-
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spective standard deviations (σr,σp). Its value ranges from −1 to 1, where a value −1 means
perfect negative correlation, 0 means no correlation, and 1 means a perfect positive linear
relationship between the two values. Equation (7) shows the mathematical expression of
the Pearson correlation [31].

ρr,p =
cov(R, P)

σrσp
=

E((R − µr)(P − µp))

σrσp
(7)

where: µr stands for the mean of R—array, µp stands for the mean of P—array, and E((R
− µr)(P − µp)) represents the average value of (R,P) that is expected in a long sequence of
repeated trials of the random experiment.

Accuracy is the ratio of all correct predictions to the total number of predictions. It is
obtained as a ratio of the sum of True Positives (TP) and True Negatives (TN) to the total
number of predictions sample size, as shown by Equation (8). The F1-score is presented in
Equation (6).

Accuracy =
True Posives + True Negatives

Total Sample Size
(8)

Feature Importance Assessment

The sensor-based model was prepared using a combination of 8 different sensors.
All sensors contributed to the final model results and performance. Feature Importance
Assessment (FIA) was done to assess the extent to which individual sensors contribute to
the final results. Figure 9 presents the results of this analysis. The results show that the
prediction made by the model is mainly influenced by the steering angle at 26.70% and
influenced the least by steer speed at 5.30%.
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3.5. Results and Analysis
3.5.1. Results of Vision-based Road Surface Detection Model

Figure 10 shows the precision–recall curves (PR curves). The curves show how the
precision values vary with the increase in recall values during training. It shows that the
model attained an overall mean average precision (mAP@0.5) of 93.9% in all pavement
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classes. All curves are close to each other and are concentrated in the upper right corner,
which indicates that the model can predict and classify the distresses with high accuracy.
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Figure 11 shows how the F1-score changes with the increase in confidence during
training. The model attained an overall F1-score of 82%, indicating good accuracy under
this metric [30].

3.5.2. Results of Sensor-based Road Surface Detection Model

Figure 12 shows how the values of AUCs change with the increase in the number
of trees. The XGBoost model achieved an accuracy of 81.28% and an F1-score of 76.40%,
implying that the model can predict distresses with high accuracy. Also, the trained model
reached 98.42% AUC in the training dataset and 97.99% in the validation dataset, using
the Area Under the Curve (AUC) metrics. The figure shows that the values of AUC
increase sharply with the number of trees from 0 to 500, then the rate of increase decreases
and becomes almost constant as the number of trees approaches 3000. This observation
implies that the training process has been successful, and there is no overfitting. Also,
these results show that the developed model has high prediction accuracy since the AUC
value above 90% indicates high prediction accuracy, while AUC between 70% and 90%
presents moderate accuracy. An AUC of less than 70% means poor prediction accuracy of
the model [32].
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3.6. Score the Test Data

This paper used 20,000 arrays of sensor-based data for testing purposes to see how the
model detects pavement distresses. The distresses detected by the computer vision-based
models and the sensor-based models were used to make separate arrays, and Pearson
correlation analysis was done using the Pandas library in Python. Figure 13 shows the
confusion matrix for actual versus predicted distresses. The matrix shows a correlation
of 83% between the distresses detected by the computer vision-based model and those
detected by the sensor-based model.
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Figure 13. Confusion matrix for Actual versus Predicted distresses.

Figure 14 below shows the relationship between the observed distresses (ground truth)
and the model-predicted distresses (model-predicted). The overlaps between the two lines
indicate that the model prediction was in agreement with the actual condition on-site.
This plot shows that the model can predict most of the distresses and can be used with
high accuracy.
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4. Conclusions

This study has proposed models for detecting pavement distress as a measure of
road condition monitoring. The models comprise both computer vision and sensor-based
approaches. The study used freely available data from the internet and Honda Motors
Company [26]. In developing the vision model, this study used YOLOv5 algorithm that was
trained on 3500 images. The model achieved 95%, 93.4%, 97.2%, and 94% values in precision,
recall, mean average precision, and F1-score, respectively. The sensor-based model was
developed using the XGBoost model. The model was trained on eight different CAN bus
sensors combined. The model achieved 98.42% and 97.99% in training and validation using
area-under-curve (AUC) metrics, compared to 83.04% achieved by Chen et al. [33] using
the XGBoost model. The results obtained in this paper also fall within the high accuracy
range of an AUC above 90% [32]. In comparison, AUC that lies between 70% and 90%
presents moderate accuracy and an AUC of less than 0.7 indicates a poor prediction. In
conclusion, the results obtained in this paper showed that different CAN bus sensors could
be used to predict the presence of pavement distresses with high accuracy and therefore,
they can be used to complement the vision-based model in adverse weather conditions.

Limitations and Recommendations of the Study

This paper prepared a CAN bus sensor model to predict the presence of pavement
distresses without classification of the distress types. There is a need to conduct further
research to employ sensors and develop models that can detect and classify pavement
distresses simultaneously. In some conditions where the vision-based model does not
perform well, a model pooling technique can be employed where the sensor-based model
can complement the vision-based model. This pooling technique will assist in capturing
the distresses during adverse weather conditions, such as rainy weather or wet road
surfaces—i.e., where the poor performance of the vision-based model is observed.
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