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Abstract: An efficient charging time forecasting reduces the travel disruption that drivers experience
as a result of charging behavior. Despite the machine learning algorithm’s success in forecasting
future outcomes in a range of applications (travel industry), estimating the charging time of an
electric vehicle (EV) is relatively novel. It can help the end consumer plan their trip based on the
estimation data and, hence, reduce the waste of electricity through idle charging. This increases
the sustainability factor of the electric charging station. This necessitates further research into the
machine learning algorithm’s ability to predict EV charging time. Foreign object recognition is an
essential auxiliary function to improve the security and dependability of wireless charging for electric
vehicles. A comparable model is used to create the object detection circuit in this instance. Within this
research, the ensemble machine learning methods employed to estimate EV charging times included
random forest, CatBoost, and XGBoost, with parameters being improved through the metaheuristic
Ant Colony Optimization algorithm to obtain higher accuracy and robustness. It was demonstrated
that the proposed Ensemble Machine Learning Ant Colony Optimization (EML_ACO) algorithm
achieved 20.5% of R2, 19.3% of MAE, 21% of RMSE, and 23% of MAPE in the training process. In
comparison, it achieves 12.4% of R2, 13.3% of MAE, 21% of RMSE, and 12.4% of MAPE during testing.

Keywords: electric vehicle; optimization; charging time; machine learning; meta-heuristic

1. Introduction

Typically, electric vehicles (EVs) are considered a viable and sustainable solution for
reducing transportation-related CO2 emissions. This study focused on battery-powered
vehicles. Such EVs have an internal traction battery that reserves a portion of the power
required for thrust and secondary functions and is recharged through a link to the power
grid. Despite the fact that EV sales may have been regarded as insignificant in recent
years, this is no longer the case, both internationally and in Germany. In terms of absolute
numbers, China has been the market leader for a number of years; in 2018, yearly sales
surpassed one million vehicles [1]. Recently, there was a slowdown in the local market,
probably due to a reduction in subsidies. However, during the recent Climate Change
Conferences (COP26-27) in Glasgow, Scotland, and Egypt respectively, the major powers in
the world decided to reduce their dependence on fossil fuels and focus more on sustainable
energy sources. Germany, France, Italy, and other European nations have dramatically
expanded their subsidies and other regulatory measures [2]. Europe currently has the
largest market for global EV sales due to higher EU fleet pollution standards [1]. Germany
has been the leader of this development, offering up to EUR 9000 in subsidies for novel
battery-powered vehicles, having the fourth-largest proportion of battery and plug-in
electric cars globally, and the largest quantities in Europe [1]. During August 2021, the
government’s target of selling one million vehicles overall was attained, despite a delay
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of eight months [3]. Such trends and shifts clearly indicate this market’s expansion. In
accordance with the commonly employed diffusion of innovation curve [4], the market
is shifting from early innovators to young consumers, or perhaps an even larger market
stage. It is necessary to have sufficient public charging infrastructure (CI) for the purpose
of customers to have unhindered access to such infrastructures and to rapidly recharge
their EVs in order to accomplish the widespread adoption of EV transportation [5–8]. Many
countries, including China, have taken an interest in this aspect, introducing extensive
rules and motives to encourage the growth of the novel EV industry since the turn of the
twenty-first century [9–11]. According to previous studies, the EV market is anticipated to
expand in the future, along with the progressive technological development of EVs and an
optimized set of EV promotion policies [12–15].

Presently, German battery-powered vehicle users are charged a fixed amount per kWh
for CI usage and occasionally incur an additional charge for parking time. There may be
variations in other countries, but these typically do not vary wildly. Fixed-price mechanisms
cause the use of CIs to be extremely inequitable, with occupation rates varying greatly
across weekdays and between day and night times [16]. This is obviously not desirable since
it generates charging hotspots that can be avoided. Moreover, several EVs could already be
powered-up and only require to be recharged when the opportunity arises, though other
EVs might require urgent recharging. Drivers who have reasonably high battery states of
charge during such shortages should be encouraged to give up their chance to recharge,
in favor of drivers who have more urgent charging requirements. However, since public
CIs should be readily available, it is not possible to implement a system that optimizes CI
allocation globally. Shifts in price points are an alternative approach to the aforementioned
issue. Should individuals in Germany drive approximately 39 Km daily, recharging is only
infrequently necessary since modern vehicle batteries have ranges of ≥300 Km [17]. If
selected consumers were price-sensitive, this could persuade them to recharge when there
is a sufficient CI, tacitly approving the grid’s demand or capacity. This is the goal of the
BeNutz LaSA project [18–20], where the authors implemented a comparable price-based
incentive system in Germany, together with alliance partners. Especially at reduced-size
AC stations, charging typically takes hours, hence, forcing customers to cease charging
voluntarily is not practical. Consequently, the current occupation cannot be disregarded in
the event of a CI shortage.

Study Aims:
This study aimed to forecast CI usage in order eventually optimize EV recharging

prices, prior to the emergence of a hotspot. Such aims also included the precise prediction
for the occupation of as many stations as feasible in order to obtain an excellent overview
prediction in such a situation. This will result in less waiting time, less idle charging
time, and, therefore, less wastage of electricity, making it environmentally sustainable.
Consequently, this study’s expected contributions were as follows:

• Identification of the ideal machine learning (ML) methodology that has peak optimiza-
tion efficacy for charging station performance.

• Offer reduced EV charging costs through minimizing power losses and voltage
oscillations.

• Comparative analysis for effectiveness and dependability of various ML approaches
for the reduction of the charging cost.

The structure of the present paper is organized as follows: Using machine learning
and optimization techniques, related studies for charging electric vehicles are given in
Section 2. Section 3 described the suggested methodology, including challenge formulation,
an optimization technique, and ensemble machine learning prediction. In Section 4, the per-
formance of the suggested model is shown along with a comparison of existing approaches.
Section 5 presents the general conclusion for the proposed models.
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2. Literature Survey

Following the global environmental concerns, the world is moving towards a more
environmentally conscious and sustainable future. This will likely lead to the adoption of
electric vehicles (EVs) broadly. Furthermore, the development of wireless power transfer
(WPT) increases the potential of power transfer and efficiency of EVs [21,22]. The main
focus of WPT is the development of coils and magnetic cores, dictating the alignment of
many studies. Even though the ultimate goal of WPT is increased efficiency and power,
safety is also a major concern. The idea is to prevent leakage flux from WPT to human
beings [23]. Additionally, exposure of foreign metal objects such as cans and keys to the
powerful WPT magnetic fields poses a risk of strong electric discharges that can result in
fatal fire accidents. However, a significant number of research studies aim to solve this issue
through metal object detection (MOD). MOD is achieved by installing differential detection
coils and sensors, responsible for detecting the existence of any metal objects [24,25].
Further research shows that machine learning eliminates the need for detection coils since
it employs the classification of the frequency loci of the input impedance of the primary
coil [26]. However, this method ignores the contribution of the magnetic core, otherwise
needed to increase power transfer efficiency. Furthermore, the method [26] explores proves
to be inefficient for loaded cases.

The regulated charging of EVs utilizing metaheuristic optimization approaches, to-
gether with ML methods that are discussed in the following sections, are two major research
areas that are related to this study.

A novel ML methodology that is comprehensible was used in [27] to forecast the
charging station preference behavior of EV users. The findings showed that, when com-
pared to existing ML methods, the XGBoost model had the greatest accuracy in predicting
the charging station selection behavior. In order to expedite the problem-solving pro-
cess and simultaneously attain preferred control performance, an imitating reinforcement
learning-based technique—with the best guidance—was also proposed in another article
concerning hybrid vehicle energy management [28]. Firstly, offline global optimization was
performed to search for power allocation trajectories, while considering a variety of driving
conditions. Moreover, in order to create a limited state space, the battery degradation
limits in connection to driving distance were added, where the ideal trajectory is combined
with reinforcement learning training to promote the development of high-efficiency strate-
gies. In order to address the charging demand forecast issue, Eddine et al. proposed a
temporal encoder-decoder +LSTM (T-LSTM-Enc) coupled with a temporal LSTM (T-LSTM-
Ori-TimeFeatures) [29]. To comprehend the short-term, long-term, and trend elements
of charging demand estimation, this study employed temporal dependencies. Ma et al.
developed a novel mixed long/short-term memory neural network for multi-step discontin-
uous charging occupancy state forecasting that incorporated both time-related features and
previous charging state cycles [30]. The suggested model separated various feature types
and analyzed them in a variety of manners, using a mixed neural network architecture, in
contrast to the existing LSTM networks. The proposed Grey Sail Fish Optimization was
used in [31] to generate an effective algorithm for optimal charging scheduling (GSFO).
The suggested charge scheduling method incorporated Sail Fish Optimization (SFO) and
Grey Wolf Optimizer (GWO). The demand during charging was determined for each EV.
To decide the path traveled by the EV to arrive at the charging station, the path choice
factor is determined. In [32], the order favored by the resemblance to idealized solution
(ETOPSIS) approach and the hybrid particle swarm optimization (HPSO) technique were
integrated, in order to provide a revolutionary approach. Particularly, Pareto solutions
were found using the HPSO algorithm, and the best strategy was identified through the
ETOPSIS approach. A local search-based backward training competitive particle swarm
optimization (SW-OBLCSO) approach was also established [33]. The standard IEEE-33
node distribution network was used in this method as the research object. Competitive
learning and reverse-learning techniques are used in the SW-OBLCSO algorithm. Four
standard test functions are employed to evaluate the SW-OBLCSO algorithm, with numer-
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ous optimization techniques in various dimensions, allowing for algorithm performance to
be verified. Ding et al. proposed an ideal EV charging plan within a distribution network
to optimize the operators’ profit, while also adhering to all physical constraints. In order
to study the effects of uncertainties upon charging strategy, and to describe the time—
series data for unpredictability, a deep deterministic policy gradient-based reinforcement
learning technique was combined with a Markov decision technique [34]. In [35], three
different objective functions (OFs), Objective Function Zero (OF0), Advanced Objective
Function Zero (AOF0), and Minimum Rank with Hysteresis Objective Function (MRHOF)
for RPL—in the static environment for differing node numbers—were compared. The
findings demonstrated that altering all three OFs had a significant impact on RPL.

The use of optimization techniques such as dynamic programming and quadratic pro-
gramming for optimizing electrical grid efficiency and consumer requirements is the main
drawback of such aforementioned studies. The application of such strategies necessitates
the meticulous and depicted problem-solving processes [36]. Within this study, ML was em-
ployed as an optimization method that was less complex to utilize. Except for the process
of parameter adjustment, which is dependent on heuristic and trial-and-error issues, ML
algorithms merely require the presence of an acceptable dataset, and consequently operate
automatically. Therefore, it is not necessary to formulate complex equations or optimization
restrictions. Table 1 below outlines the pros and cons of different methodologies utilized
for such purposes.

Table 1. List of advantages and disadvantages for differing algorithm-based methodologies.

Reference Method Advantage Disadvantage

[27] XGBoost model
Simple and

straightforward
approach.

For dealing with tags,
large, labeled information

is required.

[28] Reinforcement learning It is resistant to being
overfit.

Sluggish as a forecasting
engine.

[29] temporal
encoder-decoder + LSTM

Outperforms a single
classifier in performance.

Users need large objects
to achieve greater results.

[30] LSTM Reduces variability. Network training is
challenging

[31] GWO
It needs far less entries
and skips the feature

selection step.

Additional stages of
processing are necessary.

[32] Hybrid particle swarm
optimization Reduced cost. Time consuming.

[33]

Local search-based
backward training

competitive particle
swarm optimization

(SW-OBLCSO)

Reduced time
requirements. Costly.

[34] Morkov decision
technique Increased accuracy Lengthy durations.

[35] Three optimal methods Increased precision. Less complex.

3. Problem Formulation

The capacitated electric vehicle routing problem (CEVRP) aims to identify an ideal
collection of paths that minimizes the overall trip distance, while also taking into account a
number of restrictions implying a fleet of identical EVs. A balanced, unsupervised graph
that is entirely linked, G = (V, E), where CEVRP can be properly defined. The collection
of graph nodes is represented by V = {0} ∪ I ∪ F′. The depot has an index of zero. I
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represents the customers. F′ is a prolonged collection of charging stations that contains βi
replicas of every recharging point iεF. Each customer i has a fixed cargo demand Ci.

The construction of duplicate charging stations enables numerous visits to each charg-
ing station. βi is referred to 2|I|. The worst-case situation demands each EV to perform a
single-stop at every station along both routes, in order to service a client prior to returning
back to the depot, where E = {(i, j)| i, j ε V, i 6= j} is the collection of arcs. Each arc (i, j)
has a weight that corresponds to the di,j distance between i and j. There is a maximum
amount of battery capacity Q and freight demands C for each EV. The battery’s consump-
tion rate is indicated by h. An EV will utilize the equivalent of h for each of the arcs (i, j) of
the battery to pass through it is di,j.

The mathematical definition of CEVRP is presented below by adding two additional
variables, ui and yi , which indicate the remaining load capacity and battery status of a
Vehicle at node i ε V, accordingly.

min f (x) = ∑
iεV,jεV,i 6=j

dijxij (1)

The algorithms also suggest that all Vehicles should leave and return to the depot,
despite the stated limits that they display.

4. Process of Ant Colony Optimization Algorithm (ACOA)

The algorithm’s elements and parameters are originally initialized. The n = |I|+ 1
ants consequently construct their solutions sequentially in each generation. The produced
solutions are analyzed in order to update the pheromone boundaries, pheromones matrix,
repetition optimum solution, and the overall ideal solution. The global optimum outcome
is further improved using a restricted enumeration method if the halting requirement is
satisfied. The entire algorithm concludes at this point and returns an overall ideal solution.
It requires two phases to develop a reasonable solution in ACOA, which corresponds to the
two tiers of sub-problems. Initially, by removing the electrical restriction and the charging
system, the CEVRP is lowered to a comparable portion. The objective values are assessed
once the solutions are generated in order to update the pheromone matrix and the overall
ideal solution. The Removal Heuristic (RH) algorithm is consistent. The routes of the
associated fitness values of the CEVRP are mapped using a single value.

Pheromone Setting: The ants are assisted in creating paths through a controlled
pheromone matrix. Firstly, the pathways are constructed for the relevant CVRP, without
considering the charging stations. The dimensions of the pheromone matrix ϕ is n× n,
where n = |I| + 1 is the total number of clients including the depot. The value of the
pheromone for moving from i to j is represented by each element, ϕijεϕ, since the employed
ACO algorithm uses two boundaries ϕmin and ϕmax xx of the pheromone values ϕmin ≤
ϕij ≤ ϕmax, to preserve the algorithm’s capacity for exploration.

Step-1: Initialization

• Read system data and configure system parameters
• Initialize iteration; t = 0

• Set X =
[

x1, x2, . . . x f c

]
as a control vector of an ant

• Initial probability distribution and trail intensity are set at ρni(0) = 1 and τni(0),
accordingly, for the route.

• When determining the heuristic function, it is known as the visibility of the station’s
objective function at the vehicle, which is represented as in

βni =
1

objni
(2)

where objni is the objective function of nth station at ith bus, τni is the trail intensity of
nth station at ith bus, βni is the coefficient of the pheromone evaporation of nth station at
ith bus.
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Step-2: Generating ant solutions

• Update iteration t = t + 1
• Constructing ant population: xnk(n = 1, 2, . . . nFCU), (k = 1, 2, . . . m). An ant of k of

nth station chooses the ith bus by applying the pseudo-random proportion rule using
the following equation as the state transition rule:

i =
{

argmaxi=N(z)(τnl(t))
αi f q ≤ q0

i otherwise
(3)

where the pheromone trail information’s relative influence is ∝, while the heuristic infor-
mation’s relative influence is β. The selection procedure for the bus i′ on nth station of the
ant k is based upon applying the probability approach to spin the roulette wheel.

Step-3: A candidate solution is one that can be reached by evaluating the objective
function in order to discover the best option. All new ants have their objective functions
assessed under all restrictions. The sorting approach is used to find the new-best solution
out of all the candidate solutions. The old-best solution from the previous iteration is
consequently contrasted with the new-best solution. The best solution to the problem
xbest will be determined by whether the new-best solution is superior to the previous
best solution.

Step-4: Evaluation of the new solutions’ objective functions. If the new solutions’
objective functions are determined to be superior to those of the most recent best solution,
then they will be considered as the most updated solutions to the problem.

Step-5: The best ant team from all ants implements the global updating rule. Imple-
mentation of the update pheromone is accomplished as follows:

τni(t + 1) = (1− ρ)τni(t) + ∆τbest
ni (t) (4)

∆τbest
ni (t) =

{
1

objbest/objmax i f (n, i)belongs to best solution at iteration t

0 otherwise

where objmax is the maximum of the objective function and the objective function of the
best solution is objbest.

Step-6: Reinitializing the trail intensity—when an ant is searching, it may exhibit
stagnation behavior in an effort to reduce the overabundance of pheromones on spe-
cific pathways.

Step-7: Stopping Criteria: If the program’s cputime is the total CPU time (measured in
seconds) exceeding the cputime > cpulimit, the program is considered to have terminated.
Otherwise, the program advances to step 2.

5. Optimization of Power Losses, Voltage Profile, and Charging Expenditure

To improve the power quality and the voltage profile, it is important to minimize the
power losses in the distribution network. The main objective function for reducing power
losses is presented in:

min
B

∑
b=1

(Ib,b+1,t)
2Rb,b+1 (5)

where B is the total number of buses or branches in the power system. b is an index that
represents a specific branch or bus in the power system. It varies from 1 to B. Ib,b+1 is the
magnitude of the current flowing in branch b connecting bus b to bus b + 1. t is the time
duration for which the power flow is being considered. Rb,b+1 is the resistance of branch b
connecting bus b to bus b + 1.

A radial distribution system’s concern with load flow can be efficiently solved using
MATLAB to identify the currents in each line. Power losses are highly correlated with the
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voltage profile. By reducing power losses, the voltage profile will be improved and voltage
fluctuations will be reduced. Both user requirements and the distribution system should
be accounted for in order to utilize EV charging to its greatest potential. Therefore, it is
important to reduce charging costs, in order to improve user experience. Equation (10)
provides the goal function for reducing the charging cost. It is to be noted that the recharging
price is decreased in proportion to the minimization of load fluctuation and power losses if
the user adheres to the suggested payment scheme.

min =

r f
e,n∫

ri
e,n

C(t)∆We,ndt (6)

where i is the index for the initial time of the charging period. f is the index for the final
time of the charging period. e is the index for the electric vehicle. n is the index for the
charging station.

∫
is the integral over time, from the initial time i to the final time f . ri

e,n
is the initial state of charge (SOC) of the electric vehicle e at charging station n at time i. r f

e,n
is the final SOC of the electric vehicle e at charging station n at time f . (t) is the charging
price at time t. ∆We,n is the charging power level of the electric vehicle e at charging station
n at time t, which is the difference in the SOC of the vehicle at time t and the previous time
t− 1, divided by the time step. dt is the time step of the integration.

6. Ensemble Machine Learning-Based Prediction

The core principle driving these methods is combining fundamental models to produce
a composite prediction model, as demonstrated in Figure 1.
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To estimate the EV recharge time, this study utilized four ensemble-learning ap-
proaches, including RF, CatBoost, and LightGBM. An ML model type, known as the EML
technique, accomplished learning tasks by creating and combining several learners (weak
or base learners). Boosting and bagging, two well-known approaches, were used to de-
velop the fundamental learners. Bagging lowers variance, improving the model’s ability to
generalize. Among the several decision tree-based ensemble methods used in bagging, RF
is a popular, highly effective, and widely utilized ensemble method that is less susceptible
to over-fitting.

7. Random Forest (RF)

The RF approach employs a large number of distinct decision trees, each of which
is created from a randomly selected subset (bootstrap sample) of the training examples.
The optimal split for every node is determined throughout the tree-building procedure
by selecting candidate factors arbitrarily. The size is [N_samples, M_ f eatures], and the f
variable is randomly selected at each decision node, based upon the training data sample.
Using the training data, a bootstrap of sample size N is constructed, and the total number
of trees is evaluated. Consequently, to segregate the data into several leaf nodes, the
generation of individual tree-based bootstrapped data is selected by repeatedly selecting
the f factor and an appropriate factor at the decision point. In order to reach the maximum
depth size, the technique is repeated.

The model using test data supplies the test data to every tree that has been produced
throughout the test, averaging all results. The following is a statement of the regression output:

f (x) =
1
T

T

∑
n=1

DTn(x) (7)

where x stands for the test sample, T stands for all trees, and DT stands for the trees.

8. Categorical Boosting (CatBoost)

For every classification, the initial parameter is replaced in CatBoost with a new binary
feature. It selects the tree topology, employing random permutations to establish leaf
numbers and avoid overfitting caused by traditional gradient-boosting approaches. Binary
decision trees serve as CatBoost’s primary predictor. The estimated output fits into the
following categories:

Z = F(xi) =
j

∑
j=1

bj1
{

xεRj
}

(8)

where F(xi) denotes the decision tree’s function for the independent variable xi and bj
denotes the irregular area that is representative of the tree’s leaves.

9. Extreme Gradient Boosting (XGBoost)

The adoption of a normalized approach formalization by XGBoost prevents overfitting
and leads to improved performance. To reduce the variation and increase the final model’s
capacity for prediction, the integrated approach employs a random sampling approach.

Z = H(xi) =
T

∑
t=1

ft(xi) (9)

where f t(xi) denotes each tree output function and xi denotes the independent variables. To
enhance and strengthen the model’s predictive power, the ideal set of parameters must be
chosen. Specifically, the regularization term in XGBoost renders the classification function
of the tree smaller and more repeatable.
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10. Analysis of the Effects of Under- and Over-Estimating the Duration of
the Connection

This study utilized the concept of a cost function to evaluate the impacts of both an
accurate and inaccurate estimate for inter-connection length. This study used weights,
regarded as parameters, to combine several criteria. This study probed T distinct charging
periods, and the provided amounted as distinct criteria for assessing the effects of under-
and over-estimating connection length upon an efficient charging process.

• El =
T
∑

i=1
Ea

i −
T
∑

i=1
Es

i —The total amount of energy that is collected at a positive (pos-

itively charged) or negative (negatively charged) power compared to the charging
power used by the optimization and EML method.

• En =
T
∑

i=1
En

i —due to an earlier departure than anticipated, no energy was charged.

The cost function is to be calculated as:

ωlEl + ωn En (10)

where ωl and ωn are non-negative weights. Likewise, for the ToU (time-of-use) charging
method, the following criteria were examined:

Eo =
T
∑

i=1
Eo

i —energy charged overall during the off-peak price period over all T

individual charging sessions

Ep =
T
∑

i=1
Ep

i —total energy charged during the time of highest pricing over all T

separate charging sessions,

En =
T
∑

i=1
En

i —total energy that was unable to be charged in each of the T individual

charging sessions, due to insufficient charging time brought on by an over-estimation of
the connection duration

Thus, the cost function is to be calculated as:

ωoEo + ωpEp + ωnEn (11)

where ωo, ωp, ωn are non-negative weights. Eo + Ep + En is independent of the loss
function parameters a and b. Hence, this study determined the ToU scheme in the parameter
space provided by the differences ωp −ωo and ωn −ωo.

11. Performance Analysis

The parameters used for evaluation in the study were R2, MAE, RMSE, and MAPE. The
proposed EML ACO is contrasted with four established methods: Markov Decision Process
(MDP), Temporal Encoder-Decoder + LSTM (T-LSTM-Enc), and imitation reinforcement
learning-based algorithm (IRLA) (MDP).

12. Dataset Description

The EV data gathering is briefly described in this section. The collection largely uses
diverse data from 500 private and commercial vehicles for both slow and rapid EV charging
stations. The EV connects to a 240-V outlet to charge normally, requiring a number of
hours. Typically, charging activities occur overnight within private residences. Since it is
the most popular method of charging, and most charging takes place while vehicles are
stationary, conventional charging events usually receive the most attention. Fast charging
often uses voltages of 480 volts or greater and can charge an object to 80% capacity within
30 min. Quick-charging events are typically held at parking lots, offices, recreation areas,
and vehicle dealerships. When traveling long distances, or in the case of an emergency,
fast-charging events are crucial. Both residential and business vehicles use the 500 EVs.
Private automobiles are those that belong to specific homes. This does not pertain to anyone
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who is only allowed to drive a vehicle, since they agreed to pay for the use of both the
vehicle and the driver on a particular trip. Government and commercial vehicles that are
part of a fleet are considered commercial vehicles. To benefit the government or company,
commercial vehicles are employed to convey commodities or passengers. The raw data for
a single EV, including the vehicle identity, type of vehicle, charging mode, start and end
state of charge, initial charging, and final charging, are shown in Table 2. Table 3 highlights
an analysis of error metrics for the fast commercial and private training process.

Table 2. Dataset description.

Vehicle
Identity Vehicle Type Charging Mode Start (SOC)% END (SOC)% Initial Charging Final Charging

400134 Commercial Normal charging 98 67.8 5 June 2022 9:20 5 June 2022 9:30

400345 Commercial Normal charging 96 78.5 7 July 2022 10:15 7 July 2022 10:30

400987 private Fast charging 95 89.4 15 July 2022 11:35 15 July 2022 11:50

400128 Commercial Normal charging 75.6 78.3 14 September 2022 6:00 14 September 2022 6:15

400678 Commercial Normal charging 77.5 73.2 5 November 2022 21:00 5 November 2022 21:20

400658 private Fast charging 85.7 78.4 7 April 2022 23:15 7 April 2022 23:20

400987 private Fast charging 83 77 8 November 2022 8:15 8 November 2022 8:20

Table 3. Analysis of error metrics for fast commercial and private-training process.

Fast Commercial Fast Private

R2 MAE RMSE MAPE R2 MAE RMSE MAPE

EML_ACO 32.1 23.1 21.5 23.4 EML_ACO 21.6 19.7 18.9 21.6

T-LSTM-Enc 43.6 43.2 44.7 47.8 T-LSTM-Enc 56.4 55.8 58.9 59.3

IRLA 67.5 66.3 62.4 65.8 IRLA 67 63.4 62.5 65.4

MDP 57.4 55.2 57.8 55 MDP 52.3 51.5 56.3 55

Figure 2 illustrates the comparison of error for the fast commercial training process
between existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where
the x-axis highlights the various analytical methods and the y-axis demonstrates values
obtained in percentage. When compared, the proposed EML_ACO achieved 32.1% of R2,
23.1% of MAE, 21.5% of RMSE, and 23.4% of MAPE.

Figure 3 illustrates the comparison of error for the fast private training process between
existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where the x-
axis shows the various analytical methods and the y-axis shows the values obtained in
percentage. When compared, the proposed EML_ACO achieved 21.6% of R2, 19.7% of
MAE, 18.9% of RMSE, and 21.6% of MAPE. Table 4 reflects the analysis of error metrics for
the normal commercial and private training process.
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Figure 3. Analysis of error for the fast private training process.

Table 4. Analysis of error metrics for the normal commercial and private training process.

Normal Commercial Normal Private

R2 MAE RMSE MAPE R2 MAE RMSE MAPE

EML_ACO 12.3 11.4 12.5 13.7 EML_ACO 14.5 14.3 14.6 14.7

T-LSTM-Enc 34.5 33 37.5 35 T-LSTM-Enc 32.4 35.6 37.8 38.5

IRLA 24.6 22 25.8 27.1 IRLA 25.6 26.8 22 26.9

MDP 67.4 66 62.3 64.5 MDP 68.4 66 67.9 69

Figure 4 illustrates the comparison of error for the normal commercial training process
between existing T-LSTM-Enc, IRLA, MDP, and proposed EML_ACO method, where
the x-axis shows the various analytical methods and y-axis shows the values obtained in
percentage. When compared, the proposed EML_ACO achieved 12.3% of R2, 11.4% of
MAE, 12.5% of RMSE, and 13.7% of MAPE.
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Figure 4. Analysis of error for the normal commercial training process.

Figure 3 illustrates the comparison of error for the fast private training process between
existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where the x-
axis shows the various analytical methods and the y-axis shows the values obtained in
percentage. When compared, the proposed EML_ACO achieved 21.6% of R2, 19.7% of
MAE, 18.9% of RMSE and 21.6% of MAPE. Table 4 reflects the analysis of error metrics for
the normal commercial and private training process.

Figure 4 illustrates the comparison of error for the normal commercial training process
between existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where
the X-axis shows the various analytical methods and the Y-axis shows the values obtained
in percentage. When compared, the proposed EML_ACO achieved 12.3% of R2, 11.4% of
MAE, 12.5% of RMSE and 13.7% of MAPE.

Figure 5 illustrates the comparison of error for the normal private training process
between existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where
the x-axis shows the various analytical methods and the y-axis shows the values obtained
in percentage. When compared, the proposed EML_ACO achieved 14.5% of R2, 14.3% of
MAE, 14.6% of RMSE, and 14.7% of MAPE. Table 5 shows the analysis of error metrics for
the fast commercial and private testing process.
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Table 5. Analysis of error metrics for fast commercial and private testing process.

Fast Commercial Fast Private

R2 MAE RMSE MAPE R2 MAE RMSE MAPE

EML_ACO 18.7 17.8 16.4 19.4 EML_ACO 11.5 11.6 12.5 13.4

T-LSTM-Enc 34.5 33.5 36.7 37.9 T-LSTM-Enc 36.6 34 33.6 36

IRLA 45.6 44 47.6 48.4 IRLA 46.9 49 49.7 47

MDP 54.3 55 56.8 54 MDP 56.3 55 57.9 53

Figure 6 illustrates the comparison of error for the fast commercial testing process
between existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where
the x-axis shows the various analytical methods and the y-axis shows the values obtained
in percentage. When compared, the proposed EML_ACO achieved 11.5% of R2, 11.6% of
MAE, 12.5% of RMSE, and 13.4% of MAPE.
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Figure 7 illustrates the comparison of error for the fast private testing process between
existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where the x-
axis shows the various analytical methods and the y-axis shows the values obtained in
percentage. When compared, proposed EML_ACO achieved 11.5% of R2, 11.6% of MAE,
12.5% of RMSE and 13.4% of MAPE. The analysis of error metrics for the normal commercial
and private testing process is shown in Table 6.

Table 6. Analysis of error metrics for normal commercial and private testing process.

Normal Commercial Normal Private

R2 MAE RMSE MAPE R2 MAE RMSE MAPE

EML_ACO 11.5 11.5 11.5 11.3 EML_ACO 14 14.5 14.3 14.3

T-LSTM-Enc 23.5 25.6 27.8 24.1 T-LSTM-Enc 25.5 26.7 26.9 26

IRLA 34.5 33.5 36.2 36.7 IRLA 35.6 33 37.8 36

MDP 41.3 43.5 44.6 47.5 MDP 67.8 68.8 69.4 69
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Figure 7. Analysis of error for the fast private testing process.

Figure 8 illustrates the comparison of error for the normal commercial testing process
between existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where
the x-axis shows the various analytical methods and the y-axis shows the values obtained
in percentage. When compared, the proposed EML_ACO achieved 14% of R2, 11.5% of
MAE, 11.5% of RMSE, and 11.3% of MAPE.
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Figure 8. Analysis of error for the normal commercial testing process.

Figure 9 illustrates the comparison of error for the normal private testing process
between existing T-LSTM-Enc, IRLA, MDP, and the proposed EML_ACO method, where
the x-axis shows the various analytical methods and the y-axis shows the values obtained
in percentage. When compared, the proposed EML_ACO achieved 11.5% of R2, 14.5% of
MAE, 14.3% of RMSE, and 14.3% of MAPE.
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13. Conclusions

The findings of this study demonstrate that the suggested approaches can be used
to achieve the synchronized charging of PV batteries, while concomitantly preserving the
distribution system’s efficient functioning, and meeting operational/priority limitations.
Charging costs were found to be reduced more than those incurred via uncoordinated
conventional charging. Being efficient, it will also reduce the demand on the local elec-
tric grid due to CIs, hence, making it more sustainable. Future research should focus on
the user sociodemographic information, driver economic attributes, battery type, charg-
ing/discharging cycles, traffic conditions, or network topography, which were not included
in this study dataset.

Author Contributions: Methodology, R.C.C.; Software, A.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh, Saudi Arabia, under grant number RP-21-07-10.

Data Availability Statement: All data used in this paper can be obtained by contacting the authors
of this study.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research
at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work
through Research Partnership Program No. RP-21-07-10.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. IEA. Global EV Outlook 2021; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/global-ev-outlook-2021

(accessed on 23 November 2022).
2. Gorner, M.; Paoli, L. How Global Electric Car Sales Defied COVID-19 in 2020. Available online: https://www.iea.org/

commentaries/how-global-electric-car-sales-defied-covid-19-in-2020 (accessed on 15 November 2022).
3. Bundesregierung. Erstmals Rollen Eine Million Elektrofahrzeuge auf Deutschen Straßen: Mehr als 50 Prozent Dieser Elektro-

fahrzeuge Sind Rein Batteriebetrieben. Available online: https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/
20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen-strassen.html (accessed on 11 November 2022).

4. Rogers, E.M. Diffusion of Innovations, 5th ed.; Riverside; Free Press: Amsterdam, The Netherlands, 2003; Available online:
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=4935198 (accessed on 24 November 2022).

5. Giansoldati, M.; Monte, A.; Scorrano, M. Barriers to the adoption of electric cars: Evidence from an Italian survey. Energy Policy
2020, 146, 111812. [CrossRef]

https://www.iea.org/reports/global-ev-outlook-2021
https://www.iea.org/commentaries/how-global-electric-car-sales-defied-covid-19-in-2020
https://www.iea.org/commentaries/how-global-electric-car-sales-defied-covid-19-in-2020
https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen-strassen.html
https://www.bmwi.de/Redaktion/DE/Pressemitteilungen/2021/08/20210802-erstmals-rollen-eine-million-elektrofahrzeuge-auf-deutschen-strassen.html
https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=4935198
https://doi.org/10.1016/j.enpol.2020.111812


Sustainability 2023, 15, 6684 16 of 17

6. She, Z.-Y.; Sun, Q.; Ma, J.-J.; Xie, B.-C. What are the barriers to widespread adoption of battery electric vehicles? A survey of
public perception in Tianjin, China. Transp. Policy 2017, 56, 29–40. [CrossRef]

7. ZLing, Z.; Cherry, C.R.; Wen, Y. Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey
Study in Beijing, China. Sustainability 2021, 13, 11719.

8. Gnann, T.; Funke, S.; Jakobsson, N.; Plötz, P.; Sprei, F.; Bennehag, A. Fast charging infrastructure for electric vehicles: Today’s
situation and future needs. Transp. Res. Part D Transp. Environ. 2018, 62, 314–329. [CrossRef]

9. Jin, L.; He, H.; Cui, H.; Lutsev, N.; Wu, C.; Chu, Y.; Zhu, J.; Xiong, Y.; Liu, X. Driving a Green Future: A Retrospective Review of
China’s Electric Vehicle Development and Outlook for the Future. 2021. Available online: https://trid.trb.org/view/1764439
(accessed on 15 November 2022).

10. Marquis, C.; Zhang, H.; Zhou, L. China’s Quest to Adopt Electric Vehicles. Stanf. Soc. Innov. Rev. 2013, 11, 52–57.
11. Hao, H.; Ou, X.; Du, J.; Wang, H.; Ouyang, M. China’s electric vehicle subsidy scheme: Rationale and impacts. Energy Policy 2014,

73, 722–732. [CrossRef]
12. Xu, Y.; Zhang, W.; Bao, H.; Zhang, S.; Xiang, Y. A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase

Battery Electric Vehicles in China’s Zhejiang Province. Sustainability 2019, 11, 3164. [CrossRef]
13. Nie, Y.; Wang, E.; Guo, Q.; Shen, J. Examining Shanghai Consumer Preferences for Electric Vehicles and Their Attributes.

Sustainability 2018, 10, 2036. [CrossRef]
14. Zhang, G.; Xu, Y.; Zhang, J. Consumer-Oriented Policy towards Diffusion of Electric Vehicles: City-Level Evidence from China.

Sustainability 2016, 8, 1343. [CrossRef]
15. Yue, B.; Sheng, G.; She, S.; Xu, J. Impact of Consumer Environmental Responsibility on Green Consumption Behavior in China:

The Role of Environmental Concern and Price Sensitivity. Sustainability 2020, 12, 2074. [CrossRef]
16. Hecht, C.; Das, S.; Bussar, C.; Sauer, D.U. Representative, empirical, real-world charging station usage characteristics and data in

Germany. eTransportation 2020, 6, 100079. [CrossRef]
17. Hecht, C.; Figgener, J.; Sauer, D.U. ISEAview—Elektromobilität; ISEA Insitute, RWTH Aachen: Aachen, Germany, 2021; Available

online: https://www.researchgate.net/publication/349989650_ISEAview_-_Elektromobilitat?channel=doi&linkId=604a4a219
2851c1bd4dfae95&showFulltext=true (accessed on 18 November 2022).

18. Follmer, R.; Gruschwitz, D. Mobilität in Deutschland—MiD Kurzreport. Ausgabe 4.0; Studie von infas, DLR, IVT und infas
360 im Auftrag des Bundesministers für Verkehr und Digitale Infrastruktur: Bonn, Germany, 2019; Available online: http:
//www.mobilitaet-in-deutschland.de/pdf/infas_Mobilitaet_in_Deutschland_2017_Kurzreport.pdf (accessed on 27 August 2022).

19. Figgener, J.; Tepe, B.; Rücker, F.; Schoeneberger, I.; Hecht, C.; Jossen, A.; Sauer, D.U. The Influence of Frequency Containment
Reserve Flexibilization on the Economics of Electric Vehicle Fleet Operation. arXiv 2021, arXiv:2107.03489. [CrossRef]

20. Hecht, C. BeNutz LaSA: Bessere Nutzung von Ladeinfrastruktur durch Smarte Anreizsysteme. Available online: https://
benutzlasa.de/ (accessed on 15 November 2022).

21. Ahmad, A.; Alam, M.S.; Chabaan, R. A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles. IEEE
Trans. Transp. Electrif. 2018, 4, 38–63. [CrossRef]

22. Panchal, C.; Stegen, S.; Lu, J. Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 2018,
21, 922–937. [CrossRef]

23. Gong, Y.; Otomo, Y.; Igarashi, H. Multi-objective topology optimization of magnetic couplers for wireless power transfer. Int. J.
Appl. Electromagn. Mech. 2020, 64, 325–333. [CrossRef]

24. Sonnenberg, T.; Stevens, A.; Dayerizadeh, A.; Lukic, S. Combined foreign object detection and live object protection in wireless
power transfer systems via real-time thermal camera analysis. In Proceedings of the 2019 IEEE Applied Power Electronics
Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 1547–1552. [CrossRef]

25. Xiang, L.; Zhu, Z.; Tian, J.; Tian, Y. Foreign object detection in a wireless power transfer system using symmetrical coil sets. IEEE
Access 2019, 7, 44622–44631. [CrossRef]

26. Gong, Y.; Otomo, Y.; Igarashi, H. Sensorless metal object detection for wireless power transfer using machine learning. COMPEL-
Int. J. Comput. Math. Electr. Electron. Eng. 2022, 41, 807–823. [CrossRef]

27. Ullah, I.; Liu, K.; Yamamoto, T.; Zahid, M.; Jamal, A. Modeling of machine learning with SHAP approach for electric vehicle
charging station choice behavior prediction. Travel Behav. Soc. 2023, 31, 78–92. [CrossRef]

28. Liu, Y.; Wu, Y.; Wang, X.; Li, L.; Zhang, Y.; Chen, Z. Energy management for hybrid electric vehicles based on imitation
reinforcement learning. Energy 2023, 263, 125890. [CrossRef]

29. Eddine, M.D.; Shen, Y. A deep learning based approach for predicting the demand of electric vehicle charge. J. Supercomput. 2022,
78, 14072–14095. [CrossRef]

30. Ma, T.Y.; Faye, S. Multistep electric vehicle charging station occupancy prediction using hybrid LSTM neural networks. Energy
2022, 244, 123217. [CrossRef]

31. Rajamoorthy, R.; Arunachalam, G.; Kasinathan, P.; Devendiran, R.; Ahmadi, P.; Pandiyan, S.; Muthusamy, S.; Panchal, H.; Kazem,
H.A.; Sharma, P. A novel intelligent transport system charging scheduling for electric vehicles using Grey Wolf Optimizer and
Sail Fish Optimization algorithms. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 3555–3575. [CrossRef]

32. Bai, X.; Wang, Z.; Zou, L.; Liu, H.; Sun, Q.; Alsaadi, F.E. Electric vehicle charging station planning with dynamic prediction of
elastic charging demand: A hybrid particle swarm optimization algorithm. Complex Intell. Syst. 2022, 8, 1035–1046. [CrossRef]

https://doi.org/10.1016/j.tranpol.2017.03.001
https://doi.org/10.1016/j.trd.2018.03.004
https://trid.trb.org/view/1764439
https://doi.org/10.1016/j.enpol.2014.05.022
https://doi.org/10.3390/su11113164
https://doi.org/10.3390/su10062036
https://doi.org/10.3390/su8121343
https://doi.org/10.3390/su12052074
https://doi.org/10.1016/j.etran.2020.100079
https://www.researchgate.net/publication/349989650_ISEAview_-_Elektromobilitat?channel=doi&linkId=604a4a2192851c1bd4dfae95&showFulltext=true
https://www.researchgate.net/publication/349989650_ISEAview_-_Elektromobilitat?channel=doi&linkId=604a4a2192851c1bd4dfae95&showFulltext=true
http://www.mobilitaet-in-deutschland.de/pdf/infas_Mobilitaet_in_Deutschland_2017_Kurzreport.pdf
http://www.mobilitaet-in-deutschland.de/pdf/infas_Mobilitaet_in_Deutschland_2017_Kurzreport.pdf
https://doi.org/10.1016/j.est.2022.105138
https://benutzlasa.de/
https://benutzlasa.de/
https://doi.org/10.1109/TTE.2017.2771619
https://doi.org/10.1016/j.jestch.2018.06.015
https://doi.org/10.3233/JAE-209337
https://doi.org/10.1109/APEC.2019.8721804
https://doi.org/10.1109/ACCESS.2019.2908866
https://doi.org/10.1108/COMPEL-03-2021-0069
https://doi.org/10.1016/j.tbs.2022.11.006
https://doi.org/10.1016/j.energy.2022.125890
https://doi.org/10.1007/s11227-022-04428-0
https://doi.org/10.1016/j.energy.2022.123217
https://doi.org/10.1080/15567036.2022.2067268
https://doi.org/10.1007/s40747-021-00575-8


Sustainability 2023, 15, 6684 17 of 17

33. Yin, W.J.; Ming, Z.F. Electric vehicle charging and discharging scheduling strategy based on local search and competitive learning
particle swarm optimization algorithm. J. Energy Storage 2021, 42, 102966. [CrossRef]

34. Ding, T.; Zeng, Z.; Bai, J.; Qin, B.; Yang, Y.; Shahidehpour, M. Optimal electric vehicle charging strategy with Markov decision
process and reinforcement learning technique. IEEE Trans. Ind. Appl. 2020, 56, 5811–5823. [CrossRef]

35. Kumar, A.; Sharma, S.; Goyal, N.; Gupta, S.K.; Kumari, S.; Kumar, S. Energy-efficient fog computing in Internet of Things based
on Routing Protocol for Low-Power and Lossy Network with Contiki. Int. J. Commun. Syst. 2022, 35, e5049. [CrossRef]

36. Kumar, A.; Sharma, S.; Goyal, N.; Singh, A.; Cheng, X.; Singh, P. Secure and energy-efficient smart building architecture with
emerging technology IoT. Comput. Commun. 2021, 176, 207–217. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.est.2021.102966
https://doi.org/10.1109/TIA.2020.2990096
https://doi.org/10.1002/dac.5049
https://doi.org/10.1016/j.comcom.2021.06.003

	Introduction 
	Literature Survey 
	Problem Formulation 
	Process of Ant Colony Optimization Algorithm (ACOA) 
	Optimization of Power Losses, Voltage Profile, and Charging Expenditure 
	Ensemble Machine Learning-Based Prediction 
	Random Forest (RF) 
	Categorical Boosting (CatBoost) 
	Extreme Gradient Boosting (XGBoost) 
	Analysis of the Effects of Under- and Over-Estimating the Duration of the Connection 
	Performance Analysis 
	Dataset Description 
	Conclusions 
	References

