Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus and Methods
2.2.1. HTL Experiments
2.2.2. Products Separation
2.2.3. Products Analysis
3. Results and Discussions
3.1. HTL Products Distribution
3.2. Properties of Biocrude Products
3.3. Economic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
RT a (min) | Compounds Name | Relative Composition by Percent Area | |||||
---|---|---|---|---|---|---|---|
KOH-N2 | KOH-H2 | KOH-O2 | H2SO4-N2 | H2SO4-H2 | H2SO4-O2 | ||
3.780 | Acetic acid | 3.036 | |||||
5.967 | 2-Pentanone, 4-hydroxy-4-methyl- | 1.409 | 1.025 | 2.917 | 2.731 | 0.824 | |
7.700 | 2-Cyclopenten-1-one, 2-methyl- | 0.435 | |||||
8.517 | 1,3-Dioxolane-4-methanol, 2,2-dimethyl-, (S)- | 0.468 | |||||
8.948 | Benzaldehyde | 0.640 | |||||
9.142 | 2-Cyclopenten-1-one, 3-methyl- | 1.036 | |||||
9.527 | Phenol | 0.658 | |||||
9.908 | Cyclotetrasiloxane, octamethyl- | 0.789 | |||||
10.288 | 2,5-Furandione, dihydro-3-methyl- | 0.900 | |||||
10.555 | 2-Cyclopenten-1-one, 2,3-dimethyl- | 1.264 | 0.569 | ||||
10.868 | DL-Norvaline, N-[(phenylmethoxy)carbonyl]- | 0.838 | |||||
11.054 | Acetophenone | 1.284 | 3.519 | 1.320 | |||
11.109 | Pentanoic acid, 4-oxo- | 0.927 | 25.374 | 6.830 | 51.470 | ||
11.464 | Phenol, 2-methoxy- | 4.110 | 42.040 | 1.627 | |||
11.959 | 2-Isopropylbenzenethiol, S-methyl- | 2.366 | |||||
12.204 | N-Chlorocarbonyl-N-methoxy-N-isopropylamine | 2.131 | |||||
12.284 | Pentanoic acid, 2-methyl-4-oxo- | 1.155 | |||||
12.454 | Phenol, 2,6-dimethyl- | 0.902 | |||||
12.919 | 2-Cyclopenten-1-one, 2,3,4,5-tetramethyl- | 0.935 | |||||
13.028 | Benzoic acid | 11.585 | 1.545 | ||||
13.143 | Creosol | 2.549 | 1.818 | 0.656 | |||
13.232 | Catechol | 2.648 | 1.136 | ||||
13.341 | Butanedioic acid, monopropargyl ester | 0.400 | |||||
13.460 | 1H-Benzimidazole, 2-ethyl- | 0.723 | |||||
13.895 | Butanedioic acid, methyl- | 0.780 | |||||
14.022 | 4-Nonanol, 4-methyl- | 0.615 | |||||
14.200 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- | 0.926 | 1.700 | 0.966 | |||
14.230 | Naphthalene, 2,6-bis(1,1-dimethylethyl)- | 1.404 | 0.734 | ||||
14.327 | Benzoic acid, 3-methyl- | 2.079 | |||||
14.420 | Phenol, 4-ethyl-2-methoxy- | 4.622 | 2.253 | 1.428 | |||
14.445 | 1H-Inden-1-one, 2,3-dihydro- | 1.314 | 1.479 | ||||
14.805 | 1-Methylindan-2-one | 1.250 | 0.869 | ||||
15.067 | 2-Cyclopenten-1-one, 2,3-dimethyl- | 0.733 | 1.958 | 1.482 | |||
15.113 | 3-Cyclohexen-1-one, 2-isopropyl-5-methyl- | 0.834 | 0.445 | ||||
15.210 | Hydrocinnamic acid | 1.012 | 0.170 | ||||
15.325 | 1,4-Benzenediol, 2-methyl- | 0.516 | |||||
15.405 | 1(3H)-Isobenzofuranone | 0.891 | |||||
15.418 | 7-Methylindan-1-one | 0.370 | 1.520 | 1.395 | 0.484 | ||
15.553 | Benzaldehyde, 3-hydroxy- | 2.111 | |||||
15.629 | Phenol, 2-methoxy-4-propyl- | 3.286 | 1.121 | ||||
15.963 | Benzene, 1-ethenyl-4-methyl- | 1.105 | 0.812 | 2.971 | |||
16.001 | Ethanone, 1-(3-hydroxyphenyl)- | 1.363 | 0.865 | ||||
16.048 | Vanillin | 0.578 | 0.260 | 5.944 | 0.508 | 1.040 | |
16.149 | Benzoic acid, 3-(1-methylethyl)- | 0.882 | |||||
16.293 | 1H-Inden-1-one, 2,3-dihydro-3,3-dimethyl- | 1.203 | |||||
16.331 | 1,2-Diethoxybenzene | 0.809 | 2.494 | 1.059 | 0.900 | ||
16.412 | 2-(Cyclohex-1-enyl)-furan | 1.896 | |||||
16.623 | Acetophenone, 4′-hydroxy- | 1.674 | |||||
16.754 | Phenol, 2-methoxy-4-(1-propenyl)- | 1.309 | |||||
16.792 | Benzoic acid, 3-formyl- | 1.281 | |||||
16.953 | 3-Ethenylheptan-2,6-dione | 0.932 | |||||
16.961 | Phenol, 2-(1,1-dimethylethyl)- | 0.531 | |||||
17.067 | 4-Methylphthalaldehyde | 0.556 | |||||
17.071 | 1,4-Benzenediamine, N,N,N′,N′-tetramethyl- | 1.014 | |||||
17.169 | 1-Tetralone, 8-hydroxy- | 0.267 | |||||
17.287 | Benzoic acid, 4-hydroxy- | 0.342 | |||||
17.355 | Apocynin | 1.549 | 10.221 | 0.470 | |||
17.384 | Ethyl 3-(2-furyl)propenoate | 0.615 | |||||
17.782 | 4-Hydroxy-3-methylacetophenone | 0.602 | |||||
17.883 | 2-Cyclopentenecarboxylic acid, 5-hydroxy-5-methyl-2-(1-methylethyl)-, methyl ester, trans- | 0.681 | |||||
18.175 | 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- | 1.637 | 2.935 | 0.868 | |||
18.196 | 1-(4-methylthiophenyl)-2-propanone | 1.716 | |||||
18.234 | Benzenamine, 4-methyl-3-nitro- | 0.930 | |||||
18.462 | 4-Acetylbenzoic acid | 4.376 | |||||
18.648 | Phenol, 2-(1,1-dimethylethyl)-4-methyl- | 0.509 | |||||
18.813 | Benzene, 1-methyl-3,5-bis[(trimethylsilyl)oxy]- | 2.952 | 0.223 | ||||
18.890 | 4-Hexylphenol, trimethylsilyl ether | 1.816 | |||||
19.109 | 4-Ethoxy-3-anisaldehyde | 3.261 | |||||
19.460 | Phthalan | 0.563 | |||||
19.562 | Phenol, 2,6-dimethyl-4-nitro- | 0.261 | |||||
19.630 | Benzofuran, 2,3-dihydro- | 0.558 | 0.477 | ||||
19.659 | 1,4-Benzenedicarboxaldehyde, 2-methyl- | 0.405 | |||||
19.828 | Aminosalicylic Acid | 0.487 | 0.218 | ||||
19.951 | Benzene, 1-methoxy-4-(1-methyl-2-propenyl)- | 1.820 | 0.183 | ||||
19.968 | Benzaldehyde, 3-methyl- | 1.708 | |||||
20.146 | Homovanillic acid | 1.719 | |||||
20.213 | Naphthalene, 2-ethoxy- | 0.689 | |||||
20.315 | Ether, bis(p-tert-butylphenyl) | 1.287 | |||||
20.365 | 2-Naphthalenol, 3-methoxy- | 1.046 | |||||
20.391 | 9-Methyl-3,4-dihydro-2H-pyrido(1,2-a)pyrimidin-2-one | 0.465 | |||||
20.446 | 4-Hydroxy-3,5-dimethylbenzoic acid | 0.375 | |||||
20.496 | 4,6-Dimethoxy-1-naphthaldehyde | 2.105 | |||||
20.539 | Terephthalic acid | 0.226 | |||||
20.547 | Benzofuran, 2,3-dihydro-2,2,4,6-tetramethyl- | 0.965 | 1.511 | ||||
20.695 | 1,2-Dihydropyrido(3,2,1-kl)phenothiazin-3-one | 1.450 | |||||
20.704 | Butan-1-one, 1-(2,3-dihydro-7,8-dinitro-1,4-benzodioxin-6-yl)- | 0.984 | |||||
20.962 | 10H-Phenothiazine, 2-(trifluoromethyl)- | 1.202 | |||||
20.983 | 2-Propenoic acid, 3-(3-hydroxyphenyl)-, methyl ester | 0.736 | |||||
21.122 | 5-Hydroxy-1-tetralone | 0.553 | |||||
21.148 | Salicylhydroxamic acid | 0.692 | |||||
21.258 | 1,4-Benzenediamine, N,N′-diethyl- | 2.026 | |||||
21.346 | Benzaldehyde, 2-nitro-, diaminomethylidenhydrazone | 1.575 | 1.229 | ||||
21.363 | Methyleugenol | 0.777 | 1.482 | ||||
21.389 | 2-Methyl-5-nitrobenzoic acid | 1.085 | |||||
21.397 | 1H-Benzotriazole-5,6-dicarbonitrile | 0.481 | |||||
21.592 | Pyridine, 4-(5-benzo[1,3]dioxol-5-yl-[1,2,4]oxadiazol-3-yl)- | 1.139 | |||||
21.735 | Benzenesulfonic acid, 4-methyl- | 0.628 | |||||
21.820 | 4-Methoxycinnamaldehyde | 1.680 | |||||
21.854 | Dihydrofuranno(3,2-f)coumaran | 2.134 | 1.056 | 1.447 | 0.584 | ||
22.006 | 4,4′-Stilbenedicarbonitrile | 1.748 | |||||
22.010 | (6,7-Dimethoxy-3,4-dihydro-1-isoquinolinyl)acetonitrile | 0.941 | 1.290 | 1.385 | 0.363 | ||
22.137 | 1-[2,2′:5′,2″]Terthiophen-5-yl-ethanone | 1.232 | |||||
22.209 | Benzene, 1-phenyl-4-(2,2-dicyanoethenyl) | 1.378 | |||||
22.213 | Benzo(a)phenazine | 1.615 | |||||
22.222 | Dibenzo[c,h][2,6]naphthyridine | 0.481 | |||||
22.230 | 2,2′-Bi-1H-indene | 1.321 | |||||
22.340 | 1,4-Dimethyl-4,5,7,8-tetrahydroimidazo-[4,5-E]-1,4-diazepin-5,8(6H)-dione | 1.538 | 2.477 | 2.927 | 1.088 | ||
22.509 | 2-Ethoxyphenyl isocyanate | 1.220 | 1.912 | ||||
22.535 | Asarone | 0.785 | 0.977 | 1.374 | 0.789 | ||
22.683 | Tricyclo[4.3.0.0(7,9)]nonane, 2,2,5,5,8,8-hexamethyl-, (1.alpha.,6.beta.,7.alpha.,9.alpha.)- | 1.683 | 0.934 | ||||
22.924 | Benzaldehyde, 2-methoxy-4-methyl- | 0.944 | |||||
23.106 | 6-Acetyl-5-hydroxy-2,7-dimethyl-1,4-naphthoguinone | 1.211 | |||||
23.135 | Benzoic acid, 3-methoxy- | 0.643 | 0.495 | ||||
23.321 | As-Indacene, 1,2,3,6,7,8-hexahydro-1,1,6,6-tetramethyl-4-(1-methylethyl)- | 2.247 | |||||
23.385 | (+)-3-Carene, 2-.alpha.-isopropenyl- | 1.063 | |||||
23.402 | 2,2′-Isopropylidenebis(3-methylbenzofuran) | 1.837 | 1.728 | ||||
23.579 | 2,4,5,6-Tetrachloro-nicotinamide | 0.587 | |||||
23.588 | 9,10-Dihydro-12H-5-oxabenzocyclodecene-6,11-dione | 1.082 | |||||
23.596 | Fluorene, 2,7-bis(1-hydroxyethyl)- | 3.234 | |||||
23.681 | 1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)- | 0.287 | |||||
23.824 | [1,2,4]Triazolo[1,5-a]pyrimidine, 6-chloro-2-(2-furanyl)-5,7-dimethyl- | 1.299 | |||||
23.884 | Benzene, 2-ethyl-1,3-dimethyl- | 1.862 | |||||
23.968 | Dithiocarbonic acid, O-ethyl ester, methylene-S(IV)-trifluoromethyl ester | 0.689 | |||||
24.006 | Estra-1,3,5(10)-trien-3-ol | 0.564 | |||||
24.019 | n-Hexadecanoic acid | 1.996 | 1.063 | ||||
24.159 | 7-Oxabicyclo[4.1.0]heptane, 1-(2,3-dimethyl-1,3-butadienyl)-2,2,6-trimethyl-, (E)- | 0.419 | |||||
24.180 | 1,2-Dimethyl-3-nitro-4-nitroso-benzene | 0.532 | |||||
24.302 | Benzenemethanol, 2-methyl-.alpha.-phenyl- | 0.595 | |||||
24.311 | 1-Phenanthrenecarboxaldehyde, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-methylethyl)-, [1S-(1.alpha.,4a.alpha.,10a.beta.)]- | 2.870 | |||||
24.412 | Methyl 2-hydroxy-4-methoxybenzoate, trimethylsilyl ether | 1.238 | |||||
24.488 | Phenol, 4,4′-methylenebis- | 0.412 | |||||
24.531 | 7,8-Dihydro-9H-cyclopenta[a]pyren-9-one | 1.256 | 1.563 | 0.684 | |||
24.552 | 1,4-Cyclohexanedicarboxylic acid, 2,5-dioxo-, diethyl ester | 0.877 | |||||
24.704 | Ketone, 7-methoxy-2-benzofuranyl methyl | 1.641 | |||||
24.729 | 2-Acetyl-3-methylbenzo[b]thiophene | 1.523 | |||||
24.742 | Benzo[b]thiophene, 2,3-diethyl- | 0.969 | |||||
24.801 | 2,4(1H,3H)-Quinazolinedione, 1,3-diethyl- | 0.811 | |||||
24.818 | 1-METHOXY-2-TERT.-BUTYL-4,6-DINITROBENZENE | 1.304 | |||||
24.962 | di-p-Tolylacetylene | 0.863 | |||||
25.118 | 5-Methoxy-2-naphthalen-2-yl-2H-indazole | 0.659 | |||||
25.127 | Silane, dimethyl(2-naphthoxy)isobutoxy- | 0.598 | |||||
25.199 | Homovanillic acid | 4.555 | |||||
25.211 | 2,3,6-Trimethoxybenzoic acid | 0.723 | |||||
25.216 | Imidazo[1,2-b]-1,2,4-triazine, 6-(3-methoxyphenyl)-2,3-dimethyl- | 1.817 | |||||
25.372 | Androstane-3,17-dione, (5.alpha.)- | 0.398 | 2.705 | 1.271 | 1.073 | ||
25.385 | 2,5-Diethyl-3,4-diphenyl cyclopentadienone | 1.263 | 0.974 | ||||
25.478 | 1,2,3,4-Tetrahydrobenz[a]anthracene | 1.459 | 1.355 | ||||
25.512 | 9H-Xanthen-9-one, 1,3-dihydroxy-2-methyl- | 0.807 | |||||
25.541 | 3,5-di-tert-Butyl-4-hydroxybenzyl alcohol | 1.207 | |||||
25.736 | Naphthalene, 1-(2-naphthalenyloxy)- | 3.021 | 1.884 | 4.552 | 2.427 | ||
25.833 | cis-Vaccenic acid | 9.907 | |||||
25.842 | 4-Methoxyphenol, pentafluoropropionate | 2.017 | |||||
25.871 | 2-Hexanone, phenyl(2-propenyl)hydrazone | 0.664 | 0.925 | ||||
26.066 | Ethyl Oleate | 3.889 | 3.408 | 4.803 | 1.827 | 1.477 | |
26.192 | 1,2-Epoxy-3,4-dihydroxycyclohexano[a]pyrene, (3s,4s-) | 1.911 | |||||
26.205 | 2H-1-Benzopyran-3(4H)-one, 8-methoxy-2-(1-naphthalenyl)-, oxime | 1.142 | 0.851 | ||||
26.273 | 3H-Benzo[f]chromen-3-one, 2-(4-methoxyphenyl)- | 0.812 | |||||
26.328 | 3,4-Dimethoxychalcone | 1.625 | |||||
26.450 | Benzoic acid, 4,5-dimethoxy-2-(2-phenylethenyl)- | 1.794 | |||||
26.455 | Estra-1,3,5(10)-triene-6,17-dione, 3-hydroxy- | 1.055 | |||||
26.543 | 1,3-Cyclohexanedione, 2-[4-(4-methoxyphenylamino)-2-thiazolyl]- | 1.047 | 1.159 | ||||
26.590 | Retene | 2.830 | 2.305 | ||||
26.708 | Benzene, 1,3-dimethoxy-5-[(1E)-2-phenylethenyl]- | 1.780 | 1.156 | ||||
26.713 | p-Bis(p-methoxyphenyliminomethyl)benzene | 2.831 | 0.880 | ||||
26.806 | trans-3′,4′,5′-Trimethoxy-4-(methylthio)chalcone | 0.696 | 2.653 | 1.466 | |||
26.899 | 1-Benzhydrylazetidin-3-ol | 0.574 | |||||
26.966 | 2-(((6-Fluoro-4H-1,3-benzodioxin-8-yl)methyl)sulfanyl)-1H-benzimidazole | 1.289 | |||||
26.975 | Benzoic acid, 4,5-dimethoxy-2-(2-phenylethenyl)- | 0.877 | |||||
26.983 | 2-Amino-4-azido-5-[3,4,5-trimethoxybenzyl]pyrimidine | 0.965 | |||||
26.987 | 3Alpha,5-cyclo-6beta,19-epoxy-5alpha-androstan-17-one | 0.663 | |||||
27.148 | Acridin-9-yl-(2,4-dimethoxy-phenyl)-amine | 0.979 | |||||
27.203 | 13-(2-Methoxyphenyl)tricyclo[8.2.2.24,7] hexadeca-1(13),4,6,10(14),11,15-hexaene-5-carbaldehyde | 2.588 | |||||
27.254 | Estra-1,3,5(10)-trien-17-one, 3-methoxy- | 1.301 | |||||
27.296 | (.+/−.)-Uleine | 1.801 | |||||
27.322 | N,N-Dimethylindoaniline | 4.244 | |||||
27.457 | 2-[4-(1,2-Diphenyl-but-1-enyl)-phenoxy]-ethylamine | 1.827 | |||||
27.461 | Benzofuran-5-ol, 3-(2-furanoyl)-4-dimethylaminomethyl- | 1.432 | |||||
27.567 | Homovanillic acid | 1.146 | |||||
27.571 | Ethyl homovanillate | 5.919 | |||||
27.732 | Benzeneacetic acid, 4-hydroxy-3-methoxy-, methyl ester | 0.713 | 2.750 | 2.782 | |||
27.740 | 3-Penten-2-one, 4-(2,2,6-trimethyl-7-oxabicyclo[4.1.0]hept-1-yl)-, (E)- | 4.038 | 3.109 | ||||
27.829 | 2(1H)-Pyrazinone, 3,5,6-tris(1,1-dimethylethyl)- | 0.788 | |||||
27.931 | Pyridine, 2-(phenylethynyl)- | 0.556 | |||||
27.969 | 8H-5,12b-(Iminoethano)-1H-phenanthro[3,2-d][1,3]dioxin, 2,3,4,4a,5,6-hexahydro-15-methyl-, [4aR-(4a.alpha.,5.alpha.,12b.alpha.)]- | 1.431 | |||||
28.146 | 1-(10-Methylanthracen-9-yl)ethanone | 0.522 | 3.722 | ||||
28.239 | 1H-1,2,3,4-Tetrazole-1,5-diamine, N(1)-[(2-ethoxy-3-methoxyphenyl)methyl]- | 0.385 | |||||
28.243 | 3-(3-Hydroxy-4-methoxyphenyl)-l-alanine | 0.769 | |||||
28.315 | Benzaldehyde, 2-nitro-, diaminomethylidenhydrazone | 1.978 | |||||
28.556 | Methyl p-(trans-styryl)-trans-cinnamate | 1.551 | |||||
28.772 | 1-.beta.-d-Ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one | 1.052 | |||||
29.229 | Benzene, 1-methoxy-4-(2-cyano-2-phenylethenyl) | 0.661 | 1.046 | ||||
29.415 | 2-(E)-Heptenoic acid, (4S)-4-[(t-butoxycarbonyl-(R)-alanyl)amino]-6-methyl-, ethyl ester | 1.102 | |||||
29.664 | 4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-phenyl- | 2.369 | 1.245 | ||||
29.685 | Dinaphtho[2,1-b:1′,2′-d]furan | 2.566 | |||||
30.096 | 4-Methoxy-4′,5′-methylenedioxybiphenyl-2-carboxylic acid | 2.098 | |||||
30.282 | i-Propyl nonadecanoate | 1.419 | |||||
30.336 | 2,5-Cyclohexadien-1-one, 4-[[4-(dimethylamino)phenyl]imino]-2,5-dimethyl- | 0.674 | |||||
30.425 | Dibenz[a,h]anthracene, 1,2,3,4-tetrahydro- | 0.801 | 0.612 | ||||
30.455 | 4H-1-Benzopyran-4-one, 5,7-dimethoxy-2-phenyl- | 1.208 | |||||
30.540 | Benzene, 1-(1,1-dimethylethyl)-3,5-dimethyl-2,4,6-trinitro- | 0.547 | |||||
30.722 | 4H-1-Benzopyran-4-one, 5,7-dimethoxy-2-phenyl- | 2.505 | 4.742 | 2.323 | |||
31.309 | Dimethyldaidzin | 0.944 | |||||
31.318 | 3H-1,3,4-Benzotriazepine, 7-chloro-2-(methylamino)-5-phenyl- | 3.414 | |||||
31.457 | 4-(1,1-Dimethylallyl)-9-methoxy-7H-furo[3,2-g][1]benzopyran-7-one | 2.442 | |||||
31.690 | Benzothiophen-3(2H)-one, 2-(4-ethoxy-3-methoxybenzylideno)- | 0.889 | |||||
31.952 | Benzaldehyde, 2,4-dihydroxy- | 0.633 | 0.807 | 4.897 | 2.024 | ||
31.969 | 2-Cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)-, O-methyloxime, (+)- | 8.108 | |||||
32.942 | Silane, [[(16.alpha.,17.alpha.)-16,17-epoxyestra-1,3,5(10)-trien-3-yl]oxy]trimethyl- | 1.385 |
References
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci. Total Environ. 2020, 716, 137116. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Jäger, N.; Apfelbacher, A.; Daschner, R.; Hornung, A.; Pant, K. Integrated thermo-catalytic reforming of residual sugarcane bagasse in a laboratory scale reactor. Fuel Process. Technol. 2018, 171, 277–286. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.; Elgarahy, A.M.; Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Zhang, H.; Chu, C.; Zheng, K.; Ju, M.; Liu, L. Liquefaction of biomass and upgrading of bio-oil: A review. Molecules 2019, 24, 2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Nazari, L.; Xu, C.C.; Ray, M.B. Advanced Technologies (Biological and Thermochemical) for Waste-to-Energy Conversion. In Green Chemistry and Sustainable Technology Advanced and Emerging Technologies for Resource Recovery; Springer: Berlin/Heidelberg, Germany, 2021; pp. 55–95. [Google Scholar]
- Demirkaya, E.; Dal, O.; Yüksel, A. Liquefaction of waste hazelnut shell by using sub-and supercritical solvents as a reaction medium. J. Supercrit. Fluids 2019, 150, 11–20. [Google Scholar] [CrossRef]
- Cao, L.; Iris, K.; Xiong, X.; Tsang, D.C.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 2020, 186, 109547. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qiu, W. Key technologies for bioethanol production from lignocellulose. Biotechnol. Adv. 2010, 28, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies: Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Krishna, B.B.; Mishra, G.; Kumar, J.; Bhaskar, T. Strategies for selection of thermo-chemical processes for the valorisation of biomass. Renew. Energy 2016, 98, 226–237. [Google Scholar] [CrossRef]
- Seehar, T.H.; Toor, S.S.; Sharma, K.; Nielsen, A.H.; Pedersen, T.H.; Rosendahl, L.A. Influence of process conditions on hydrothermal liquefaction of eucalyptus biomass for biocrude production and investigation of the inorganics distribution. Sustain. Energy Fuels 2021, 5, 1477–1487. [Google Scholar] [CrossRef]
- Weir, A.; del Barco Carrión, A.J.; Queffélec, C.; Bujoli, B.; Chailleux, E.; Uguna, C.; Snape, C.; Airey, G. Renewable binders from waste biomass for road construction: A review on thermochemical conversion technologies and current developments. Constrcution Build. Mater. 2022, 330, 127076. [Google Scholar] [CrossRef]
- Singh, R.; Balagurumurthy, B.; Prakash, A.; Bhaskar, T. Catalytic hydrothermal liquefaction of water hyacinth. Bioresour. Technol. 2015, 178, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, M. Hydrothermal liquefaction of lignocellulose for value-added products: Mechanism, parameter and production application. Bioresour. Technol. 2021, 342, 126035. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Kumar, P.; Mohanty, K. Hydrothermal liquefaction of biomass for bio-crude production: A review on feedstocks, chemical compositions, operating parameters, reaction kinetics, techno-economic study, and life cycle assessment. Fuel 2022, 316, 123377. [Google Scholar] [CrossRef]
- Gollakota, A.; Kishore, N.; Gu, S. A review on hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. [Google Scholar] [CrossRef]
- Pang, S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Nagappan, S.; Bhosale, R.R.; Nguyen, D.D.; Chi, N.T.L.; Ponnusamy, V.K.; Woong, C.S.; Kumar, G. Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products–A review. Fuel 2021, 285, 119053. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renew. Sustain. Energy Rev. 2017, 68, 113–125. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, C.; Hao, S.; Luo, G.; Zhang, S.; Chen, J. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Bioresour. Technol. 2016, 220, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, C.; Chen, H.; Tsang, D.C.; Luo, G.; Zhang, S.; Chen, J. Hydrothermal liquefaction of agricultural and forestry wastes: State-of-the-art review and future prospects. Bioresour. Technol. 2017, 245, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Jindal, M.K.; Jha, M.K. Effect of process parameters on hydrothermal liquefaction of waste furniture sawdust for bio-oil production. RSC Adv. 2016, 6, 41772–41780. [Google Scholar] [CrossRef]
- Cheng, S.; D’cruz, I.; Wang, M.; Leitch, M.; Xu, C. Highly efficient liquefaction of woody biomass in hot-compressed alcohol− water co-solvents. Energy Fuels 2010, 24, 4659–4667. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, J.; Zhao, J.; Tu, S. Liquefaction of bamboo shoot shell for the production of polyols. Bioresour. Technol. 2014, 153, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Basar, I.A.; Liu, H.; Carrere, H.; Trably, E.; Eskicioglu, C. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chem. 2021, 23, 1404–1446. [Google Scholar] [CrossRef]
- Zhu, Z.; Rosendahl, L.; Toor, S.S.; Chen, G. Optimizing the conditions for hydrothermal liquefaction of barley straw for bio-crude oil production using response surface methodology. Sci. Total Environ. 2018, 630, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Smith, N.; Lewis, D.M.; Hall, T.; van Eyk, P. A kinetic model for the hydrothermal liquefaction of microalgae, sewage sludge and pine wood with product characterisation of renewable crude. Chem. Eng. J. 2022, 428, 131228. [Google Scholar] [CrossRef]
- Cheng, F.; Porter, M.D.; Colosi, L.M. Is hydrothermal treatment coupled with carbon capture and storage an energy-producing negative emissions technology? Energy Convers. Manag. 2020, 203, 112252. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.-T. Hydrothermal liquefaction of protein-containing feedstocks. In Direct Thermochemical Liquefaction for Energy Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 127–168. [Google Scholar]
- Yin, S.; Dolan, R.; Harris, M.; Tan, Z. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol. 2010, 101, 3657–3664. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S.S. Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 2013, 135, 6415–6418. [Google Scholar] [CrossRef]
- Rahimi, A.; Ulbrich, A.; Coon, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhao, B.; Wang, H.; Bao, G.; Hu, Y.; Xu, C.C.; Long, H. Valorization of the spent catalyst from flue gas denitrogenation by improving bio-oil production from hydrothermal liquefaction of pinewood sawdust. Fuel 2022, 312, 122804. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, Z.; Li, W.; Xu, C.C. Alkali-catalyzed liquefaction of pinewood sawdust in ethanol/water co-solvents. Biomass Bioenergy 2020, 134, 105485. [Google Scholar] [CrossRef]
- Santos, R.V.; Mendes, M.A.; Alexandre, C.; Carrott, M.R.; Rodrigues, A.; Ferreira, A.F. Assessment of Biomass and Biochar of Maritime Pine as a Porous Medium for Water Retention in Soils. Energies 2022, 15, 5882. [Google Scholar] [CrossRef]
- Ravichandran, S.R.; Venkatachalam, C.D.; Sengottian, M.; Sekar, S.; Kandasamy, S.; Subramanian, K.P.R.; Purushothaman, K.; Chandrasekaran, A.L.; Narayanan, M. A review on hydrothermal liquefaction of algal biomass on process parameters, purification and applications. Fuel 2022, 313, 122679. [Google Scholar] [CrossRef]
- Yin, S.; Tan, Z. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions. Appl. Energy 2012, 92, 234–239. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Zhang, D.; Feng, L. Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids. Energy Convers. Manag. 2017, 154, 336–343. [Google Scholar] [CrossRef]
- Huang, S.; Mahmood, N.; Tymchyshyn, M.; Yuan, Z.; Xu, C.C. Reductive de-polymerization of kraft lignin for chemicals and fuels using formic acid as an in-situ hydrogen source. Bioresour. Technol. 2014, 171, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saber, M.; Nakhshiniev, B.; Yoshikawa, K. A review of production and upgrading of algal bio-oil. Renew. Sustain. Energy Rev. 2016, 58, 918–930. [Google Scholar] [CrossRef]
- Vardon, D.R.; Sharma, B.K.; Blazina, G.V.; Rajagopalan, K.; Strathmann, T.J. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 2012, 109, 178–187. [Google Scholar] [CrossRef]
- Vardon, D.R.; Sharma, B.; Scott, J.; Yu, G.; Wang, Z.; Schideman, L.; Zhang, Y.; Strathmann, T.J. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour. Technol. 2011, 102, 8295–8303. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C.C. Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents. Bioresour. Technol. 2015, 190, 416–419. [Google Scholar] [CrossRef]
- Hao, B.; Xu, D.; Jiang, G.; Sabri, T.A.; Jing, Z.; Guo, Y. Chemical reactions in the hydrothermal liquefaction of biomass and in the catalytic hydrogenation upgrading of biocrude. Green Chem. 2021, 23, 1562–1583. [Google Scholar] [CrossRef]
- Chen, W.-T.; Zhang, Y.; Zhang, J.; Schideman, L.; Yu, G.; Zhang, P.; Minarick, M. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl. Energy 2014, 128, 209–216. [Google Scholar] [CrossRef]
- Camus, M.; Condassamy, O.; Ham-Pichavant, F.; Michaud, C.; Mastroianni, S.; Mignani, G.; Grau, E.; Cramail, H.; Grelier, S. Oxidative Depolymerization of Alkaline Lignin from Pinus Pinaster by Oxygen and Air for Value-Added Bio-Sourced Synthons. Polymers 2021, 13, 3725. [Google Scholar] [CrossRef]
Proximate Analysis (wt.%) a | |
Volatile matter (VM) | 85.35 ± 0.99 |
Fixed carbon (FC) | 14.02 ± 0.92 |
Ash | 0.63 ± 0.07 |
Elemental analysis (wt.%) a | |
C | 48.24 ± 0.82 |
H | 4.72 ± 0.12 |
O b | 46.33 ± 0.76 |
N | 0.08 ± 0.01 |
S | n.d. c |
HHV(MJ/kg) d | 14.78 |
Yield of Each Gas Species (mmol/g) | Catalyst: KOH | Catalyst: H2SO4 | ||||
---|---|---|---|---|---|---|
N2 | H2 | O2 | N2 | H2 | O2 | |
H2 | 0.0612 | - | 0.0083 | 0.0662 | - | 0.0419 |
CH4 | 0.0051 | 0.0024 | 0.0058 | 0.0019 | 0.0045 | 0.0103 |
CO | 0.0818 | 0.1257 | 0.0301 | 0.0951 | 0.3487 | 0.1074 |
CO2 | 0.6196 | 0.5562 | 3.7920 | 0.5628 | 0.3834 | 0.9146 |
C2H4 | 0.0004 | 0.0002 | 0.0006 | 0.0002 | 0.0011 | 0.0006 |
Catalyst: KOH | Catalyst: H2SO4 | |||||
---|---|---|---|---|---|---|
N2 | H2 | O2 | N2 | H2 | O2 | |
Ultimate analysis a (wt.%) | ||||||
C | 72.95 | 72.44 | 51.83 | 72.22 | 71.52 | 69.75 |
H | 5.86 | 4.63 | 2.95 | 5.55 | 3.78 | 3.18 |
N | 0.16 | 0.05 | 0.21 | 0.08 | 0.06 | 0.08 |
S | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c | n.d. c |
O b | 21.03 | 22.84 | 45.01 | 22.15 | 24.64 | 27.00 |
O/C | 0.22 | 0.24 | 0.65 | 0.23 | 0.26 | 0.29 |
H/C | 0.96 | 0.77 | 0.68 | 0.92 | 0.63 | 0.55 |
HHV d (MJ/kg) | 29.27 | 27.01 | 13.69 | 28.38 | 25.17 | 23.29 |
ER e (%) | 64.76 | 73.14 | 2.81 | 41.91 | 34.81 | 16.34 |
Viscosity @ 80 °C, (cp) | 84.1 | 51.2 | 113.6 | 86.4 | 64.4 | 109.7 |
TAN (mg KOH/g oil) | 45.7 | 40.2 | 131.3 | 118.4 | 86.6 | 148.3 |
Mn (g/mol) | 504 | 470 | 753 | 457 | 417 | 704 |
Mw (g/mol) | 815 | 767 | 1347 | 721 | 654 | 1226 |
PDI | 1.62 | 1.63 | 1.75 | 1.58 | 1.57 | 1.74 |
Distillate Range (°C) | Catalyst: KOH | Catalyst: H2SO4 | ||||
---|---|---|---|---|---|---|
N2 | H2 | O2 | N2 | H2 | O2 | |
<193 (Heavy Naphtha) | 15.18 | 23.89 | 3.77 | 12.73 | 16.49 | 7.46 |
193–271 (Kerosene) | 9.68 | 8.56 | 11.47 | 12.30 | 10.56 | 19.92 |
271–343 (Gas Oil) | 8.27 | 11.64 | 7.84 | 11.56 | 9.28 | 22.09 |
343–538 (Vac. Gas Oil) | 22.97 | 21.52 | 55.85 | 17.56 | 19.42 | 35.43 |
>538 (Residues) | 43.90 | 34.39 | 21.07 | 45.85 | 44.25 | 15.10 |
VM a (wt.%) | 59.98 | 67.26 | 81.53 | 60.35 | 59.21 | 85.71 |
Ash (wt.%) | n.d b | n.d b | n.d b | n.d b | n.d b | n.d b |
FC c (wt.%) | 40.02 | 32.74 | 18.47 | 43.34 | 30.79 | 14.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Jiang, Y.; Park, E.; Han, X.; Zeng, Y.; Xu, C. Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere. Sustainability 2023, 15, 6698. https://doi.org/10.3390/su15086698
Wang H, Jiang Y, Park E, Han X, Zeng Y, Xu C. Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere. Sustainability. 2023; 15(8):6698. https://doi.org/10.3390/su15086698
Chicago/Turabian StyleWang, Haoyu, Yipei Jiang, Evan Park, Xue Han, Yimin Zeng, and Chunbao Xu. 2023. "Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere" Sustainability 15, no. 8: 6698. https://doi.org/10.3390/su15086698
APA StyleWang, H., Jiang, Y., Park, E., Han, X., Zeng, Y., & Xu, C. (2023). Hydrothermal Liquefaction of Pinewood Sawdust: Influence of Reaction Atmosphere. Sustainability, 15(8), 6698. https://doi.org/10.3390/su15086698