Chelation of the Collagen Peptide of Seabass (Lates calcarifer) Scales with Calcium and Its Product Development
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Fish Scales Collagen
2.2. Analysis of Molecular Weight
2.3. Determined the Optimal Parameters of Chelation for Seabass Scale Collagen Peptide (SBSCP) and Calcium
2.4. Evaluate the Spectrum of Fourier Transform-Infrared (FTIR)
2.5. Observation under the Scanning Electron Microscope (SEM)/Energy Dispersive Spectrometer (EDS)
2.6. The Stability of SBSCP-Ca
2.6.1. The stability of SBSCP-Ca in Different pH Values
2.6.2. The Stability of SBSCP-Ca in Different Temperatures
2.6.3. In Vitro Simulation of Gastrointestinal Digestion of SBSCP-Ca
2.7. Sensory Evaluation and Antioxidative Capacity of the Mixture of SBSCP-Ca and Plant Extracts
2.7.1. Sensory Evaluation
2.7.2. Analyses of Antioxidative Capacity
2.7.3. Granulation of the Mixture of SBSCP-Ca and Plant Extracts
2.8. Statistical Analyses
3. Results and Discussion
3.1. Molecular Weight of SBSCP
3.2. Chelating Parameters of SBSCP and Calcium
3.3. FT-IR Analyses
3.4. Scanning Electron Microscopy and Energy Dispersive Spectrometer (EDS)
3.5. Stability of SBSCP-Ca during Storage
3.6. Sensory Evaluation and Stability of the Mixture of Plant-Extracts and SBSCP-Ca Granules during Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Nagai, T.; Tanaka, M. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chem. 2005, 89, 363–372. [Google Scholar] [CrossRef]
- Yamauchi, K.; Goda, T.; Takeuchi, N.; Einaga, H.; Tanabe, T. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials 2004, 25, 5481–5489. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-G.; Yang, X.-H.; Wang, Y.-R.; Lin, C.-M. The Research of developing and bioactivity analysing for seabass products. Taiwan. J. Agric. Chem. Food Sci. 2020, 58, 1–9. [Google Scholar]
- Huang, C.Y.; Wu, C.H.; Yang, J.L.; Li, Y.H.; Kuo, J.M. Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan. J. Food Drug Anal. 2015, 23, 671–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.H.; Guo, H.R.; Patel, A.K.; Singhania, R.R.; Chen, Y.A.; Kuo, J.M.; Dong, C.D. Production and characterization of lucrative hypoglycemic collagen-peptide-chromium from tilapia scale. Process Biochem. 2022, 115, 10–18. [Google Scholar] [CrossRef]
- Bagi, C.M.; Berryman, E.R.; Teo, S.; Lane, N.E. Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA). Osteoarthr. Cartil. 2017, 25, 2080–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohgitani, S.; Fujita, T. Heated oyster shell with algal ingredient (AAACa) decreases urinary oxalate excretion. J. Bone Miner. Metab. 2000, 18, 283–286. [Google Scholar] [CrossRef]
- Soniwala, S.; Scinto, K.I.; Schott, E.M.; Stolarczyk, A.E.; Villani, D.A.; Dar, Q.-A.; Grier, A.; Ketz, J.P.; Gill, S.R.; Mooney, R.A.; et al. Oral hydrolyzed type 2 collagen protects against the OA of obesity and mitigates obese gut microbiome dysbiosis. Osteoarthr. Cartil. 2018, 26, 173–174. [Google Scholar] [CrossRef]
- Tseng, H.Y.; Hsu, J.T.; Shih, K.H. Analysis report of domestic functional foods output value and industry overview. China Grain Prod. Res. Dev. Inst. 2020. Available online: http://twtbia.org.tw/uploads/news/20220407095204.2301.pdf (accessed on 18 February 2023).
- Bolke, L.; Schlippe, G.; Gerß, J.; Voss, W.A. Collagen supplement improves skin hydration, elasticity, roughness, and density: Results of a randomized, placebo-controlled, blind Study. Nutrients 2019, 11, 2494. [Google Scholar] [CrossRef] [Green Version]
- Charoenphun, N.; Cheirsilp, B.; Sirinupong, N.; Youravong, W. Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate. Eur. Food Res. Technol. 2013, 236, 57–63. [Google Scholar] [CrossRef]
- Chen, D.; Mu, X.; Huang, H.; Nie, R.; Liu, Z.; Zeng, M. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. J. Funct. Foods 2014, 6, 575–584. [Google Scholar] [CrossRef]
- Wu, W.; He, L.; Liang, Y.; Yue, L.; Peng, W.; Jin, G.; Ma, M. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chem. 2019, 284, 80–89. [Google Scholar] [CrossRef]
- Wu, W.; Li, B.; Hou, H.; Zhang, H.; Zhao, X. Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. J. Funct. Foods 2017, 35, 418–427. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Yagoub, A.G.; Chen, L.; Wahia, H.; Osae, R.; Zhou, C. Structure and stability of low molecular weight collagen peptide (prepared from white carp skin)-calcium complex. LWT 2021, 136, 110335. [Google Scholar] [CrossRef]
- Peng, Z.; Hou, H.; Zhang, K.; Li, B. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats. Food Chem. 2017, 221, 373–378. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Alaiz, M.; Vioque, J. Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem. 2012, 134, 1585–1588. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Zhao, Y.; Zeng, M. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Res. Int. 2012, 48, 435–441. [Google Scholar] [CrossRef]
- Zhao, N.; Hu, J.; Hou, T.; Ma, Z.; Wang, C.; He, H. Effects of desalted duck egg white peptides and their products on calcium absorption in rats. J. Funct. Foods 2014, 8, 234–242. [Google Scholar] [CrossRef]
- Arnaud, C.D.; Sanchez, S.Z. The role of calcium inosteoporosis. Annu. Rev. Nutr. 1990, 10, 397–414. [Google Scholar] [CrossRef]
- Nordin, B.E. Calcium in health and disease. Food Nutr. Agric. 1997, 20, 13–26. [Google Scholar]
- Bronner, F.; Pansu, D. Nutritional aspects of calcium absorption. J. Nutr. 1999, 129, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Guo, L.; Du, F.; Chen, T.; Hou, H.; Li, B. The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells. Int. J. Food Sci. Technol. 2017, 52, 1283–1290. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, X.; Wu, X.; Lin, S.; Wang, S. Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake. J. Funct. Foods 2020, 65, 103717. [Google Scholar] [CrossRef]
- Hsieh, H.-S. Preparation of Peptide-Calcium Complexes with Hydrolysates of Perch (Lates calcarifer) Scale. Master’s Thesis, Department of Seafood Science, National Kaohsiung Marine University, Taiwan, 2017. [Google Scholar]
- Huang, W.; Lan, Y.; Liao, W.; Lin, L.; Liu, G.; Xu, H.; Xue, J.; Guo, B.; Cao, Y.; Miao, J. Preparation, characterization and biological activities of egg white peptides-calcium chelate. LWT 2021, 149, 112035. [Google Scholar] [CrossRef]
- Cui, P.; Sun, N.; Jiang, P.; Wang, D.; Lin, S. Optimised condition for preparing sea cucumber ovum hydrolysate–calcium complex and its structural analysis. Food Sci. Technol. 2017, 52, 1914–1922. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, F.; Liu, X.; Zhao, M. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem. 2018, 285, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Wang, S.; Zhu, X.; Li, Q.; Fan, Y.; Cheng, D.; Li, B. A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chem. 2018, 243, 389–395. [Google Scholar] [CrossRef]
- Wang, X.; Gao, A.; Chen, Y.; Zhang, X.; Li, S.; Chen, Y. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization. Food Chem. 2017, 229, 487–494. [Google Scholar] [CrossRef]
- Lin, S.; Hu, X.; Li, L.; Yang, X.; Chen, S.; Wu, Y.; Yang, S. Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes. LWT 2021, 149, 111796. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, L.; Lin, Y.; Cai, X.; Wang, S. The preservative potential of Octopus scraps peptides−zinc chelate against Staphylococcus aureus: Its fabrication, antibacterial activity and action mode. Food Control 2019, 98, 24–33. [Google Scholar] [CrossRef]
- Cui, P.; Lin, S.; Jin, Z.; Zhu, B.; Song, L.; Sun, N. In vitro digestion profile and calcium absorption studies of a sea cucumber ovum derived heptapeptide–calcium complex. Food Funct. 2018, 9, 4582–4592. [Google Scholar] [CrossRef]
- Sun, N.; Jin, Z.; Li, D.; Yin, H.; Lin, S. An Exploration of the calcium-binding mode of egg white peptide, Asp-His-Thr-Lys-Glu, and in vitro calcium absorption studies of peptide–calcium complex. J. Agric. Food Chem. 2017, 65, 9782–9789. [Google Scholar] [CrossRef]
- Tang, N.; Skibsted, L.H. Calcium binding to amino acids and small glycine peptides in aqueous solution: Toward peptide design for better calcium bioavailability. J. Agric. Food Chem. 2016, 64, 4376–4389. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Xu, H.; Li, X.; Hao, X. Preparation of sheep bone collagen peptide–calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis. RSC Adv. 2020, 10, 11624–11633. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, X.; Li, M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem. 2021, 349, 129101. [Google Scholar] [CrossRef]
- Sun RLiu, X.; Yu, Y.; Miao, J.; Leng, K.; Gao, H. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chem. 2021, 340, 128056. [Google Scholar]
- Lou, J.; Yao, X.; Soladoye, O.P.; Zhang, Y.; Fu, Y. Phosphorylation modification of collagen peptides from fish bone enhances their calcium-chelating and antioxidant activity. LWT 2022, 155, 112978. [Google Scholar]
- Zhang, H.; Zhao, L.; Shen, Q.; Qi, L.; Jiang, S.; Guo, Y.; Zhang, C.; Richel, A. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. LWT 2021, 144, 111264. [Google Scholar] [CrossRef]
- Moyer, R.; Hummer, K.; Finn, C.; Frei, B.; Wrolstad, R.E. Antocyanins, phenolics, and antioxidant capacity of diverse small fruits: Vaccinium, Ribes and Rubus. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
Plant extracts | Color | Aroma | Taste | Fish Odor | Overall Acceptance |
---|---|---|---|---|---|
Blackcurrant | 7.6 ± 1.13 a | 8.1 ± 0.38 a | 8.4 ± 0.79 a | 1.7 ± 1.25 a | 8.3 ± 0.76 a |
Berry-grape seed | 8.0 ± 0.82 a | 7.9 ± 1.46 a | 7.7 ± 0.95 a | 1.3 ± 0.76 a | 8.1 ± 0.90 a |
Calendula | 7.1 ± 1.21 a | 6.3 ± 1.50 b | 4.9 ± 1.95 b | 3.3 ± 1.89 a | 4.9 ± 1.86 b |
Peptide Chelation | Plant Extract | DPPH Scavenging (%) | ABTS Scavenging (%) |
---|---|---|---|
SBSCP-Ca | Control | 89.06 ± 0.003 | 94.09 ± 0.001 |
Non | ND | 8.72 ± 0.046 b | |
Blackcurrant | 37.91 ± 0.018 b | 58.22 ± 0.064 a | |
Berry-grape seed | 68.77 ± 0.016 a | 54.74 ± 0.055 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.-H.; Chen, Y.-T.; Kuo, J.-M.; Chou, S.-G.; Lin, C.-M. Chelation of the Collagen Peptide of Seabass (Lates calcarifer) Scales with Calcium and Its Product Development. Sustainability 2023, 15, 6653. https://doi.org/10.3390/su15086653
Yang X-H, Chen Y-T, Kuo J-M, Chou S-G, Lin C-M. Chelation of the Collagen Peptide of Seabass (Lates calcarifer) Scales with Calcium and Its Product Development. Sustainability. 2023; 15(8):6653. https://doi.org/10.3390/su15086653
Chicago/Turabian StyleYang, Xiu-Hui, Yu-Tung Chen, Jen-Min Kuo, Shih-Gao Chou, and Chia-Min Lin. 2023. "Chelation of the Collagen Peptide of Seabass (Lates calcarifer) Scales with Calcium and Its Product Development" Sustainability 15, no. 8: 6653. https://doi.org/10.3390/su15086653
APA StyleYang, X. -H., Chen, Y. -T., Kuo, J. -M., Chou, S. -G., & Lin, C. -M. (2023). Chelation of the Collagen Peptide of Seabass (Lates calcarifer) Scales with Calcium and Its Product Development. Sustainability, 15(8), 6653. https://doi.org/10.3390/su15086653