Selecting Geological Formations for CO2 Storage: A Comparative Rating System
Abstract
:1. Introduction
M.H. Rating System and Evalutaion Factors
2. Development of M.H Rating System—Formation by Formation Analysis
2.1. Deep Saline Aquifers
2.1.1. CO2 Storage Mechanism for Deep Saline Aquifers
2.1.2. M.H. Rating System Factors for Deep Saline Aquifers
- Safety risks and mitigations:
- b.
- Storage Capacity of aquifers:
- c.
- Injection Rates:
- d.
- Storage Efficiency:
- e.
- Residual Trapping:
- f.
- Containment and integrity:
- g.
- Potential to improve:
2.2. Depleted Reservoirs
2.2.1. CO2 Storage Mechanism in Depleted Reservoirs
2.2.2. M.H. Rating System Factors for Depleted Reservoirs
- Storage capacity of depleted reservoirs:
- b.
- Injection rates:
- c.
- Efficiency:
- d.
- Residual trapping:
- e.
- Safety risks and mitigations:
- f.
- Containment and Integrity:
- g.
- Potential to improve:
2.3. Coal Seams
2.3.1. CO2 Storage Mechanism of Coal Seams
2.3.2. M.H. Rating System Parameters for Coal Seams
- CO2 storage capacity:
- b.
- Injection rates:
- c.
- Efficiency:
- d.
- Residual trap:
- e.
- Safety risks and mitigations:
- f.
- Containment and Integrity:
- g.
- Potential to Improve:
2.4. Basaltic Formation
2.4.1. Mechanism of CO2 Storage in Basaltic Formations
2.4.2. M.H. Rating System Parameters for Basalt
- CO2 storage capacity:
- b.
- Injection Rates:
- c.
- Efficiency:
- d.
- Residual trap:
- e.
- Safety risks and mitigations:
- f.
- Containment and Integrity:
- g.
- Potential to improve:
2.5. Clastic Formation
2.5.1. Mechanism for CO2 Storage in Clastic Formation
2.5.2. M.H. Rating System Parameters for Clastic Formation (Sandstone)
- CO2 storage capacity for clastic formations:
- b.
- Injection rates:
- c.
- Efficiency:
- d.
- Residual trap:
- e.
- Safety risks and mitigations:
- f.
- Containment and Integrity:
- g.
- Potential to improve:
3. Analysis of M.H. Rating System Parameters
- CO2 storage capacity (Storage scale)
- b.
- Injection rates (Injectivity scale)
- c.
- Efficiency (Efficiency scale)
- d.
- Residual trapping (trapping scale)
- e.
- Safety risks and mitigations (Safety scale)
- f.
- Contamination and integrity (Containment scale)
- g.
- Potential to improve (Potential scale)
4. M.H. Rating System for Categorizing Geological Formations for CO2 Storage
5. Way forward
5.1. Deep Saline Aquifers
5.2. Depleted Reservoirs
5.3. Coal Seams
5.4. Clastic Formations
5.5. Basaltic Formations
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, S. IPCC (2007): Climate Change the Physical Science Basis. AGU Fall Meeting Abstracts. 2007. Volume 2007, p. U43D–01. Available online: https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/faqs.html#:~:text=When%20referencing%20the%20group%20of,Qin%2C%20M (accessed on 11 March 2023).
- Fearnside, P.M. Emissions from tropical hydropower and the IPCC. Environ. Sci. Policy 2015, 50, 225–239. [Google Scholar] [CrossRef]
- Robinson, S.A. Climate change adaptation in SIDS: A systematic review of the literature pre and post the IPCC Fifth Assessment Report. Wiley Interdiscip. Rev. Clim. Change 2020, 11, e653. [Google Scholar] [CrossRef]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.osti.gov/etdeweb/biblio/20880391 (accessed on 11 March 2023).
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Dowell, N.C.; Fernández, J.R.; Ferrari, M.C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130–189. [Google Scholar] [CrossRef]
- Pires, J.; Martins, F.; Alvim-Ferraz, M.; Simões, M. Recent developments on carbon capture and storage: An overview. Chem. Eng. Res. Des. 2011, 89, 1446–1460. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rezaee, R.; Rasouli, V.; Rabiei, M. Significant aspects of carbon capture and storage–A review. Petroleum 2019, 5, 335–340. [Google Scholar] [CrossRef]
- Tcvetkov, P.; Cherepovitsyn, A.; Fedoseev, S. Public perception of carbon capture and storage: A state-of-the-art overview. Heliyon 2019, 5, e02845. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.-M.; Kang, J.-N.; Liu, L.-C.; Li, Q.; Wang, P.-T.; Hou, J.-J.; Liang, Q.-M.; Liao, H.; Huang, S.-F.; Yu, B. A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nat. Clim. Chang. 2021, 11, 112–118. [Google Scholar] [CrossRef]
- Snæbjörnsdóttir, S.Ó.; Sigfússon, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Withey, P.; Johnston, C.; Guo, J. Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage. Renew. Sustain. Energy Rev. 2019, 115, 109408. [Google Scholar] [CrossRef]
- Ali, M.; Jha, N.K.; Pal, N.; Keshavarz, A.; Hoteit, H.; Sarmadivaleh, M. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future outlook. Earth-Sci. Rev. 2022, 225, 103895. [Google Scholar] [CrossRef]
- Gholami, R.; Raza, A.; Iglauer, S. Leakage risk assessment of a CO2 storage site: A review. Earth-Sci. Rev. 2021, 223, 103849. [Google Scholar] [CrossRef]
- Thanh, H.V.; Sugai, Y.; Sasaki, K. Impact of a new geological modelling method on the enhancement of the CO2 storage assessment of E sequence of Nam Vang field, offshore Vietnam. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1499–1512. [Google Scholar] [CrossRef]
- Yang, B.; Shao, C.; Hu, X.; Ngata, M.R.; Aminu, M.D. Advances in Carbon Dioxide Storage Projects: Assessment and Perspectives. Energy Fuels 2023, 37, 1757–1776. [Google Scholar] [CrossRef]
- Patil, P.A.; Chidambaram, P.; Amir, M.S.B.E.; Tiwari, P.K.; Das, D.P.; Picha, M.S.; A Hamid, M.K.B.; Tewari, R.D. FEP Based Model Development for Assessing Well Integrity Risk Related to CO2 Storage in Central Luconia Gas Fields in Sarawak. In Proceedings of the International Petroleum Technology Conference, Virtual, 23–25 March 2021. [Google Scholar]
- Zheng, F.; Jahandideh, A.; Jha, B.; Jafarpour, B. Optimization of CO2 Storage under Geomechanical Risk with Coupled-Physics Models. ECMOR XVII 2020, 2020, 1–11. [Google Scholar]
- Arora, V.; Saran, R.K.; Kumar, R.; Yadav, S. Separation and sequestration of CO2 in geological formations. Mater. Sci. Energy Technol. 2019, 2, 647–656. [Google Scholar] [CrossRef]
- Hansson, A.; Anshelm, J.; Fridahl, M.; Haikola, S. The underworld of tomorrow? How subsurface carbon dioxide storage leaked out of the public debate. Energy Res. Soc. Sci. 2022, 90, 102606. [Google Scholar] [CrossRef]
- Schultz, R.A.; Heinemann, N.; Horváth, B.; Wickens, J.; Miocic, J.M.; Babarinde, O.O.; Cao, W.; Capuano, P.; Dewers, T.A.; Dusseault, M.; et al. An overview of underground energy-related product storage and sequestration. Geol. Soc. Lond. Spéc. Publ. 2022, 528, SP528–2022–160. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B.; Tarkowski, P. Storage of hydrogen, natural gas, and carbon dioxide–Geological and legal conditions. Int. J. Hydrogen Energy 2021, 46, 20010–20022. [Google Scholar] [CrossRef]
- Li, S.; Wang, P.; Wang, Z.; Cheng, H.; Zhang, K. Strategy to enhance geological CO2 storage capacity in saline aquifer. Geophys. Res. Lett. 2023, 50, e2022GL101431. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Mahdi, D.S.; Ali, M.; Iglauer, S.; Barifcani, A. Reservoir scale porosity-permeability evolution in sandstone due to CO2 geological storage. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 18 March 2021; pp. 15–18. [Google Scholar]
- Guo, F.; Aryana, S.A.; Wang, Y.; McLaughlin, J.F.; Coddington, K. Enhancement of storage capacity of CO2 in megaporous saline aquifers using nanoparticle-stabilized CO2 foam. Int. J. Greenh. Gas Control. 2019, 87, 134–141. [Google Scholar] [CrossRef]
- Cao, C.; Liu, H.; Hou, Z.; Mehmood, F.; Liao, J.; Feng, W. A review of CO2 storage in view of safety and cost-effectiveness. Energies 2020, 13, 600. [Google Scholar] [CrossRef] [Green Version]
- Khudaida, K.J.; Das, D.B. A numerical analysis of the effects of supercritical CO2 injection on CO2 storage capacities of geological formations. Clean Technol. 2020, 2, 21. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Agarwal, R. Evaluation of CO2 storage in a shale gas reservoir compared to a deep saline aquifer in the Ordos Basin of China. Energies 2020, 13, 3397. [Google Scholar] [CrossRef]
- Li, C.; Maggi, F.; Zhang, K.; Guo, C.; Gan, Y.; El-Zein, A.; Pan, Z.; Shen, L. Effects of variable injection rate on reservoir responses and implications for CO2 storage in saline aquifers. Greenh. Gases Sci. Technol. 2019, 9, 652–671. [Google Scholar] [CrossRef]
- Abdelaal, M.; Zeidouni, M.; Duncan, I.J. Effects of injection well operation conditions on CO2 storage capacity in deep saline aquifers. Greenh. Gases Sci. Technol. 2021, 11, 734–749. [Google Scholar] [CrossRef]
- Urych, T.; Chećko, J.; Magdziarczyk, M.; Smoliński, A. Numerical simulations of carbon dioxide storage in selected geological structures in north-western Poland. Front. Energy Res. 2022, 10, 66. [Google Scholar] [CrossRef]
- Ogland-Hand, J.D.; Cohen, S.M.; Kammer, R.M.; Ellett, K.M.; Saar, M.O.; Bennett, J.A.; Middleton, R.S. The importance of modeling carbon dioxide transportation and geologic storage in energy system planning tools. Front. Energy Res. 2022, 10, 275. [Google Scholar] [CrossRef]
- Orr, F.M., Jr. Storage of carbon dioxide in geologic formations. J. Pet. Technol. 2004, 56, 90–97. [Google Scholar] [CrossRef]
- Hepple, R.; Benson, S. Geologic storage of carbon dioxide as a climate change mitigation strategy: Performance requirements and the implications of surface seepage. Environ. Geol. 2005, 47, 576–585. [Google Scholar] [CrossRef]
- Zhang, Z.; Huisingh, D. Carbon dioxide storage schemes: Technology, assessment and deployment. J. Clean. Prod. 2017, 142, 1055–1064. [Google Scholar] [CrossRef]
- Hepple, R.P.; Benson, S.M. Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy. In Greenhouse Gas Control Technologies-6th International Conference; Elsevier: Amsterdam, The Netherlands, 2003; pp. 261–266. [Google Scholar]
- Ehlig-Economides, C.; Economides, M.J. Sequestering carbon dioxide in a closed underground volume. J. Pet. Sci. Eng. 2010, 70, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Safaei-Farouji, M.; Thanh, H.V.; Dai, Z.; Mehbodniya, A.; Rahimi, M.; Ashraf, U.; Radwan, A.E. Exploring the power of machine learning to predict carbon dioxide trapping efficiency in saline aquifers for carbon geological storage project. J. Clean. Prod. 2022, 372, 133778. [Google Scholar] [CrossRef]
- Zhang, H.; Al Kobaisi, M.; Arif, M. Impact of wettability and injection rate on CO2 plume migration and trapping capacity: A numerical investigation. Fuel 2023, 331, 125721. [Google Scholar] [CrossRef]
- Suekane, T.; Nobuso, T.; Hirai, S.; Kiyota, M. Geological storage of carbon dioxide by residual gas and solubility trapping. Int. J. Greenh. Gas Control. 2008, 2, 58–64. [Google Scholar] [CrossRef]
- Goodman, A.; Bromhal, G.; Strazisar, B.; Rodosta, T.; Guthrie, W.F.; Allen, D.; Guthrie, G. Comparison of methods for geologic storage of carbon dioxide in saline formations. Int. J. Greenh. Gas Control. 2013, 18, 329–342. [Google Scholar] [CrossRef]
- Rahman, T.; Lebedev, M.; Barifcani, A.; Iglauer, S. Residual trapping of supercritical CO2 in oil-wet sandstone. J. Colloid Interface Sci. 2016, 469, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Freifeld, B.; Finsterle, S.; Leahy, M.; Ennis-King, J.; Paterson, L.; Dance, T. Single-well experimental design for studying residual trapping of supercritical carbon dioxide. Int. J. Greenh. Gas Control. 2011, 5, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Doughty, C. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves. Energy Convers. Manag. 2007, 48, 1768–1781. [Google Scholar] [CrossRef] [Green Version]
- Klara, S.M.; Srivastava, R.D.; McIlvried, H.G. Integrated collaborative technology development program for CO2 sequestration in geologic formations––United States Department of Energy R&D. Energy Convers. Manag. 2003, 44, 2699–2712. [Google Scholar]
- Randolph, J.B.; Saar, M.O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: Implications for CO2 sequestration. Energy Procedia 2011, 4, 2206–2213. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Glatz, G.; Gholami, R.; Mahmoud, M.; Alafnan, S. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth Sci. Rev. 2022, 229, 104036. [Google Scholar] [CrossRef]
- Celia, M.A.; Bachu, S.; Nordbotten, J.M.; Bandilla, K.W. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resour. Res. 2015, 51, 6846–6892. [Google Scholar] [CrossRef]
- Kumar, A.; Ozah, R.; Noh, M.; Pope, G.A.; Bryant, S.; Sepehrnoori, K.; Lake, L.W. Reservoir simulation of CO2 storage in deep saline aquifers. SPE J. 2005, 10, 336–348. [Google Scholar] [CrossRef]
- Liu, M.; Grana, D. Petrophysical characterization of deep saline aquifers for CO2 storage using ensemble smoother and deep convolutional autoencoder. Adv. Water Resour. 2020, 142, 103634. [Google Scholar] [CrossRef]
- Wei, N.; Li, X.; Jiao, Z.; Stauffer, P.H.; Liu, S.; Ellett, K.; Middleton, R.S. A Hierarchical Framework for CO2 Storage Capacity in Deep Saline Aquifer Formations. Front. Earth Sci. 2022, 9, 777323. [Google Scholar] [CrossRef]
- Jayasekara, D.; Ranjith, P.; Wanniarachchi, W.; Rathnaweera, T. Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: A review study. J. Supercrit. Fluids 2020, 161, 104819. [Google Scholar] [CrossRef]
- Ang, L.; Yongming, L.; Xi, C.; Zhongyi, Z.; Yu, P. Review of CO2 sequestration mechanism in saline aquifers. Nat. Gas Ind. B 2022, 9, 383–393. [Google Scholar]
- Ringrose, P.S.; Furre, A.K.; Gilfillan, S.M.V.; Krevor, S.; Leslie, R.; Meckel, T.; Nazarian, B.; Zahid, A. Storage of carbon dioxide in saline aquifers: Physicochemical processes, key constraints, and scale-up potential. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 471–494. [Google Scholar] [CrossRef]
- Qiao, X.; Li, G.; Li, M.; Wang, Z. CO2 storage capacity assessment of deep saline aquifers in the Subei Basin, East China. Int. J. Greenh. Gas Control. 2012, 11, 52–63. [Google Scholar] [CrossRef]
- Singh, H.; Islam, A. Enhanced safety of geologic CO2 storage with nanoparticles. Int. J. Heat Mass Transf. 2018, 121, 463–476. [Google Scholar] [CrossRef]
- Michael, K.; Arnot, M.; Cook, P.; Ennis-King, J.; Funnell, R.; Kaldi, J.; Kirste, D.; Paterson, L. CO2 storage in saline aquifers I—Current state of scientific knowledge. Energy Procedia 2009, 1, 3197–3204. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Y.; Hou, M.Z.; Xiong, Y.; Wu, X.; Lüddeke, C.T.; Huang, L. Advances in subsea carbon dioxide utilization and storage. Energy Rev. 2023, 2, 100016. [Google Scholar] [CrossRef]
- Bruant, R.; Guswa, A.; Celia, M.; Peters, C. Safe storage of CO2 in deep saline aquifers. Environ. Sci. Technol. 2002, 36, 240A–245A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damen, K.; Faaij, A.; Turkenburg, W. Health, safety and environmental risks of underground CO2 storage–overview of mechanisms and current knowledge. Clim. Chang. 2006, 74, 289–318. [Google Scholar] [CrossRef] [Green Version]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control. 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, H.; Kim, J.; Lee, J. Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network. Appl. Energy 2017, 185, 916–928. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Thordsen, J.J.; Hovorka, S.D.; Nance, H.S.; Cole, D.R.; Phelps, T.J.; Knauss, K.G. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA. Appl. Geochem. 2009, 24, 1106–1112. [Google Scholar] [CrossRef]
- He, X.; Zhu, W.; AlSinan, M.; Kwak, H.; Hoteit, H. CO2 Storage Capacity Prediction In Deep Saline Aquifers: Uncertainty and Global Sensitivity Analysis. In Proceedings of the International Petroleum Technology Conference, Riyadh, Saudi Arabia, 21 February 2022. [Google Scholar]
- Thibeau, S.; Bachu, S.; Birkholzer, J.; Holloway, S.; Neele, F.; Zhou, Q. Using pressure and volumetric approaches to estimate CO2 storage capacity in deep saline aquifers. Energy Procedia 2014, 63, 5294–5304. [Google Scholar] [CrossRef] [Green Version]
- Bachu, S.; Adams, J.J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers. Manag. 2003, 44, 3151–3175. [Google Scholar] [CrossRef]
- Donda, F.; Volpi, V.; Persoglia, S.; Parushev, D. CO2 storage potential of deep saline aquifers: The case of Italy. Int. J. Greenh. Gas Control. 2011, 5, 327–335. [Google Scholar] [CrossRef]
- Niemi, A.; Bear, J.; Bensabat, J. Geological Storage of CO2 in Deep Saline Formations; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kongsjorden, H.; Kårstad, O.; Torp, T.A. Saline aquifer storage of carbon dioxide in the Sleipner project. Waste Manag. 1998, 17, 303–308. [Google Scholar] [CrossRef]
- Wildenborg, T.; Gale, J.; Hendriks, C.; Holloway, S.; Brandsma, R.; Kreft, E.; Lokhorst, A. Cost curves for CO2 storage: European sector. In Greenhouse Gas Control Technologies 7; Elsevier: Amsterdam, The Netherlands, 2005; pp. 603–610. [Google Scholar]
- Michael, K.; Allinson, G.; Golab, A.; Sharma, S.; Shulakova, V. CO2 storage in saline aquifers II–experience from existing storage operations. Energy Procedia 2009, 1, 1973–1980. [Google Scholar] [CrossRef] [Green Version]
- Birkholzer, J.T.; Oldenburg, C.M.; Zhou, Q. CO2 migration and pressure evolution in deep saline aquifers. Int. J. Greenh. Gas Control. 2015, 40, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Effect of wettability heterogeneity and reservoir temperature on CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control. 2018, 68, 216–229. [Google Scholar] [CrossRef]
- Nordbotten, J.M.; Celia, M.A.; Bachu, S. Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection. Transp. Porous Media 2005, 58, 339–360. [Google Scholar] [CrossRef]
- Bennion, D.B.; Bachu, S. Dependence on temperature, pressure, and salinity of the IFT and relative permeability displacement characteristics of CO2 injected in deep saline aquifers. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24 September 2006. [Google Scholar]
- Yu, Y.; Yang, G.; Cheng, F.; Yang, S. Effects of impurities N2 and O2 on CO2 storage efficiency and costs in deep saline aquifers. J. Hydrol. 2021, 597, 126187. [Google Scholar] [CrossRef]
- Thanh, H.V.; Lee, K.-K. Application of machine learning to predict CO2 trapping performance in deep saline aquifers. Energy 2022, 239, 122457. [Google Scholar] [CrossRef]
- Szulczewski, M.; Juanes, R. A simple but rigorous model for calculating CO2 storage capacity in deep saline aquifers at the basin scale. Energy Procedia 2009, 1, 3307–3314. [Google Scholar] [CrossRef] [Green Version]
- De Silva, P.N.K.; Ranjith, P. A study of methodologies for CO2 storage capacity estimation of saline aquifers. Fuel 2012, 93, 13–27. [Google Scholar] [CrossRef]
- Jin, C.; Liu, L.; Li, Y.; Zeng, R. Capacity assessment of CO2 storage in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. Energy Sci. Eng. 2017, 5, 81–89. [Google Scholar] [CrossRef]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Influence of CO2-wettability on CO2 migration and trapping capacity in deep saline aquifers. Greenh. Gases Sci. Technol. 2017, 7, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Potdar, R.S.; Vishal, V. Trapping Mechanism of CO2 Storage in Deep Saline Aquifers: Brief Review. Geol. Carbon Sequestration Underst. Reserv. Behav. 2016, 25, 47–58. [Google Scholar]
- Li, Y.; Ranjith, P.; Perera, M.; Yu, Q. Residual water formation during the CO2 storage process in deep saline aquifers and factors influencing it: A review. J. CO2 Util. 2017, 20, 253–262. [Google Scholar] [CrossRef]
- Zhao, B.; MacMinn, C.W.; Juanes, R. Residual trapping, solubility trapping and capillary pinning complement each other to limit CO2 migration in deep saline aquifers. Energy Procedia 2014, 63, 3833–3839. [Google Scholar] [CrossRef] [Green Version]
- Al-Khdheeawi, E.A.; Vialle, S.; Barifcani, A.; Sarmadivaleh, M.; Iglauer, S. Effect of brine salinity on CO2 plume migration and trapping capacity in deep saline aquifers. APPEA J. 2017, 57, 100–109. [Google Scholar] [CrossRef]
- Mascagnini, C.; Keebali, A.K.A.; Xu, S.; Parra, H.; Masalmeh, S.K.; Chughtai, M.; Perumalla, S.; Harper, C.; Singh, H.; Banerjee, A.; et al. Onshore Abu Dhabi Carbonate Saline Aquifer CO2 Storage-An Integrated Technical Feasibility Study. In Proceedings of the ADIPEC, Abu Dhabi, United Arab Emirates, 31 October 2022. [Google Scholar]
- Alarfaj, M.; Faez, A.V. Key Considerations for Screening and Selection of Saline Aquifers for CO2 Storage. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 28 March 2023. [Google Scholar]
- Torres, J.; Bogdanov, I.; Boisson, M. Hydromechanical Model of Geological Carbon Sequestration in Saline Aquifers. In Proceedings of the 2019 COMSOL Conference, Cambridge, UK, 24–26 September 2019. [Google Scholar]
- Myers, M.; White, C. Evaluation of Perfluorocarbons (PFCs) as Tracers for CO2 Containment and Migration Monitoring. Geol. Carbon Storage Subsurf. Seals Caprock Integr. 2018, 109, 271–281. [Google Scholar]
- Kumar, A. A Simulation Study of Carbon Sequestration in Deep Saline Aquifers. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, 4 August 2004. [Google Scholar]
- Lucier, A.; Zoback, M. Assessing the economic feasibility of regional deep saline aquifer CO2 injection and storage: A geomechanics-based workflow applied to the Rose Run sandstone in Eastern Ohio, USA. Int. J. Greenh. Gas Control. 2008, 2, 230–247. [Google Scholar] [CrossRef]
- Singh, H.; Hosseini, S.A.; Javadpour, F. Enhanced CO2 storage in deep saline aquifers by nanoparticles: Numerical simulation results. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12 June 2012. [Google Scholar]
- Al-Qaness, M.A.; Ewees, A.A.; Thanh, H.V.; AlRassas, A.M.; Dahou, A.; Elaziz, M.A. Predicting CO2 trapping in deep saline aquifers using optimized long short-term memory. Environ. Sci. Pollut. Res. 2023, 30, 1–15. [Google Scholar] [CrossRef]
- Rathnaweera, T.; Ranjith, P. Nano-modified CO2 for enhanced deep saline CO2 sequestration: A review and perspective study. Earth-Sci. Rev. 2020, 200, 103035. [Google Scholar] [CrossRef]
- Agartan, E.; Gaddipati, M.; Yip, Y.; Savage, B.; Ozgen, C. CO2 storage in depleted oil and gas fields in the Gulf of Mexico. Int. J. Greenh. Gas Control. 2018, 72, 38–48. [Google Scholar] [CrossRef]
- Loizzo, M.; LeCampion, B.; Berard, T.; Harichandran, A.; Jammes, L. Reusing O&G-depleted reservoirs for CO2 storage: Pros and cons. SPE Proj. Facil. Constr. 2010, 5, 166–172. [Google Scholar]
- Liu, S.-Y.; Ren, B.; Li, H.-Y.; Yang, Y.-Z.; Wang, Z.-Q.; Wang, B.; Xu, J.-C.; Agarwal, R. CO2 storage with enhanced gas recovery (CSEGR): A review of experimental and numerical studies. Pet. Sci. 2021, 19, 594–607. [Google Scholar] [CrossRef]
- Tomić, L.; Karović-Maričić, V.; Danilović, D.; Crnogorac, M. Criteria for CO2 storage in geological formations. Podzemn. Rad. 2018, 32, 61–74. [Google Scholar] [CrossRef]
- Sun, D.; Englezos, P. CO2 storage capacity in laboratory simulated depleted hydrocarbon reservoirs–Impact of salinity and additives. J. Nat. Gas Sci. Eng. 2016, 35, 1416–1425. [Google Scholar] [CrossRef]
- YGallo, L.; Couillens, P.; Manai, T. CO2 sequestration in depleted oil or gas reservoirs. In Proceedings of the SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Kuala Lumpur, Malaysia, 20 March 2002. [Google Scholar]
- Callas, C.; Saltzer, S.D.; Davis, J.S.; Hashemi, S.S.; Kovscek, A.R.; Okoroafor, E.R.; Wen, G.; Zoback, M.D.; Benson, S.M. Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage. Appl. Energy 2022, 324, 119668. [Google Scholar] [CrossRef]
- Gaurina-Međimurec, N.; Mavar, K.N. Carbon capture and storage (CCS): Geological sequestration of CO2. Sequestration 2019, 32, 1–21. [Google Scholar]
- Kovscek, A.R. Screening criteria for CO2 storage in oil reservoirs. Pet. Sci. Technol. 2002, 20, 841–866. [Google Scholar] [CrossRef]
- Mamora, D.; Seo, J. Enhanced gas recovery by carbon dioxide sequestration in depleted gas reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September 2002. [Google Scholar]
- Li, Z.; Dong, M.; Li, S.; Huang, S. CO2 sequestration in depleted oil and gas reservoirs—Caprock characterization and storage capacity. Energy Convers. Manag. 2006, 47, 1372–1382. [Google Scholar] [CrossRef]
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 storage capacity estimation: Methodology and gaps. Int. J. Greenh. Gas Control. 2007, 1, 430–443. [Google Scholar] [CrossRef] [Green Version]
- Barrufet, M.A.; Bacquet, A.; Falcone, G. Analysis of the storage capacity for CO2 sequestration of a depleted gas condensate reservoir and a saline aquifer. J. Can. Pet. Technol. 2010, 49, 23–31. [Google Scholar] [CrossRef]
- Alafnan, S. Utilization of depleted heavy oil reservoirs for carbon dioxide storage and sequestration: A molecular level assessment. Int. J. Greenh. Gas Control. 2022, 119, 103741. [Google Scholar] [CrossRef]
- Zhang, K.; Lau, H.C. Utilization of a high-temperature depleted gas condensate reservoir for CO2 storage and geothermal heat mining: A case study of the Arun gas reservoir in Indonesia. J. Clean. Prod. 2022, 343, 131006. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Sarmadivaleh, M. Feasibility of limestone reservoirs as a carbon dioxide storage site: An experimental study. AAPG Bull. 2020, 104, 83–96. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, A.; Pujol, G.; Manhes, C.; García, E.; Van Gastel, L.; Agenet, N.; Thibeau, S. Stochastic estimate of CO2 storage resources in depleted reservoirs. SSRN Electron. J. 2022, 23, 119–145. [Google Scholar] [CrossRef]
- Tiwari, P.K.; Das, D.P.; Patil, P.A.; Chidambaram, P.; Low, Z.; Chandran, P.K.; Hamid, M.K.A.; Tewari, R.D. Offshore MMV Planning for Sustainability of CO2 Storage in a Depleted Carbonate Reservoir, Malaysia. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Virtual, 14 October 2021. [Google Scholar]
- Seisenbayev, N.; Abuov, Y.; Lee, W. Assessment of CO2-EOR and its geo-storage potential in oil reservoirs of Precaspian basin, Kazakhstan. In Proceedings of the European Geosciences Union General Assembly, Online, 4–8 May 2020. [Google Scholar]
- Das, D.P.; Patil, P.A.; Tiwari, P.K.; Leite, R.J.; Tewari, R.D. Reservoir Characterization for Uncertainty Analysis and Its Impact on CO2 Injection and Sequestration in a Depleted Offshore Carbonate Gas Field. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Virtual, 14 October 2021. [Google Scholar]
- Myshakin, E.M.; Singh, H.; Sanguinito, S.; Bromhal, G.; Goodman, A. Flow regimes and storage efficiency of CO2 injected into depleted shale reservoirs. Fuel 2019, 246, 169–177. [Google Scholar] [CrossRef]
- Shirbazo, A.; Taghavinejad, A.; Bagheri, S. CO2 Capture and Storage Performance Simulation in Depleted Shale Gas Reservoirs as Sustainable Carbon Resources. J. Constr. Mater. 2021, 45, 1–18. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, W.; Wu, Y.; Al-Abdrabalnabi, R.; Khan, S.Z.; Kamal, M.S.; Elsayed, M. Dynamic Characteristics of Supercritical CO2 Injection in Depleted Carbonate Oil Reservoir for its Sequestration Potential: An Experimental Study. In Proceedings of the Middle East Oil, Gas and Geosciences Show, Manama, Bahrain, 21 February 2023. [Google Scholar]
- Kaveh, N.S. Interfacial Interactions and Wettability Evaluation of Rock Surfaces for CO2 Storage. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 12 March 2014. [Google Scholar]
- Yang, M.; Jiang, L.; Li, Y. CO2 sequestration in depleted methane hydrate reservoirs. J. Nat. Gas Sci. Eng. 2018, 49, 428–434. [Google Scholar]
- Bakhshian, S.; Shariat, A.; Raza, A. Assessment of CO2 storage potential in reservoirs with residual gas using deep learning. Interpretation 2022, 10, SG37–SG46. [Google Scholar] [CrossRef]
- Mohaghegh, S.; Amini, S. CO2 Storage in Depleted Gas Reservoirs. Petroleum 2018, 4, 95–107. [Google Scholar]
- Chidambaram, P.; Patil, P.A.; Tiwari, P.K.; Das, D.P.; Tewari, R.D. Injector Design Plays an Important Role in Maximisation of CO2 Trapping in Geological Formations. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 18 March 2022. [Google Scholar]
- Jenkins, C.R.; Cook, P.J.; Ennis-King, J.; Undershultz, J.; Boreham, C.; Dance, T.; de Caritat, P.; Etheridge, D.M.; Freifeld, B.M.; Hortle, A.; et al. Safe storage and effective monitoring of CO2 in depleted gas fields. Proc. Natl. Acad. Sci. USA 2011, 109, E35–E41. [Google Scholar]
- Schultz, R.A.; Mutlu, U.; Bere, A. Critical Issues in Subsurface Integrity. In Proceedings of the 50th U.S. Rock Mechanics/Geomechanics Symposium, Houston, TX, USA, 26 June 2016. [Google Scholar]
- Arsyad, A.; Mitani, Y.; Babadagli, T.; Sasaki, K.; Ikemi, H.; Oura, S. Experimental and Numerical Investigation of the Hydromechanical Response of Low Permeable Rocks during Injection of supercritical CO2. CINSET B24 2011, 141, 271–276. [Google Scholar]
- Gaurina-Međimurec, N.; Mavar, K.N. Depleted hydrocarbon reservoirs and CO2 injection wells—CO2 leakage assessment. Rudarsko Geološko Naftni Zbornik 2017, 32, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Alkan, H.; Rivero, F.F.; Burachok, O.; Kowollik, P. Engineering design of CO2 storage in saline aquifers and in depleted hydrocarbon reservoirs: Similarities and differences. First Break. 2021, 39, 69–80. [Google Scholar] [CrossRef]
- Tiwari, P.K.; Chidambaram, P.; Azahree, A.I.; Das, D.P.; Patil, P.A.; Low, Z.; Chandran, P.K.; Tewari, R.D.; Hamid, M.K.A.; Yaakub, M.A. Safeguarding CO2 Storage in a Depleted Offshore Gas Field with Adaptive Approach of Monitoring, Measurement and Verification MMV. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, Virtual, 1 December 2021. [Google Scholar]
- Patil, P.A.; Hamimi, A.M.; Abu Bakar, M.A.B.; Das, D.P.; Tiwari, P.K.; Chidambaram, P.; Jalil, M.A.B.A. Scrutinizing Wells Integrity for Determining Long-Term Fate of a CO2 Sequestration Project: An Improved and Rigorous Risk Assessment Strategy. In Proceedings of the International Petroleum Technology Conference, Riyadh, Saudi Arabia, 23 February 2022. [Google Scholar]
- Orlic, B.; Heege, J.H.T.; Wassing, B.B.T. Assessing the Short-term And Long-term Integrity of Top Seals in Feasibility Studies of Geological CO2 storage. In Proceedings of the 45th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 26 June 2011. [Google Scholar]
- Weir, G. Dynamic Modeling Aspects of Carbon Dioxide Sequestration. Chem. Eng. Process. Process Intensif. 2006, 48, 135–144. [Google Scholar]
- Tewari, R.D.; Tan, C.P.; Sedaralit, M.F. A Toolkit for Carbon Capture and Storage in Offshore Depleted Gas Field. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 25 March 2022. [Google Scholar]
- Verba, C.; Crandall, D.; Moore, J. Organic and Nonorganic Characterization of the Bakken, Marcellus, Pierre and Woodford. 2016. Available online: www.microscopy.org/MandM/2016/program/abstracts/PDP-19.pdf (accessed on 8 March 2023).
- Liu, Y.; Rui, Z.; Yang, T.; Dindoruk, B. Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs. Appl. Energy 2022, 311, 118640. [Google Scholar] [CrossRef]
- Bump, A.P.; Bakhshian, S.; Hovorka, S.D.; Rhodes, J.; Neades, S. Criteria for depleted reservoirs to be developed for CO2 storage. In Proceedings of the 16th Greenhouse Gas Control Technologies Conference, (GHGT-16), Lyon, France, 23–24 October 2022. [Google Scholar]
- Mishra, S.; Ravi Ganesh, P.; Raziperchikolaee, S.; Pasumarti, A.; Smith, V.; Haagsma, A.; Kelley, M.; Gupta, N.; Pardini, R. Modeling Oil Production, CO2 Injection and Associated Storage in Depleted Oil Reservoirs: A Comparison of Approaches. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021. [Google Scholar]
- Nikoosokhan, S.; Brochard, L.; Vandamme, M.; Dangla, P.; Pellenq, R.J.-M.; Lecampion, B.; Fen-Chong, T. CO2 Storage in Coal Seams: Coupling Surface Adsorption and Strain. Geomech. CO2 Storage Facil. 2013, 115–132. [Google Scholar]
- Li, X.; Fang, Z. Current status and technical challenges of CO2 storage in coal seams and enhanced coalbed methane recovery: An overview. Int. J. Coal Sci. Technol. 2014, 1, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Hu, Z. Effects of ethanol-mixed supercritical CO2 fluid on CO2 adsorption on coals: Implications for CO2 geologic storage in coal seams. Int. J. Glob. Warm. 2020, 21, 274–286. [Google Scholar] [CrossRef]
- Kou, Z.; Wang, T.; Chen, Z.; Jiang, J. A fast and reliable methodology to evaluate maximum CO2 storage capacity of depleted coal seams: A case study. Energy 2021, 231, 120992. [Google Scholar] [CrossRef]
- Mazzotti, M.; Pini, R.; Storti, G.; Burlini, L. 5–Carbon dioxide (CO2) sequestration in unmineable coal seams and use for enhanced coalbed methane recovery (ECBM). Dev. Innov. Carbon Dioxide Capture Storage Technol. 2010, 2, 127–165. [Google Scholar]
- Jiang, K.; Zhang, S.; Dou, H.E. Method of evaluating CO2 storage capacity in coal seams using exploration databases, with application to China. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, Australia, 21–26 October 2018. [Google Scholar]
- Ranathunga, A.S.; Ranjith, P.G.; Perera, M.S.A. Challenges and issues for CO2 storage in deep coal seams. Rock Mech. Eng. 2017, 156, 88–119. [Google Scholar]
- Gou, S.; Li, H.; Li, J.; Zhao, Y. Effective means to alleviate the greenhouse effect: Case study of history match simulations on a brief CO2 injection into less-deep low-rank coal seams. Arab. J. Geosci. 2021, 14, 1–18. [Google Scholar] [CrossRef]
- Xu, H.; Sang, S.; Yang, J.; Liu, H. CO2 storage capacity of anthracite coal in deep burial depth conditions and its potential uncertainty analysis: A case study of the No. 3 coal seam in the Zhengzhuang Block in Qinshui Basin, China. Geosci. J. 2021, 25, 715–729. [Google Scholar] [CrossRef]
- Chećko, J.; Urych, T.; Magdziarczyk, M.; Smolinski, A. Research on the Processes of Injecting CO2 into Coal Seams with CH4 Recovery Using Horizontal Wells. Energies 2020, 13, 416. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Connell, L.D. Reservoir simulation study of CO2 storage in formations containing both aquifers and coal seams. Energy Procedia 2011, 4, 3095–3102. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Donda, F.; Volpi, V.; Civile, D.; Giustiniani, M.; Vellico, M. Deep Saline Aquifers and Coal Seams as Potential sites for the CO2 Geological Storage in Italy. In Proceedings of the 73rd EAGE Conference and Exhibition—Workshops 2011, London, UK, 3–6 May 2011. [Google Scholar]
- Mazumder, S.; Hemert, P.V.; Bruining, J.; Wolf, K.H.; Drabe, K.E. In situ CO2–coal reactions in view of carbon dioxide storage in deep unminable coal seams. Fuel 2006, 85, 1904–1912. [Google Scholar] [CrossRef]
- Perera, M.S.M. A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams. Energies 2018, 11, 906. [Google Scholar] [CrossRef] [Green Version]
- Sander, R.; Allinson, W.; Connell, L.; Neal, P. Methodology to determine the economics of CO2 storage in coal seams with enhanced coalbed methane recovery. Energy Procedia 2011, 4, 2129–2136. [Google Scholar] [CrossRef] [Green Version]
- Jikich, S.A. Enhanced Coalbed Methane (ECBM) and CO2 Sequestration with Horizontal Wells. In Proceedings of the SPE Eastern Regional Meeting, Charleston, WV, USA, 15 September 2004. [Google Scholar]
- Tiyntayev, Y.; Tursymat, O.; Serikov, G.; Asif, M.; Wang, L.; Hazlett, R.D. Simulation-Based Evaluation of Concurrent CH4 Storage Potentials During CO2-ECBM in Karaganda Coal Basin. In Proceedings of the SPE Annual Caspian Technical Conference, Nur-Sultan, Kazakhstan, 15 November 2022. [Google Scholar]
- Qiao, L.; Deng, C.; Fan, Y. Numerical simulation study on CO2 storage in coalbed. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 446–459. [Google Scholar] [CrossRef]
- Ma, T.; Rutqvist, J.; Liu, W.; Zhu, L.; Kim, K.-D. Modeling of CO2 sequestration in coal seams: Role of CO2-induced coal softening on injectivity, storage efficiency and caprock deformation. Greenh. Gases Sci. Technol. 2017, 7, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Huy, P.Q.; Sasaki, K.; Sugai, Y.; Kiga, T.; Fujioka, M.; Adachi, T. Effects of SO2 and pH Concentration on CO2 Adsorption Capacity in Coal Seams for CO2 Sequestration With Considerations for Flue Gas From Coal-Fired Power Plants. J. Can. Pet. Technol. 2009, 48, 58–63. [Google Scholar] [CrossRef]
- Arif, M.; Barifcani, A.; Lebedev, M.; Iglauer, S. CO2-wettability of low to high rank coal seams: Implications for carbon sequestration and enhanced methane recovery. Fuel 2016, 181, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Gale, J. Going underground [CO2 storage and emissions reduction]. Power Eng. 2003, 17, 15–17. [Google Scholar] [CrossRef]
- Romanov, V.N. Coal Chemistry for Mechanical Engineers: From Macromolecular Thermodynamics to Reservoir Simulation. Energy Fuels 2007, 21, 1646–1654. [Google Scholar] [CrossRef]
- Panda, B.; Singhal, A.D. Modelling & Simulation of Fluid Flow Behaviour During Carbondioxide Sequestration in Coal Structure Using Comsol Multiphysics. Ph.D. Thesis, National Institute of Technology Rourkela, Odisha, India, 12 September 2015. [Google Scholar]
- Abunowara, M.; Bustam, M.A.; Sufian, S.; Eldemerdash, U. Measurement techniques for carbon dioxide sorption capacity on various coal samples: Critical review. IOP Conf. Ser. Earth Environ. Sci. 2016, 36, 12059. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.K.; Raza, S.S.; Baublys, K.A.; Hayes, P.D.; Firouzi, M.; Rudolph, V. Unconventional CO2 Storage: CO2 Mineral Trapping Predicted in Characterized Shales, Sandstones, and Coal Seam Interburden. SPE J. 2022, 27, SPE-209791-PA. [Google Scholar] [CrossRef]
- Pinetown, K.L.; Saghafi, A.; Grobler, P.G. Occurrence of Coal Seam Methane in South African Coal Seams and Igneous Intrusions in Karoo Basin. 2006. Available online: https://www.searchanddiscovery.com/pdfz/abstracts/pdf/2006/intl_perth/abstracts/ndx_pinetown.pdf.html (accessed on 9 March 2023).
- Shachi; Gupta, P.K.; Yadav, B.K. Aspects of CO2 Injection in Geological Formations and Its Risk Assessment. In Microorganisms for Sustainability; Springer: Singapore, 2019. [Google Scholar]
- White, C.M.; Strazisar, B.R.; Granite, E.; Hoffman, J.S.; Pennline, H.W. Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers. J. Air Waste Manag. Assoc. 2003, 53, 645–715. [Google Scholar] [CrossRef]
- Lusyana, L.; Atmanto, M.D. Risks Analysis of Carbon Dioxide Storage in Geological Formations. Sci. Contrib. Oil Gas 2022, 34, 117–126. [Google Scholar] [CrossRef]
- Maroto-Valer, M.M. Carbon Dioxide (CO2) Storage and Utilization. 2010. Available online: https://books.google.com.my/books?hl=en&lr=&id=A5JwAgAAQBAJ&oi=fnd&pg=PP1&dq=%09Maroto-Valer,+M.M.+Carbon+dioxide+(CO2)+storage+and+utilization&ots=n8EV0e86_y&sig=Lu_ueM4JTeHsvsvBqWjgVHGt-cI&redir_esc=y (accessed on 9 March 2023).
- Varma, S.K.; Underschultz, J.; Giger, S.B.; Field, B.; Roncaglia, L.; Hodgkinson, J.; Hilditch, D. CO2 geosequestration potential in the Northern Perth Basin, Western Australia. Aust. J. Earth Sci. 2013, 60, 23–44. [Google Scholar] [CrossRef]
- Sheng, Y.; Benderev, A.; Bukolska, D.; Eshiet, K.I.-I.; da Gama, C.D.; Gorka, T.; Green, M.; Hristov, N.; Katsimpardi, I.; Kempka, T.; et al. Interdisciplinary studies on the technical and economic feasibility of deep underground coal gasification with CO2 storage in bulgaria. Mitig. Adapt. Strat. Glob. Chang. 2016, 21, 595–627. [Google Scholar] [CrossRef] [Green Version]
- Plasynski, S.I.; Litynski, J.T.; McIlvried, H.G.; Vikara, D.M.; Srivastava, R.D. The critical role of monitoring, verification, and accounting for geologic carbon dioxide storage projects. Environ. Geosci. 2011, 18, 19–34. [Google Scholar] [CrossRef]
- Canto, N.; Gonzalez, A.; Gonzalez, G.; Lara, M.; Longallo, E.; Fuentes-Cantillana, J.L.; Leynet, A.; Bourgeois, B.; Défossez, P.; Gaucher, E.C.; et al. CARBOLAB: Improving the knowledge of carbon storage and coal bed methane production bu in situ underground tests. Geol. Belg. 2010. Available online: https://hal.science/ineris-00970732/ (accessed on 1 March 2023).
- Neil, C.; Laboratory, L.A.N.; Williams, D.; Pettes, M.; Young, S.; Patterson, B. Natural Basalt Reactivity Towards CO2: Implications for Geologic Storage in Mafic Rocks. Geol. Soc. Am. Abstr. Programs 2022. [Google Scholar]
- Gislason, S.R.; Broecker, W.S.; Gunnlaugsson, E.; Snæbjörnsdóttir, S.; Mesfin, K.G.; Alfredsson, H.A.; Aradottir, E.S.; Sigfusson, B.; Gunnarsson, I.; Stute, M.; et al. Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia 2014, 63, 4561–4574. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, S.; Wang, J.; Dandar, O.; Uno, M.; Watanabe, N.; Hirano, N.; Tsuchiya, N. NaHCO3 as a carrier of CO2 and its enhancement effect on mineralization during hydrothermal alteration of basalt. Front. Environ. Sci. 2023, 11, 199. [Google Scholar] [CrossRef]
- Iglauer, S.; Al-Yaseri, A.Z. Improving basalt wettability to de-risk CO2 geo-storage in basaltic formations. Adv. Geo Energy Res. 2021, 5, 347–350. [Google Scholar] [CrossRef]
- Ayub, S.A.; Tsegab, H.; Rahmani, O.; Pour, A.B. Potential for CO2 Mineral Carbonation in the Paleogene Segamat Basalt of Malaysia. Minerals 2020, 10, 1045. [Google Scholar] [CrossRef]
- McGrail, B.P.; Schaef, H.T.; Ho, A.M.; Chien, Y.-J.; Dooley, J.; Davidson, C.L. Potential for carbon dioxide sequestration in flood basalts. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Goldberg, D.; Aston, L.; Bonneville, A.; Demirkanli, I.; Evans, C.; Fisher, A.; Garcia, H.; Gerrard, M.; Heesemann, M.; Hnottavange-Telleen, K.; et al. Geological storage of CO2 in sub-seafloor basalt: The CarbonSAFE pre-feasibility study offshore Washington State and British Columbia. Energy Procedia 2018, 146, 158–165. [Google Scholar] [CrossRef]
- Goldberg, D.; Kent, D.V.; Olsen, P.E. Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts. Proc. Natl. Acad. Sci. USA 2010, 107, 1327–1332. [Google Scholar] [CrossRef] [Green Version]
- Matter, J.M.; Takahashi, T.; Goldberg, D. Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration. Geochemistry 2007, 8. [Google Scholar]
- Matter, J.M.; Assayag, N.; Goldberg, D. Basaltic rocks and their potential to permanently sequester industrial carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2006, 105, 45. [Google Scholar]
- Lei, Z.; Zhang, Y.; Zhou, L.; Zhou, J. Numerical simulation of CO2 mineral sequestration in basalt reservoir through an abandoned oil well: A case study in Xujiaweizi area, Northeast China. Environ. Earth Sci. 2021, 80, 1–22. [Google Scholar] [CrossRef]
- Pham, V.T.H. CO2 Storage—Simulations for Forecasting the Behavior of Injection CO2 in Geological Formations. 2013. Available online: https://www.duo.uio.no/handle/10852/36044 (accessed on 23 February 2023).
- Takaya, Y.; Nakamura, K.; Kato, Y. Geological, geochemical and social-scientific assessment of basaltic aquifers as potential storage sites for CO2. Geochem. J. 2013, 47, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Anthonsen, K.; Aagaard, P.; Bergmo, P.E.; Gislason, S.; Lothe, A.; Mortensen, G.; Snæbjörnsdóttir, S. Characterisation and Selection of the Most Prospective CO2 Storage Sites in the Nordic Region. Energy Procedia 2014, 63, 4884–4896. [Google Scholar] [CrossRef] [Green Version]
- Matter, J.; Stute, M.; Schlosser, P.; Broecker, W. Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks; OSTI.GOV: New York, NY, USA, 2015. [Google Scholar]
- Bonneville, A.; Heggy, E.; Strickland, C.; Normand, J.; Dermond, J.; Fang, Y.; Sullivan, C. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation. Water Resour. Manag. 2015, 29, 4667–4682. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Wells, R.K.; Horner, J.A.; Schaef, H.T.; Skemer, P.; Giammar, D.E. CO2 Mineral Sequestration in Naturally Porous Basalt. Environ. Sci. Technol. Lett. 2018, 5, 142–147. [Google Scholar] [CrossRef]
- Zakharova, N.V.; Goldberg, D.; Olsen, P.E.; Collins, D.J.; Kent, D.V. Reservoir and sealing properties of the Newark rift basin formations: Implications for carbon sequestration. Geophysics 2020, 39, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Hendry, D.F.; Castle, J.L. A strategy for achieving net-zero emissions by 2050. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021. [Google Scholar]
- Alanazi, A.; Al Malallah, M.; Mowafi, M.; Badeghaish, W.; Hoteit, H.; Al-Yaseri, A.; Al-Hamad, J. Hydrogen Wettability Measurement of Saudi Basaltic Rocks at Underground Storage Conditions. In Proceedings of the International Geomechanics Symposium, Abu Dhabi, United Arab Emirates, 7 November 2022. [Google Scholar]
- Yanzhong, W.; Nianmin, Z.; Xu, C.; Yingchang, C.; Guanghui, Y.; Gluyas, J.G.; Miruo, L. Geologic CO2 storage in arkosic sandstones with CaCl2-rich formation water. Chem. Geol. 2020, 558, 119867. [Google Scholar] [CrossRef]
- Carruthers, C.A. Metal Mobility in Sandstones and the Potential Environmental Impacts of Offshore Geological CO2 Storage. 2016. Available online: https://era.ed.ac.uk/handle/1842/20377 (accessed on 22 February 2023).
- Snæbjörnsdóttir, S.; Gislason, S.R. CO2 Storage Potential of Basaltic Rocks Offshore Iceland. Energy Procedia 2016, 86, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Gholami, R.; Raza, A. CO2 sequestration in sandstone reservoirs: How does reactive flow alter trapping mechanisms? Fuel 2022, 324, 124781. [Google Scholar] [CrossRef]
- Chaturvedi, K.R.; Sharma, T. In-situ formulation of pickering CO2 foam for enhanced oil recovery and improved carbon storage in sandstone formation. Chem. Eng. Sci. 2021, 235, 116484. [Google Scholar] [CrossRef]
- Gent, D.V.; Burke, M.; Sharma, S. South West Hub Project, Western Australia: Appraising ‘migration-assisted’ containment for carbon storage in sandstone strata. APPEA J. 2017, 57, 669–675. [Google Scholar] [CrossRef]
- Falcon-Suarez, I.; North, L.; Amalokwu, K.; Best, A. Integrated geophysical and hydromechanical assessment for CO2 storage: Shallow low permeable reservoir sandstones. Geophys. Prospect. 2016, 64, 828–847. [Google Scholar] [CrossRef] [Green Version]
- Rahman, I.A.; Hasbollah, D.Z.A.; Yunus, N.Z.M.; Kasiman, E.H.; Mazlan, A.N. Carbon Dioxide Storage Potential in Malaysian Sandstone Aquifer: An Overview. IOP Conf. Ser. Earth Environ. Sci. 2022, 971, 012022. [Google Scholar] [CrossRef]
- Hu, H.; Wang, B.; Wang, X.; Zhang, Q.; Chen, Y.; Liang, Q.; Zeng, F. Comparative analysis of the fracturing effect of H2O, liquid CO2, and supercritical CO2 on tight sandstone reservoir. In Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), Lyon, France, 23–27 October 2022. [Google Scholar]
- Yue, P.; Liu, F.; Yang, K.; Han, C.; Ren, C.; Zhou, J.; Wang, X.; Fang, Q.; Li, X.; Dou, L. Micro-Displacement and Storage Mechanism of CO2 in Tight Sandstone Reservoirs Based on CT Scanning. Energies 2022, 15, 6201. [Google Scholar] [CrossRef]
- Barnes, D.A.; Ellett, K.M.; Sosulski, J.; Rupp, J.A.; Leetaru, H.E. A Comparison of Geological CO2 Storage Resource Calculation Methodologies to Evaluate Parameter Sensitivity and Reduce Uncertainty: Case study of the St. Peter Sandstone (Ordovician) in the Illinois and Michigan Basins. In Proceedings of the AAPG Search and Discovery Article #90154©2012 AAPG Eastern Section Meeting, Cleveland, OH, USA, 22–26 September 2012. [Google Scholar]
- Barnes, D.A.; Ellett, K.M.; Leetaru, H.E. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins; OSTI.GOV: Champaign, IL, USA, 30 September 2014. [Google Scholar]
- Pearce, J.K.; La Croix, A.D.; Brink, F.J.; Hayes, P.J.; Underschultz, J.R. CO2 mineral trapping comparison in different regions: Predicted geochemical reactivity of the Precipice Sandstone reservoir and overlying Evergreen Formation. Pet. Geosci. 2021, 27, petgeo2020–106. [Google Scholar] [CrossRef]
- Harris, C.; Jackson, S.J.; Espie, T.; Jones, A.; Krevor, S.; Muggeridge, A.H. The impacts of heterogeneity on CO2 capillary trapping within the Captain Sandstone—A core to field scale study. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021. [Google Scholar]
- Shen, C.H.; Li, Y.-H.; Hsieh, B.-Z.; Huang, C. Safety impact of interlayer fractures opening in CO2 storage systems. In Proceedings of the 14th Greenhouse Gas Control Technologies Conference, Melbourne, Australia, 21–25 October 2018; pp. 21–26. [Google Scholar]
- Wilkinson, M.I. Data for: Trace Elements in Produced Waters from Underground CO2 Storage: Captain Sandstone Formation, UK. 2021. Available online: https://data.mendeley.com/datasets/2mnmykg9y8 (accessed on 1 March 2023).
- Almenningen, S.; Gauteplass, J.; Fotland, P.; Aastveit, G.L.; Barth, T.; Ersland, G. Visualization of hydrate formation during CO2 storage in water-saturated sandstone. Int. J. Greenh. Gas Control. 2018, 79, 272–278. [Google Scholar] [CrossRef]
- Ali, M.; Sahito, M.F.; Jha, N.K.; Arain, Z.-U.; Memon, S.; Keshavarz, A.; Iglauer, S.; Saeedi, A.; Sarmadivaleh, M. Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage. J. Colloid Interface Sci. 2020, 559, 304–312. [Google Scholar] [CrossRef]
- Heinemann, N.; Wilkinson, M.I.; Pickup, G.; Haszeldine, S.; Cutler, N.A. CO2 storage in the offshore UK Bunter Sandstone Formation. Int. J. Greenh. Gas Control. 2012, 6, 210–219. [Google Scholar] [CrossRef]
Formation Type | CO2 Storage Capacity Rating | Justification |
---|---|---|
Deep Saline Aquifers | 5 | Deep saline aquifers have the highest CO2 storage capacity due to their large pore spaces and extensive underground storage volume. They can store CO2 in both dissolved and supercritical forms. |
Depleted Reservoirs | 3 | Depleted reservoirs have moderate CO2 storage capacity due to their reduced pore spaces and lower storage volume compared to saline aquifers. However, their previous use for oil or gas storage may have left them with infrastructure for CO2 injection. |
Coal Seams | 2 | Coal seams have limited CO2 storage capacity due to their low permeability, which makes it difficult for CO2 to migrate into the coal. Additionally, coal seams may also have limited storage volume compared to other formations. |
Basaltic Formations | 4 | Basaltic formations have high CO2 storage capacity due to their extensive storage volume and ability to trap CO2 through mineralization. Basalt can react with CO2 to form carbonate minerals, which can permanently store the CO2. |
Clastic Formations | 3 | Clastic formations have moderate CO2 storage capacity due to their moderate pore spaces and storage volume. However, their permeability may vary, which can affect CO2 migration and storage. Clastic formations may also be associated with oil or gas reservoirs, which can affect CO2 storage. |
Formation Type | Injection Rate Rating | Justification |
---|---|---|
Deep Saline Aquifers | 5 | Deep saline aquifers have the highest injection rates due to their large storage volume and high permeability, which allows for rapid CO2 injection. Additionally, the saline water in these aquifers can help to dissolve the CO2, allowing for faster injection and storage. |
Depleted Reservoirs | 4 | Depleted reservoirs have a high injection rate potential due to their existing infrastructure for fluid injection. However, their reduced permeability compared to saline aquifers may limit the injection rate. The previous use for oil or gas storage may have left them with infrastructure for CO2 injection. |
Coal Seams | 3 | Coal seams have lower injection rates compared to saline aquifers and depleted reservoirs due to their low permeability. However, injection rates may be increased through hydraulic fracturing or other stimulation techniques. |
Basaltic Formations | 4 | Basaltic formations have a high potential for CO2 injection. However, the mineralization process may also limit the injection rate, as the CO2 needs to react with the basalt to form carbonate minerals. |
Clastic Formations | 3 | Clastic formations have moderate injection rates due to their moderate permeability, which can limit the rate of CO2 injection. Additionally, their association with oil or gas reservoirs may also limit the injection rate due to potential for reservoir damage. However, some clastic formations may have higher permeability and injection rates. |
Formation Type | CO2 Storage Efficiency Rating | Justification |
---|---|---|
Deep Saline Aquifers | 4 | Deep saline aquifers have a high CO2 storage efficiency due to their large storage volume and ability to store CO2 for long periods of time. However, there is some potential for CO2 leakage due to their permeability, and some of the stored CO2 may eventually dissolve into the saline water, reducing efficiency. |
Depleted Reservoirs | 3 | Depleted reservoirs have moderate CO2 storage efficiency due to their existing infrastructure for fluid injection and potential for long-term storage. However, their reduced permeability compared to saline aquifers may limit the storage efficiency, and the previous use for oil or gas storage may have left them with infrastructure that is not optimized for CO2 storage, reducing efficiency. |
Coal Seams | 2 | Coal seams have lower CO2 storage efficiency compared to saline aquifers and depleted reservoirs due to their lower porosity and limited storage volume. Additionally, some CO2 stored in coal seams may eventually be released due to the high pressure that is necessary for CO2 injection, reducing efficiency. |
Basaltic Formations | 4 | Basaltic formations have a high potential for CO2 storage efficiency due to their ability to mineralize CO2, which can reduce the risk of CO2 leakage over time. However, the mineralization process can be slow or rapid depending upon the conditions of T and P, which may limit the storage efficiency. |
Clastic Formations | 3 | Clastic formations have moderate CO2 storage efficiency due to their moderate porosity and permeability. However, their association with oil or gas reservoirs may limit the storage efficiency, and their storage efficiency may also be limited by potential reservoir damage. |
Formation Type | CO2 Storage Residual Trap Rating | Justification |
---|---|---|
Deep Saline Aquifers | 5 | Deep saline aquifers have a high potential for residual trapping, with estimates indicating that up to 95% of injected CO2 can be permanently stored in these formations. The cap rock acts as a physical barrier, trapping CO2 beneath it, and the CO2 can also dissolve into the water, reducing the risk of leakage. |
Depleted Reservoirs | 3 | Depleted reservoirs have a moderate potential for residual trapping, with estimates indicating that around 50% of injected CO2 can be trapped in these formations. Residual trapping occurs as CO2 is immobilized by capillary forces and chemical reactions with the rock. However, there is still some risk of leakage over the long term. |
Coal Seams | 4 | Coal seams have a high potential for residual trapping, with estimates indicating that up to 80% of injected CO2 can be trapped in these formations. Residual trapping occurs as CO2 is trapped in micropores. This type of trapping is relatively stable over the long term, reducing the risk of leakage. |
Basaltic Formations | 2 | Basaltic formations have a lower potential for residual trapping compared to other formations, with estimates indicating that around 30% of injected CO2 can be trapped in these formations. However, this type of trapping in basalt is not well understood and there is still some risk of leakage over the long term. |
Clastic Formations | 3 | Clastic formations have a moderate potential for residual trapping, with estimates indicating that around 50% of injected CO2 can be trapped in these formations. Residual trapping occurs as CO2 is immobilized by capillary forces and chemical reactions with the rock. However, there is still some risk of leakage over the long term, particularly if the rock is fractured. |
Storage Method | Security Risk | Mitigation Efforts | Overall Result | Justification |
---|---|---|---|---|
Deep Saline Aquifers | 3 | 2 | 2.5 | The risk of CO2 leakage is high due to the uncertain behavior of subsurface fluids. However, monitoring and verification techniques are moderately effective in mitigating risks. |
Depleted Reservoirs | 3 | 3 | 3 | The risk of CO2 leakage is moderate, but the mitigation efforts can be moderately effective, using techniques, such as injection well management and subsurface monitoring. |
Coal Seams | 2 | 4 | 3 | The risk of CO2 leakage is relatively low, but the cost and time efforts required for mitigation can be high. However, the mitigation techniques, such as pressure management and water production, can be very effective. |
Basalt formations | 5 | 5 | 5 | The risk of CO2 leakage is very low, and the storage is considered permanent. The mitigation efforts required are minimal as the natural properties of basalt formations offer secure storage. |
Clastic formations | 3 | 4 | 3.5 | The risk of CO2 leakage is moderate, but the mitigation efforts can be very effective, such as enhancing mineral dissolution and physical trapping. |
Storage Formation | Contamination and Integrity Issues | Rating (1–5) | Justification |
---|---|---|---|
Deep Saline Aquifers | Low | 5 | Saline aquifers are naturally isolated from the freshwater resources, and their geology typically has low permeability, which reduces the risk of CO2 leakage. |
Depleted Reservoirs | Moderate | 3 | The risk of CO2 leakage in depleted reservoirs is higher than deep saline aquifers due to their previous history of hydrocarbon production, which may have caused faults and fractures. |
Coal Seams | Moderate | 3 | The potential for CO2 leakage from coal seams is higher than deep saline aquifers due to their high permeability and potential for natural fractures. Appropriate site management is crucial. |
Basaltic Formations | Low | 5 | CO2 injected into these formations reacts with the minerals present, reducing the risk of CO2 leakage. |
Clastic Formations | Moderate to High | 2.5 | Clastic formations, such as sandstone and shale, have natural fractures and permeability, which increase the risk of CO2 leakage. Appropriate site management practices are crucial to reduce risk |
Formation | Potential for CO2 Storage Improvement | Justification |
---|---|---|
Deep saline aquifers | 4 | There is potential for improvement in storage efficiency through the use of advanced monitoring techniques and modeling tools to better understand the subsurface dynamics and optimize injection strategies. Additionally, the development of new technologies, such as subsurface imaging and flow control devices can help increase storage capacity and enhance long-term storage reliability. |
Depleted reservoirs | 3 | Although depleted reservoirs have already been used for CO2 storage, there is potential for improvement in storage efficiency by developing new technologies such as optimized well placement and advanced monitoring systems to better characterize the reservoir and improve injection strategies. Additionally, the use of integrated models to predict and optimize reservoir behavior can also help improve storage efficiency. |
Coal seams | 2 | There is potential for improvement in storage efficiency through the use of enhanced coal bed methane recovery techniques that can help increase storage capacity and reduce leakage. Additionally, the development of new technologies, such as CO2-ECBM (Enhanced Coal Bed Methane) can potentially increase the overall storage efficiency. |
Basaltic formation | 4 | There is potential for improvement in storage efficiency by developing advanced technologies, such as CO2-solubility trapping mechanisms to increase storage capacity and long-term storage reliability. Furthermore, improving the understanding of subsurface geology and using advanced monitoring techniques to optimize injection strategies can also increase storage efficiency. |
Clastic formation | 3 | There is potential for improvement in storage efficiency by developing new technologies, such as CO2-foam injection that can help overcome the challenges of heterogeneity and increase storage capacity. Additionally, improving the understanding of subsurface geology and using advanced monitoring techniques can help optimize injection strategies and improve storage efficiency. |
Safety Risks and Mitigations | Parametric evaluation | Potential to Improve | Containment and Integrity | Overall Rating | ||||
---|---|---|---|---|---|---|---|---|
CO2 Storage | Injection Rate | Efficiency | Residual Trapping | |||||
Deep Saline Aquifers | 2.5 | 5 | 5 | 4 | 5 | 4 | 5 | 4.3 |
Depleted Reservoirs | 3 | 3 | 4 | 3 | 3 | 3 | 3 | 3.1 |
Coal Seams | 3 | 2 | 3 | 2 | 4 | 2 | 3 | 2.6 |
Basaltic Formations | 5 | 4 | 4 | 4 | 2 | 5 | 5 | 4.1 |
Clastic Formations | 3.5 | 3 | 3 | 3 | 3 | 3 | 2.5 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasool, M.H.; Ahmad, M.; Ayoub, M. Selecting Geological Formations for CO2 Storage: A Comparative Rating System. Sustainability 2023, 15, 6599. https://doi.org/10.3390/su15086599
Rasool MH, Ahmad M, Ayoub M. Selecting Geological Formations for CO2 Storage: A Comparative Rating System. Sustainability. 2023; 15(8):6599. https://doi.org/10.3390/su15086599
Chicago/Turabian StyleRasool, Muhammad Hammad, Maqsood Ahmad, and Muhammad Ayoub. 2023. "Selecting Geological Formations for CO2 Storage: A Comparative Rating System" Sustainability 15, no. 8: 6599. https://doi.org/10.3390/su15086599
APA StyleRasool, M. H., Ahmad, M., & Ayoub, M. (2023). Selecting Geological Formations for CO2 Storage: A Comparative Rating System. Sustainability, 15(8), 6599. https://doi.org/10.3390/su15086599