Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues
Abstract
:1. Introduction
1.1. Background
1.2. Contributions
- Modeling of IEGS for planning studies is reviewed thoroughly and the concerning issues in the integrated planning of IEGS are classified. In addition, modeling the line pack phenomenon in gas pipelines is done in detail due to its crucial role in the integrated planning of electric power and natural gas systems.
- A technical overview of IEGS planning with a comprehensive review of PtG technology and its relevant technical and economic aspects and constraints are presented due to the crucial role of this technology in IEGS planning, and the need for increasing the penetration of RES in future energy systems to restrict the CO2 emissions.
- A detailed evaluation of the existing literature is performed, and the associated issues in the coordinated planning of EPS and NGS, including various objectives, relevant costs, constraints, uncertainties, reliability, N − 1 contingency, the modeling of EPS and NGS, real networks, impact of RES, and PtG units are highlighted.
- A classification is done for the solution approaches which deal with the non-convex and non-linear optimization models in both EPS and NGS from the planning perspective.
1.3. Paper Organization
2. Technical Overview and Modeling of IEGS
2.1. Electric Power System
Load Flow | Ref. |
---|---|
AC | [50,51,52,53,54,55] |
DC | [29,56,57,58,59,60,61,62] |
[35,63,64,65,66,67,68,69,70,71] | |
[72,73,74,75,76,77,78,79,80] |
- Assuming all systems have high enough X/R ratios, only the series reactances of transmission lines are considered.
- Voltage magnitudes are constant and equal to 1 per unit (p.u.) at all buses.
- The voltage angle difference between the i and k buses of a transmission line is slight, which leads to: .
2.2. Natural Gas System
2.2.1. Line Pack Effect
2.2.2. Gas Compressors
2.3. Sector-Coupling Components
2.3.1. Gas-Fired Power Plants
2.3.2. Power-to-Gas
2.3.3. Other Sector-Coupling Components
3. Optimal Planning of IEGS
3.1. General Formulation
3.2. Objective Function
3.3. Constraints
3.3.1. Planning Constraints
3.3.2. Operational Constraints
3.3.3. Other Related Constraints
3.4. Decision Variables
3.5. Impact of Uncertainties
Uncertainty | Ref. |
---|---|
Power and NG load demands | [29,35,56,57,59,63,65,66,67] |
[54,55,68,72,95,99,144] | |
Wind power generation | [29,35,50,56,58,59,62,72] |
[63,65,69,76,99,145] | |
Photovoltaic generation | [57,72] |
EP or NG prices | [29,52,54,72,141] |
Interest rate | [63] |
Carbon tax | [29] |
Forced outage rate (FOR) | [52] |
Occurrence of severe natural disasters | [74] |
Capital investment | [136] |
Various plans with different attitudes | [71] |
Demand response | [52,145] |
Load forecast error | [52] |
3.6. N − 1 Contingency
3.7. Impact of Renewable Energy Sources
3.8. Impact of Power-to-Gas Units
3.9. Reliability Assessment
3.10. IEGS Planning Studies in Real Networks
4. Solution Approaches
5. Conclusions and Future Research Guidelines
- (1)
- PtG units require high-purity CO2 sources, which can be supplied from various sources. Costs and technical constraints related to the CO2 supply in terms of multiple factors such as purity, distance from PtG units, etc., will play crucial roles in their optimal planning as well as their economic viability and technical feasibility. In the related research works, the impact of CO2 supply on the IEGS planning has not been considered. Moreover, the carbon capture cost is not included in the optimization models. Considering the impact of CO2 supply in the optimal planning of IEGS can be an attractive research line in the future.
- (2)
- Costs and technical constraints of water supply in PtG units may affect the optimal planning of PtG-included IEGS. In the literature, this issue has not been addressed by assuming that the required water is available without any limitations. Its supply cost has not been included in the problem formulations either.
- (3)
- The output of PtG units in IEGS planning is mainly considered SNG, which is injected into the NGS. However, the direct use of H2 in H2-fired gas turbines or fuel cells is an attractive alternative due to its advantages in increasing the efficiency of the PtG process.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CC | Carbon capture |
CO2 | Carbon dioxide |
EENS | Expected energy not supplied |
EP | Electric power |
EPS | Electric power system |
GFPP | Gas-fired power plant |
H2 | Hydrogen |
IEGS | Integrated electricity and gas systems |
MILP | Mixed-integer linear programming |
MINLP | Mixed-integer non-linear programming |
NG | Natural gas |
NGS | Natural gas system |
OF | Objective function |
PtG | Power to Gas |
RE | Renewable energy |
RES | Renewable energy sources |
SNG | Synthetic natural gas |
References
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 15 July 2022).
- IRENA. Global Energy Transformation: A Roadmap to 2050 (2019 Edition). Available online: https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition (accessed on 26 November 2020).
- European Commission. Climate & Energy Framework—Climate Action. 2030 Climate & Energy Framework. 2019. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 10 July 2022).
- Federal Ministry for Economic Affairs and Energy (BMWi). The Energy of the Future, 8th Monitoring Report on the Energy Transition—Reporting Years 2018 and 2019. 2021. Available online: https://www.bmwk.de/Redaktion/EN/Publikationen/Energie/the-energy-of-the-future-8th-monitoring-report.pdf?__blob=publicationFile&v=6 (accessed on 22 May 2022).
- Financing and Investment Trends of the European Wind Industry in 2021; Windeurope.org: Brussels, Belgium, 2022; Available online: https://windeurope.org/intelligence-platform/product/financing-and-investment-trends-2021/ (accessed on 25 August 2022).
- REN21. Renewables 2022 Global Status Report. 2022. Available online: https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf (accessed on 14 September 2022).
- Raheli, E.; Wu, Q.; Zhang, M.; Wen, C. Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods. Renew. Sustain. Energy Rev. 2021, 145, 111134. [Google Scholar] [CrossRef]
- Graditi, G.; Di Somma, M. (Eds.) Technologies for Integrated Energy Systems and Networks; Wiley: Hoboken, NJ, USA, 2022; ISBN 978-3-527-83362-7. [Google Scholar]
- BP. Statistical Review of World Energy. 2020. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corpo-rate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 3 April 2022).
- BP. Statistical Review of World Energy, 70th ed. 2020. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 3 April 2022).
- International Energy Agency, Data and Statistics. IEA Data Services. 2020. Available online: https://www.iea.org/data-and-statistics?country=USA&fuel=Electricityandheat&indicator=ElecGenByFueln (accessed on 10 April 2022).
- Bloess, A.; Schill, W.-P.; Zerrahn, A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Appl. Energy 2018, 212, 1611–1626. [Google Scholar] [CrossRef]
- IRENA. Innovation landscape Brief: Renewable Power-to-Heat; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019; Available online: www.irena.org/publications (accessed on 10 April 2022).
- Araya, S.S.; Cui, X.; Li, N.; Liso, V.; Sahlin, S.L. Power-to-X: Technology Overview, Possibilities and Challenges; Aalborg University, AAU Energy: Aalborg East, Denmark, 2022. [Google Scholar]
- Danish Ministry of Climate, Energy and Utilities, København K. Power-to-X Strategy. 2021. Available online: https://ens.dk/sites/ens.dk/files/ptx/strategy_ptx.pdf (accessed on 25 March 2022).
- Ince, A.C.; Colpan, C.O.; Hagen, A.; Serincan, M.F. Modeling and simulation of Power-to-X systems: A review. Fuel 2021, 304, 121354. [Google Scholar] [CrossRef]
- Sorrenti, I.; Rasmussen, T.B.H.; You, S.; Wu, Q. The role of power-to-X in hybrid renewable energy systems: A comprehensive review. Renew. Sustain. Energy Rev. 2022, 165, 112380. [Google Scholar] [CrossRef]
- Incer-Valverde, J.; Patiño-Arévalo, L.J.; Tsatsaronis, G.; Morosuk, T. Hydrogen-driven Power-to-X: State of the art and multicriteria evaluation of a study case. Energy Convers. Manag. 2022, 266, 115814. [Google Scholar] [CrossRef]
- Koj, J.C.; Wulf, C.; Zapp, P. Environmental impacts of power-to-X systems—A review of technological and methodological choices in Life Cycle Assessments. Renew. Sustain. Energy Rev. 2019, 112, 865–879. [Google Scholar] [CrossRef]
- Buchholz, O.S.; van der Ham, A.G.J.; Veneman, R.; Brilman, D.W.F.; Kersten, S.R.A. Power-to-Gas: Storing Surplus Electrical Energy. A Design Study. Energy Procedia 2014, 63, 7993–8009. [Google Scholar] [CrossRef] [Green Version]
- Parra, D.; Patel, M.K. Techno-economic implications of the electrolyser technology and size for power-to-gas systems. Int. J. Hydrogen Energy 2016, 41, 3748–3761. [Google Scholar] [CrossRef]
- Qadrdan, M.; Abeysekera, M.; Chaudry, M.; Wu, J.; Jenkins, N. Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int. J. Hydrogen Energy 2015, 40, 5763–5775. [Google Scholar] [CrossRef]
- Blanco, H.; Nijs, W.; Ruf, J.; Faaij, A. Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization. Appl. Energy 2018, 232, 323–340. [Google Scholar] [CrossRef]
- Schiebahn, S.; Grube, T.; Robinius, M.; Tietze, V.; Kumar, B.; Stolten, D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 2015, 40, 4285–4294. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Shahidehpour, M.; Wen, F.; Wang, K.; Huang, Y. Optimal Operation Strategy for Integrated Natural Gas Generating Unit and Power-to-Gas Conversion Facilities. IEEE Trans. Sustain. Energy 2018, 9, 1870–1879. [Google Scholar] [CrossRef]
- Gorre, J.; Ortloff, F.; van Leeuwen, C. Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage. Appl. Energy 2019, 253, 113594. [Google Scholar] [CrossRef]
- Tichler, R.; Bauer, S.; Böhm, H. 25—Power-to-Gas. In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 595–612. [Google Scholar] [CrossRef]
- Clegg, S.; Mancarella, P. Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on elec-trical and gas transmission networks. IEEE Trans. Sustain. Energy 2015, 6, 1234–1244. [Google Scholar] [CrossRef]
- Liang, J.; Tang, W. Stochastic multistage co-planning of integrated energy systems considering power-to-gas and the cap-and-trade market. Int. J. Electr. Power Energy Syst. 2020, 119, 105817. [Google Scholar] [CrossRef]
- Rabiee, A.; Keane, A.; Soroudi, A. Green hydrogen: A new flexibility source for security constrained scheduling of power systems with renewable energies. Int. J. Hydrogen Energy 2021, 46, 19270–19284. [Google Scholar] [CrossRef]
- Collet, P.; Flottes, E.; Favre, A.; Raynal, L.; Pierre, H.; Capela, S.; Peregrina, C. Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology. Appl. Energy 2017, 192, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Quarton, C.J.; Samsatli, S. Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling? Renew. Sustain. Energy Rev. 2018, 98, 302–316. [Google Scholar] [CrossRef]
- Danish Energy Agency. Monthly Energy Statistics: Natural Gas. 2020. Available online: https://ens.dk/en/our-services/statistics-data-key-figures-and-energy-maps/annual-and-monthly-statistics (accessed on 16 May 2022).
- Robinius, M.; Raje, T.; Nykamp, S.; Rott, T.; Müller, M.; Grube, T.; Katzenbach, B.; Küppers, S.; Stolten, D. Power-to-Gas: Electrolyzers as an alternative to network expansion—An example from a distribution system operator. Appl. Energy 2018, 210, 182–197. [Google Scholar] [CrossRef]
- Hunsheng Zhou, H.; Zheng, J.H.; Li, Z.; Wu, Q.H.; Zhou, X.X. Multi-stage contingency-constrained co-planning for electricity-gas systems interconnected with gas-fired units and power-to-gas plants using iterative Benders decomposition. Energy 2019, 180, 689–701. [Google Scholar] [CrossRef]
- Ordoudis, C.; Pinson, P.; Morales, J.M. An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers. Eur. J. Oper. Res. 2019, 272, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Moradi, A.; Salehi, J.; Ravadanagh, S.N. Risk-based optimal decision-making strategy of a Power-to-Gas integrated energy-hub for exploitation arbitrage in day-ahead electricity and Natural Gas markets. Sustain. Energy Grids Netw. 2022, 31, 100781. [Google Scholar] [CrossRef]
- Wang, J.; Xin, H.; Xie, N.; Wang, Y. Equilibrium models of coordinated electricity and natural gas markets with different coupling information exchanging channels. Energy 2021, 239, 121827. [Google Scholar] [CrossRef]
- Farrokhifar, M.; Nie, Y.; Pozo, D. Energy systems planning: A survey on models for integrated power and natural gas networks coordination. Appl. Energy 2020, 262, 114567. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, J.; Sun, Y.; Wei, C.; Wang, J.; Liao, S.; Ke, D.; Li, X.; Yang, J.; Peng, X. Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources. Appl. Energy 2017, 211, 237–248. [Google Scholar] [CrossRef]
- He, C.; Zhang, X.; Liu, T.; Wu, L.; Shahidehpour, M. Coordination of Interdependent Electricity Grid and Natural Gas Network—A Review. Curr. Sustain. Energy Rep. 2018, 5, 23–36. [Google Scholar] [CrossRef]
- Patrick, D.R.; Fardo, S.W.; Fardo, B.W. Electrical Power Systems Technology, 4th ed.; River Publishers: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Sadhu, P.K.; Das, S. Elements of Power Systems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Weedy, B.M.; Cory, B.J.; Jenkins, N.; Ekanayake, J.B. Goran Strbac, Electric Power Systems, 5th ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-1-118-36108-5. [Google Scholar]
- Zabihian, F. Power Plant Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Powell, L. Power System Load Flow Analysis; McGraw-Hill: New York, NY, USA, 2005; ISBN 978-0-07-178261-6. [Google Scholar]
- Murty, P. Chapter 10—Power Flow Studies. In Power Systems Analysis, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 205–276. [Google Scholar] [CrossRef]
- Salam, A. Load Flow Analysis. In Fundamentals of Electrical Power Systems Analysis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 317–377. [Google Scholar] [CrossRef]
- Glover, J.D.; Sarma, M.S.; Overbye, T. Adam Birchfield, Power System Analysis and Design, 7th ed.; Cengage Learning, Inc.: Boston, MA, USA, 2022. [Google Scholar]
- Li, D.; Gao, C.; Chen, T.; Guo, X.; Han, S. Planning strategies of power-to-gas based on cooperative game and symbiosis cooperation. Appl. Energy 2021, 288, 116639. [Google Scholar] [CrossRef]
- Jooshaki, M.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M.; Lehtonen, M. Multistage Expansion Co-Planning of Integrated Natural Gas and Electricity Distribution Systems. Energies 2019, 12, 1020. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Qiu, J.; Meng, K.; Gao, X.; Dong, Z. Coordinated expansion co-planning of integrated gas and power systems. J. Mod. Power Syst. Clean Energy 2017, 5, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Dong, Z.Y.; Zhao, J.; Meng, K.; Luo, F.; Chen, Y. Expansion co-planning for shale gas integration in a combined energy market. J. Mod. Power Syst. Clean Energy 2015, 3, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Dong, Z.Y.; Zhao, J.H.; Xu, Y.; Zheng, Y.; Li, C.; Wong, K.P. Multi-Stage Flexible Expansion Co-Planning Under Uncertainties in a Combined Electricity and Gas Market. IEEE Trans. Power Syst. 2014, 30, 2119–2129. [Google Scholar] [CrossRef]
- Odetayo, B.; MacCormack, J.; Rosehart, W.D.; Zareipour, H. A sequential planning approach for Distributed generation and natural gas networks. Energy 2017, 127, 428–437. [Google Scholar] [CrossRef]
- Safari, A.; Farrokhifar, M.; Shahsavari, H.; Hosseinnezhad, V. Stochastic planning of integrated power and natural gas networks with simplified system frequency constraints. Int. J. Electr. Power Energy Syst. 2021, 132, 107144. [Google Scholar] [CrossRef]
- Yamchi, H.B.; Safari, A.; Guerrero, J.M. A multi-objective mixed integer linear programming model for integrated electricity-gas network expansion planning considering the impact of photovoltaic generation. Energy 2021, 222, 119933. [Google Scholar] [CrossRef]
- Ansari, M.; Zadsar, M.; Zareipour, H.; Kazemi, M. Resilient operation planning of integrated electrical and natural gas systems in the presence of natural gas storages. Int. J. Electr. Power Energy Syst. 2021, 130, 106936. [Google Scholar] [CrossRef]
- Haghighat, H.; Zeng, B. Stochastic network investment in integrated gas-electric systems. Electr. Power Syst. Res. 2021, 197, 107219. [Google Scholar] [CrossRef]
- Sohrabi, F.; Vahid-Pakdel, M.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A. Strategic planning of power to gas energy storage facilities in electricity market. Sustain. Energy Technol. Assess. 2021, 46, 101238. [Google Scholar] [CrossRef]
- Löhr, L.; Houben, R.; Moser, A. Optimal power and gas flow for large-scale transmission systems. Electr. Power Syst. Res. 2020, 189, 106724. [Google Scholar] [CrossRef]
- Wang, X.; Bie, Z.; Liu, F.; Kou, Y.; Jiang, L. Bi-level planning for integrated electricity and natural gas systems with wind power and natural gas storage. Int. J. Electr. Power Energy Syst. 2019, 118, 105738. [Google Scholar] [CrossRef]
- Khaligh, V.; Anvari-Moghaddam, A. Stochastic expansion planning of gas and electricity networks: A decen-tralized-based approach. Energy 2019, 186, 115889. [Google Scholar] [CrossRef]
- Rad, V.Z.; Torabi, S.A.; Shakouri, H. Joint electricity generation and transmission expansion planning under integrated gas and power system. Energy 2019, 167, 523–537. [Google Scholar]
- Saldarriaga-Cortés, C.; Salazar, H.; Moreno, R.; Jiménez-Estévez, G. Stochastic planning of electricity and gas networks: An asynchronous column generation approach. Appl. Energy 2019, 233–234, 1065–1077. [Google Scholar] [CrossRef]
- Ding, T.; Hu, Y.; Bie, Z. Multi-Stage Stochastic Programming with Nonanticipativity Constraints for Expansion of Combined Power and Natural Gas Systems. IEEE Trans. Power Syst. 2017, 33, 317–328. [Google Scholar] [CrossRef]
- Odetayo, B.; MacCormack, J.; Rosehart, W.; Zareipour, H.; Seifi, A.R. Integrated planning of natural gas and electric power systems. Int. J. Electr. Power Energy Syst. 2018, 103, 593–602. [Google Scholar] [CrossRef]
- Zhao, B.; Conejo, A.J.; Sioshansi, R. Coordinated Expansion Planning of Natural Gas and Electric Power Systems. IEEE Trans. Power Syst. 2017, 33, 3064–3075. [Google Scholar] [CrossRef]
- He, C.; Wu, L.; Liu, T.; Bie, Z. Robust Co-Optimization Planning of Interdependent Electricity and Natural Gas Systems with a Joint N-1 and Probabilistic Reliability Criterion. IEEE Trans. Power Syst. 2017, 33, 2140–2154. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Ma, J.; Bie, Z. A Mixed-Integer Linear Programming Approach to Security-Constrained Co-Optimization Expansion Planning of Natural Gas and Electricity Transmission Systems. IEEE Trans. Power Syst. 2018, 33, 6368–6378. [Google Scholar] [CrossRef]
- Khaligh, V.; Buygi, M.O.; Anvari-Moghaddam, A.; Guerrero, J.M. A Multi-Attribute Expansion Planning Model for Integrated Gas–Electricity System. Energies 2018, 11, 2573. [Google Scholar] [CrossRef] [Green Version]
- Nunes, J.B.; Mahmoudi, N.; Saha, T.K.; Chattopadhyay, D. Stochastic Integrated Planning of Electricity and Natural Gas Networks for Queensland, Australia Considering High Renewable Penetration. Energy 2018, 153, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Zhang, B.; Fang, J.; Chen, Z. A bi-level programming for multistage co-expansion planning of the integrated gas and electricity system. Appl. Energy 2017, 200, 192–203. [Google Scholar] [CrossRef]
- Shao, C.; Shahidehpour, M.; Wang, X.; Wang, X.; Wang, B. Integrated Planning of Electricity and Natural Gas Transportation Systems for Enhancing the Power Grid Resilience. IEEE Trans. Power Syst. 2017, 32, 4418–4429. [Google Scholar] [CrossRef]
- Ojeda-Esteybar, D.M.; Rubio-Barros, R.G.; Vargas, A. Integrated operational planning of hydrothermal power and natural gas systems with large scale storages. J. Mod. Power Syst. Clean Energy 2017, 5, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Bie, Z.; Ding, T.; Lin, Y. An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning. Appl. Energy 2016, 167, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Yang, H.; Dong, Z.Y.; Zhao, J.H.; Meng, K.; Luo, F.J.; Wong, K.P. A Linear Programming Approach to Expansion Co-Planning in Gas and Electricity Markets. IEEE Trans. Power Syst. 2016, 31, 3594–3606. [Google Scholar] [CrossRef]
- Barati, F.; Seifi, H.; Sepasian, M.S.; Nateghi, A.; Shafie-Khah, M.; Catalao, J.P.S. Multi-Period Integrated Framework of Generation, Transmission, and Natural Gas Grid Expansion Planning for Large-Scale Systems. IEEE Trans. Power Syst. 2014, 30, 2527–2537. [Google Scholar] [CrossRef]
- Zhang, X.; Shahidehpour, M.; Alabdulwahab, A.S.; Abusorrah, A. Security-Constrained Co-Optimization Planning of Electricity and Natural Gas Transportation Infrastructures. IEEE Trans. Power Syst. 2014, 30, 2984–2993. [Google Scholar] [CrossRef]
- Xiang, Y.; Guo, Y.; Wu, G.; Liu, J.; Sun, W.; Lei, Y.; Zeng, P. Low-carbon economic planning of integrated electricity-gas energy systems. Energy 2022, 249, 123755. [Google Scholar] [CrossRef]
- Qadrdan, M.; Abeysekera, M.; Wu, J.; Jenkins, N.; Winter, B. Fundamentals of Natural Gas Networks. In The Future of Gas Networks: The Role of Gas Networks in a Low Carbon Energy System; Springer: Berlin/Heidelberg, Germany, 2019; pp. 5–22. [Google Scholar] [CrossRef]
- Menon, E.S. Gas Pipeline Hydrolics; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rabiee, A.; Kamwa, I.; Keane, A.; Soroudi, A. Gas Network’s Impact on Power System Voltage Security. IEEE Trans. Power Syst. 2021, 36, 5428–5440. [Google Scholar] [CrossRef]
- Tran, T.H.; French, S.; Ashman, R.; Kent, E. Linepack planning models for gas transmission network under uncertainty. Eur. J. Oper. Res. 2018, 268, 688–702. [Google Scholar] [CrossRef] [Green Version]
- Correa-Posada, C.M.; Sanchez-Martin, P. Integrated Power and Natural Gas Model for Energy Adequacy in Short-Term Operation. IEEE Trans. Power Syst. 2014, 30, 3347–3355. [Google Scholar] [CrossRef]
- Shin, J.; Werner, Y.; Kazempour, J. Modeling gas flow directions as state variables: Does it provide more flexibility to power systems? Electr. Power Syst. Res. 2022, 212, 108502. [Google Scholar] [CrossRef]
- Kabirian, A.; Hemmati, M.R. A strategic planning model for natural gas transmission networks. Energy Policy 2007, 35, 5656–5670. [Google Scholar] [CrossRef]
- Dvorkin, V.; Mallapragada, D.; Botterud, A.; Kazempour, J.; Pinson, P. Multi-stage linear decision rules for stochastic control of natural gas networks with linepack. Electr. Power Syst. Res. 2022, 212, 108388. [Google Scholar] [CrossRef]
- Fang, X.; Craig, M.T.; Hodge, B.-M. Linear Approximation Line Pack Model for Integrated Electricity and Natural Gas Systems OPF. In Proceedings of the 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Chaudry, M.; Jenkins, N.; Strbac, G. Multi-time period combined gas and electricity network optimization. Electr. Power Syst. Res. 2008, 78, 1265–1279. [Google Scholar] [CrossRef]
- Chen, S.; Conejo, A.J.; Sioshansi, R.; Wei, Z. Unit Commitment with an Enhanced Natural Gas-Flow Model. IEEE Trans. Power Syst. 2019, 34, 3729–3738. [Google Scholar] [CrossRef]
- Mokhatab, S.; Poe, W.A.; Speight, J.G. (Eds.) Chapter 8—Natural Gas Compression. In Handbook of Natural Gas Transmission and Processing; Gulf Professional Publishing: Houston, TX, USA, 2006; pp. 295–322. [Google Scholar] [CrossRef]
- Chen, S.; Wei, Z.; Sun, G.; Sun, Y.; Zang, H.; Zhu, Y. Optimal Power and Gas Flow with a Limited Number of Control Actions. IEEE Trans. Smart Grid 2017, 9, 5371–5380. [Google Scholar] [CrossRef]
- Borraz-Sánchez, C.; Ríos-Mercado, R.Z. Improving the operation of pipeline systems on cyclic structures by tabu search. Comput. Chem. Eng. 2009, 33, 58–64. [Google Scholar] [CrossRef]
- Koch, T.; Hiller, B.; Pfetsch, M.; Schewe, L. (Eds.) Evaluating Gas Network Capacities; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2015. [Google Scholar]
- Wei, W.; Wang, J. Modeling and Optimization of Interdependent Energy Infrastructures; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Shabanpour-Haghighi, A.; Seifi, A.R. An Integrated Steady-State Operation Assessment of Electrical, Natural Gas, and District Heating Networks. IEEE Trans. Power Syst. 2015, 31, 3636–3647. [Google Scholar] [CrossRef]
- Byeon, G.; Van Hentenryck, P. Unit Commitment with Gas Network Awareness. IEEE Trans. Power Syst. 2019, 35, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wei, Z.; Sun, G.; Cheung, K.W.; Sun, Y. Multi-Linear Probabilistic Energy Flow Analysis of Integrated Electrical and Natural-Gas Systems. IEEE Trans. Power Syst. 2016, 32, 1970–1979. [Google Scholar] [CrossRef]
- Thema, M.; Bauer, F.; Sterner, M. Power-to-Gas: Electrolysis and methanation status review. Renew. Sustain. Energy Rev. 2019, 112, 775–787. [Google Scholar] [CrossRef]
- Lehner, M.; Tichler, R.; Steinmüller, H.; Koppe, M. Power-to-Gas: Technology and Business Models; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Xing, X.; Tsinghua University; Lin, J.; Song, Y.; Zhou, Y.; Mu, S.; Hu, Q. Modeling and operation of the power-to-gas system for renewables integration: A review. CSEE J. Power Energy Syst. 2018, 4, 168–178. [Google Scholar] [CrossRef]
- Boudellal, M. Power-to-Gas: Renewable Hydrogen Economy for the Energy Transition; De Gruyter: Berlin, Germany; Boston, MA, USA, 2018. [Google Scholar] [CrossRef]
- De Iulio, R.; Roberto, R. Implementing Innovative Solutions for Sustainable Energy Systems. Interreg. 2019. Available online: https://www.enea.it/it/seguici/pubblicazioni/pdf-opuscoli/implementing_innovative_solutions_for_sustainable_energy_systems.pdf (accessed on 3 June 2022).
- Buttler, A.; Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renew. Sustain. Energy Rev. 2018, 82, 2440–2454. [Google Scholar] [CrossRef]
- Ursua, A.; Gandia, L.M.; Sanchis, P. Hydrogen Production from Water Electrolysis: Current Status and Future Trends. Proc. IEEE 2012, 100, 410–426. [Google Scholar] [CrossRef]
- Ajiwibowo, M.W.; Darmawan, A.; Aziz, M. A conceptual chemical looping combustion power system design in a power-to-gas energy storage scenario. Int. J. Hydrogen Energy 2018, 44, 9636–9642. [Google Scholar] [CrossRef]
- Mergel, J.; Carmo, M.; Fritz, D. Status on Technologies for Hydrogen Production by Water Electrolysis. In Transition to Renewable Energy Systems; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar] [CrossRef]
- Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [Google Scholar] [CrossRef] [Green Version]
- Mazza, A.; Bompard, E.; Chicco, G. Applications of power to gas technologies in emerging electrical systems. Renew. Sustain. Energy Rev. 2018, 92, 794–806. [Google Scholar] [CrossRef]
- Nielsen, S.; Skov, I.R. Investment screening model for spatial deployment of power-to-gas plants on a national scale—A Danish case. Int. J. Hydrogen Energy 2018, 44, 9544–9557. [Google Scholar] [CrossRef]
- Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492. [Google Scholar] [CrossRef]
- Gahleitner, G. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrogen Energy 2013, 38, 2039–2061. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation—From fundamentals to current projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Saedi, I.; Mhanna, S.; Mancarella, P. Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking. Appl. Energy 2021, 303, 117598. [Google Scholar] [CrossRef]
- Ditaranto, M.; Heggset, T.; Berstad, D. Concept of hydrogen fired gas turbine cycle with exhaust gas recirculation: Assessment of process performance. Energy 2020, 192, 116646. [Google Scholar] [CrossRef]
- Green Hydrogen for Industry: A Guide to Policy Making; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022; Available online: https://www.irena.org/publications (accessed on 7 September 2022).
- International Energy Agency. Global Hydrogen Review 2022. 2022. Available online: https://www.iea.org/reports/global-hydrogen-review-2022 (accessed on 18 October 2022).
- McKenna, R.; Bchini, Q.; Weinand, J.; Michaelis, J.; König, S.; Köppel, W.; Fichtner, W. The future role of Power-to-Gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg. Appl. Energy 2018, 212, 386–400. [Google Scholar] [CrossRef]
- Vandewalle, J.; Bruninx, K.; D’Haeseleer, W. Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions. Energy Convers. Manag. 2015, 94, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Schiebahn, S.; Grube, T.; Robinius, M.; Zhao, L.; Otto, A.; Kumar, B.; Weber, M.; Stolten, D. Power to Gas. In Transition to Renewable Energy Systems; Stolten, D., Scherer, V., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 813–848. [Google Scholar] [CrossRef]
- Fasihi, M.; Efimova, O.; Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 2019, 224, 957–980. [Google Scholar] [CrossRef]
- Reiter, G.; Lindorfer, J. Evaluating CO2 sources for power-to-gas applications—A case study for Austria. J. CO2 Util. 2015, 10, 40–49. [Google Scholar] [CrossRef]
- Biliyok, C.; Yeung, H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration. Int. J. Greenh. Gas Control. 2013, 19, 396–405. [Google Scholar] [CrossRef]
- Rabiee, A.; Keane, A.; Soroudi, A. Technical barriers for harnessing the green hydrogen: A power system perspective. Renew. Energy 2020, 163, 1580–1587. [Google Scholar] [CrossRef]
- Ahern, E.P.; Deane, P.; Persson, T.; Gallachóir, B.; Murphy, J.D. A perspective on the potential role of renewable gas in a smart energy island system. Renew. Energy 2015, 78, 648–656. [Google Scholar] [CrossRef]
- Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems: Limiting Global Warming by Transforming Energy Systems; Kassel University Press GmbH: Kassel, Germany, 2009. [Google Scholar]
- Eveloy, V.; Gebreegziabher, T. A Review of Projected Power-to-Gas Deployment Scenarios. Energies 2018, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Lu, Z.; Zhang, J.; Geng, L.; Zhao, H.; Li, X. Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas. Appl. Energy 2018, 224, 357–370. [Google Scholar] [CrossRef]
- Grond, L.; Schulze, P.; Holstein, J. System Analyses Power to Gas: Technology Review, Final Report; DNV KEMA Energy & Sustainability: Groningen, The Netherlands, 2013. [Google Scholar]
- Tomasgard, A.; Rømo, F.; Fodstad, M.; Midthun, K. Optimization Models for the Natural Gas Value Chain. In Geometric Modelling, Numerical Simulation, and Optimization; Springer: Berlin/Heidelberg, Germany, 2007; pp. 521–558. [Google Scholar]
- Wang, H.; Zhang, R.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. GPNBI-inspired MOSFA for Pareto operation optimization of integrated energy system. Energy Convers. Manag. 2017, 151, 524–537. [Google Scholar] [CrossRef]
- Gong, J.; Li, Y.; Lv, J.; Huang, G.; Suo, C.; Gao, P. Development of an integrated bi-level model for China’s multi-regional energy system planning under uncertainty. Appl. Energy 2022, 308, 118299. [Google Scholar] [CrossRef]
- Qin, C.; Yan, Q.; He, G. Integrated energy systems planning with electricity, heat and gas using particle swarm optimization. Energy 2019, 188, 116044. [Google Scholar] [CrossRef]
- Saravi, V.S.; Kalantar, M.; Anvari-Moghaddam, A. Resilience-constrained expansion planning of integrated power–gas–heat distribution networks. Appl. Energy 2022, 323, 119315. [Google Scholar] [CrossRef]
- Zhang, X.; Chan, K.; Wang, H.; Hu, J.; Zhou, B.; Zhang, Y.; Qiu, J. Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations. Energy 2019, 176, 249–264. [Google Scholar] [CrossRef]
- Ríos-Mercado, R.Z.; Borraz-Sánchez, C. Optimization problems in natural gas transportation systems: A state-of-the-art review. Appl. Energy 2015, 147, 536–555. [Google Scholar] [CrossRef]
- Sharan, I.; Balasubramanian, R. Integrated generation and transmission expansion planning including power and fuel transportation constraints. Energy Policy 2012, 43, 275–284. [Google Scholar] [CrossRef]
- Qiu, J.; Dong, Z.Y.; Zhao, J.H.; Meng, K.; Zheng, Y.; Hill, D.J. Low Carbon Oriented Expansion Planning of Integrated Gas and Power Systems. IEEE Trans. Power Syst. 2014, 30, 1035–1046. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, N.; Lu, Z.; Kang, C. Planning Multiple Energy Systems Toward Low-Carbon Society: A Decentralized Approach. IEEE Trans. Smart Grid 2018, 10, 4859–4869. [Google Scholar] [CrossRef]
- Jin, S.; Li, Y.; Xu, L. Development of an integrated model for energy systems planning and carbon dioxide mitigation under uncertainty—Tradeoffs between two-level decision makers. Environ. Res. 2018, 164, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Odetayo, B.; Kazemi, M.; MacCormack, J.; Rosehart, W.D.; Zareipour, H.; Seifi, A.R. A Chance Constrained Programming Approach to the Integrated Planning of Electric Power Generation, Natural Gas Network and Storage. IEEE Trans. Power Syst. 2018, 33, 6883–6893. [Google Scholar] [CrossRef]
- Bai, L.; Li, F.; Cui, H.; Jiang, T.; Sun, H.; Zhu, J. Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty. Appl. Energy 2016, 167, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.; Rasul, M.; Alam, M.; Uddin, S.A.; Mondal, S.K. Analysis of Wind Energy Conversion System Using Weibull Distribution. Procedia Eng. 2014, 90, 725–732. [Google Scholar] [CrossRef]
- Carta, J.; Ramírez, P.; Velázquez, S. A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renew. Sustain. Energy Rev. 2009, 13, 933–955. [Google Scholar] [CrossRef]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Conejo, A.J.; Carrión, M.; Morales, J.M. Decision Making under Uncertainty in Electricity Markets; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- DeCarolis, J.; Daly, H.; Dodds, P.; Keppo, I.; Li, F.; McDowall, W.; Pye, S.; Strachan, N.; Trutnevyte, E.; Usher, W.; et al. Formalizing best practice for energy system optimization modelling. Appl. Energy 2017, 194, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Green Hydrogen: Cornerstone of a Sustainable Energy Future; Siemens Energy LLC: Munich, Germany, 2021; Available online: https://www.siemens-energy.com/global/en.html (accessed on 14 April 2022).
- Madsen, H.T. Hydrogen Tech World Magazine. 2022. Available online: https://hydrogentechworld.com/water-treatment-for-green-hydrogen-what-you-need-to-know (accessed on 19 April 2022).
- Klatzer, T.; Bachhiesl, U.; Wogrin, S. State-of-the-art expansion planning of integrated power, natural gas, and hydrogen systems. Int. J. Hydrogen Energy 2022, 47, 20585–20603. [Google Scholar] [CrossRef]
- Zhang, X.; Che, L.; Shahidehpour, M.; Alabdulwahab, A.S.; Abusorrah, A. Reliability-Based Optimal Planning of Electricity and Natural Gas Interconnections for Multiple Energy Hubs. IEEE Trans. Smart Grid 2015, 8, 1658–1667. [Google Scholar] [CrossRef]
- GAMS. Available online: https://www.gams.com/ (accessed on 20 March 2022).
Uncertainty Modeling Approach | Ref. |
---|---|
Scenario-based stochastic approaches | [29,35,52,54,55,56,57,58,59,62,63,65,66,67,68,71,72,76,95] |
Robust optimization approaches | [50,69,74] |
Ref. | Real EPS and NGS |
---|---|
[64,78] | Iran |
[63,71] | Khorasan province in Iran |
[66,76] | Hainan Province in China |
[73] | Western Denmark |
[62] | Modified Northwestern China 62-bus EPS and 25-node NGS |
[61] | German 542-bus EPS and 524-node NGS |
[72] | Queensland in Australia |
[111] | Victorian in Australia |
[75] | Argentina |
Problem Solving Method | |||
---|---|---|---|
Analytical Techniques | Heuristic Methods | ||
MINLP | Non-linear EPS & NGS | [55] | [52,53,54,141] |
Non-linear NGS | [63,64,67,71,144] | [73,76,78] | |
MILP | [29,35,50,57,58,59,60,61,62,65,66,68,69,70,72,74,75,75,77,79,80,138,142] | --- |
Ref. | PtG | Uncertainty | Optimization Model | EPS | NGS | Solving Method | EPS Model | Planning Interval (year) | Additional Contributions |
---|---|---|---|---|---|---|---|---|---|
[29] | ✓ | Wind power, load demand, gas price, carbon tax | Multi-stage MILP | 6-Bus | 6-node | CPLEX in Python | DC | 20 (4-stage) | Considering wind curtailment as well as the carbon tax and employing branch and price method |
IEEE 118-Bus | 40-node | ||||||||
[35] | ✓ | Wind power and load demand | Multi-stage MILP | Garver 6-Bus | 7-node | CPLEX in MATLAB | DC | 20 (5-stage) | Considering wind Curtailment and N-1 contingency |
IEEE 118-Bus | 14-node | ||||||||
[50] | ✓ | Wind power | Stochastic MILP | IEEE 33-Bus DPS | 14-Node | MOSEK in GAMS | Relaxed AC | 1 | Considering wind power uncertainty in increasing the revenue of PtG units |
[52] | ✕ | Gas price, FOR, demand response, load forecast error | MINLP | 6-Bus | 7-Node | Modified Differential Evolution | AC | N.A. | Various uncertainties and EUE reliability as well as the impact of TOU plans |
IEEE 118-Bus | 14-Node | ||||||||
[53] | ✕ | ✕ | Two-objective MINLP | IEEE 24-Bus RTS | 12-Node | HDDE | AC | 1 | Considering minimum costs and EENS reliability as OFs |
[54] | ✕ | System load and market price | Multi-stage Stochastic MINLP | IEEE 14-bus | 14-Node | Modified Differential Evolution | AC | 12 (3-stage) | Considering social welfare as the OF and EUE reliability assessment |
[55] | ✕ | EPS load demand | Chanceconstrained MINLP | 9-Bus Radial distribution | One NG source | BARON in GAMS | AC | 10 | Sequentialapproach andsensitivity analysis for variousreliability levels |
[56] | ✕ | Wind power and loaddemand | Stochastic MILP | 6-Bus | 5-Node | N/A | DC | 1 (4-stage) | Considering frequency constraint and N-1 contingency in both systems |
IEEE 24-Bus RTS | Belgian 20-node | ||||||||
[57] | ✕ | Photovoltaic power and load demand | Two-objective MILP | 6-Bus | 5-Node | CPLEX in GAMS | DC | 20 (4-stage) | Minimum costs and pollution as OFs and N-1 contingency in both systems |
IEEE 24-Bus RTS | Belgian 20-node | ||||||||
[58] | ✕ | Wind power | Stochastic MILP | IEEE 24-Bus | Belgian 20-node | CPLEX in GAMS | DC | 1 day | Considering the resilience of both systems |
[59] | ✕ | Renewable power and load demand | Bi-level Stochastic MILP | 2-Bus | 4-Node | Gurobi in AMPL | DC | 10 and 20 (Static) | IEGS planning considering interconnection of EPS and NGS |
IEEE 24-Bus RTS | Belgian 20-node | ||||||||
[60] | ✓ | ✕ | Bi-level MILP | 6-Bus | --- | CPLEX in GAMS | DC | 1 | Optimization of PtG to maximize the income in the electricity market |
IEEE 118-Bus | |||||||||
[61] | ✓ | ✕ | Successive Linear Programming | IEEE 24-Bus | Belgian 20-node | Gurobi in C++ | DC | The year 2030 | Quasi-static model for NGS and Successive linear programming to reduce calculations |
IEEE 118-Bus | 135-node | ||||||||
German 542-Bus | German 524-node | ||||||||
[62] | ✓ | Wind power | Bi-level MILP | IEEE 39-Bus | Belgian 20-node | Gurobi in MATLAB | DC | 5 | Scenario-based model by Bender’s decomposition considering the carbon tax |
Northwestern China | |||||||||
62-bus and 25-node | |||||||||
[63] | ✕ | Wind power, load demand, interest rate | MINLP | Khorasan province in Iran | BARON in GAMS | DC | 15 | Decentralized planning and considering TOU plans and penetration limits | |
[64] | ✕ | ✕ | Multi-stage dynamic MCP | Iran’s power and gas system | PATH in GAMS | DC | 20 (4-stage) | Employing Nash-Cournot theory and social welfare improvement | |
[65] | ✕ | Location and size of wind power and load demands | Multi-stage Stochastic MILP | 3-Bus | 3-Node | CPLEX and KNITRO in GAMS | DC | 1 | Accurate modeling of NGS and applying Danzig-Wolfe decomposition method |
IEEE 24-bus | Belgian 20-node | ||||||||
[66] | ✕ | Net load in EPS | Multi-stage MILP | IEEE 24-bus | N.A. | CPLEX in GAMS | DC | 3 (3-stage) | Non-anticipativity constraint and use of piecewise linearization method for NGS |
IEEE 118-bus | |||||||||
Hainan in China | |||||||||
[67] | ✕ | Gas and power load demands | MINLP | IEEE 30-Bus | Belgian 20-node | BARON in GAMS | DC | 20 | Reliability-based planning using sequential and integrated approaches |
[68] | ✕ | Gas and power load demands | Two-stage MILP | IEEE 118-bus | 14-node | CPLEX in GAMS | DC | N.A. | Investigating the impact of uncertainties on the IEGS planning |
[69] | ✓ | Wind power | Multi-stage Robust MILP | IEEE 24-bus | 12-node | Gurobi | DC | 10 | Considering N-1 contingency and stochastic LOLE reliability |
IEEE 118-bus | Belgian 20-node | ||||||||
[70] | ✕ | ✕ | MILP | Garver 6-Bus | 5-Node | CPLEX in GAMS | DC | N.A. | Considering N-1 contingency in both systems and a new method for variable reduction |
IEEE 24-Bus RTS | Belgian 20-node | ||||||||
[71] | ✕ | Expansion plans in different attitudes | Stochastic MINLP | Khorasan province in Iran | Bonmin in GAMS | DC | 15 | Employing a multi-attitude decision-making method | |
[72] | ✕ | Wind and PV, gas price, load demand | Multi-stage Stochastic MILP | Queensland power and gas system, Australia | IBM/CPLEX in GAMS | DC | 15 | Investigating the impact of RES penetration levels | |
[73] | ✓ | ✕ | Bi-level multi-stage MINLP | Real Western Denmark | BPSO and IPM | DC | 9 (3-stage) | Considering line pack effect and CO2 pipelines | |
[74] | ✕ | Occurrence of severe natural events | Tri-level Robust MILP | IEEE 24-Bus RTS | 17-node | CPLEX in GAMS | DC | 6 | Improving the EPS resilience |
[75] | ✕ | ✕ | Multi-stage MILP | 3-Bus | 3-Node | AMPL in MATLAB | DC | 3 (dynamic) | Considering the line pack effect and various storage facilities |
Argentina power and gas system | |||||||||
[76] | ✕ | Wind power | Multi-objective Stochastic MINLP | IEEE 24-Bus | 12-Node | NSGA-II | DC | 1 | Considering the carbon tax and N-1 contingency in EPS |
Hainan in China | |||||||||
[77] | ✕ | ✕ | MILP | 6-Bus | 7-Node | CPLEX | DC | 10 (Annually) | Considering N-1 contingency and EENS reliability |
IEEE 118-Bus | 14-Node | ||||||||
[78] | ✕ | ✕ | Multi-stage MINLP | 6-Bus | 7-node | GA | DC | 6 (3-stage) | Considering N-1 contingency in EPS |
Iran power and gas system | |||||||||
[79] | ✕ | ✕ | Multi-stage MILP | IEEE 118-Bus | 14-Node | Benders | DC | 20 (dynamic) | LOEP and EENS assessment and use of Bender’s decomposition |
[80] | ✓ | ✕ | MILP | A modified 24-bus | 12-Node | Gurobi in MATLAB | DC | 20 | Integrating the carbon tax and CC technology to reduce carbon emissions and wind curtailment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatibi, M.; Rabiee, A.; Bagheri, A. Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues. Sustainability 2023, 15, 6602. https://doi.org/10.3390/su15086602
Khatibi M, Rabiee A, Bagheri A. Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues. Sustainability. 2023; 15(8):6602. https://doi.org/10.3390/su15086602
Chicago/Turabian StyleKhatibi, Masoud, Abbas Rabiee, and Amir Bagheri. 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues" Sustainability 15, no. 8: 6602. https://doi.org/10.3390/su15086602
APA StyleKhatibi, M., Rabiee, A., & Bagheri, A. (2023). Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues. Sustainability, 15(8), 6602. https://doi.org/10.3390/su15086602