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Abstract: High nature value farmland (HNVf) plays an important role in improving biodiversity and
landscape heterogeneity, and it is effective in curbing soil non-point source pollution and carbon
loss in sustainable eco-agricultural systems. To this end, we developed high-resolution (2 m × 2 m)
indicators for the identification of potential HNVf based on GF1B remote sensing imaging, including
the land cover (LC), normalized difference vegetation index (NDVI), Shannon diversity (SH), and
Simpsons index (SI). The statistical results for LC with high resolution (2 m × 2 m) showed that
there was 41.05% of intensive farmland in the study area, and the pixel proportion of the HNVf
map (above G3) was 44.30%. These HNVf patches were concentrated in the transition zone around
the edge of the intensive farmland and around rivers, with characteristics of HNVf type 2 being
significantly reflected. Among the real-life areas from Map World, elements (i.e., linear forests, rivers,
and semi-natural vegetation etc.) of HNVf accounted for more than 70% of these regions, while
a field survey based on potential HNVf patches also exhibited significant HNVf characteristics in
comparison with intensive farmlands. In addition, from 2002 to 2020, the total migration distance of
the gravity center of intensive farmland in the study area was 7.65 km. Moreover, four landscape
indices (patch COH index, landscape division index, SH, and SI) slowly increased, indicating that
the species richness and biodiversity were improved. It was also found that a series of ecological
protection policies provide effective guarantees for an improvement in species diversity and the
development of HNVf in the study area. In particular, the average contents of As, Cr, Cu, Ni, and Zn
in the HNVf were 20.99 mg kg−1, 121.11 mg kg−1, 21.97 mg kg−1, 29.34 mg kg−1, and 41.68 mg kg−1,
respectively, which were lower in comparison with the intensive farmland soil. This is the first HNVf
exploration for landscape and soil pollution assessment in a coastal delta in China, and could provide
powerful guidance for the ecological protection of farmland soil and the high-quality development of
sustainable agriculture.

Keywords: high nature value; remote sensing; land cover; farmland; Yellow River Delta

1. Introduction

Over the past century, intensification has become the leading way for global farm-
land to pursue high grain yield [1]. The characteristics of intensive farmland include
high-intensity utilization, high carbon emissions, and high chemical inputs (pesticides and
chemical fertilizers), which have caused a decline in farmland biodiversity [2–4], landscape
homogenization [5], cultivated land degradation and abandonment [6], and non-point
source pollution [7–9]. In recent years, the development goals of some traditional farm-
lands have changed to sustainable practical value and low-intensity utilization [10,11],
which play a key role in maintaining the biodiversity of eco-agricultural ecosystems. The
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re-identification of these farmlands is important for regional carbon neutrality and micro-
climate improvement.

In fact, low-intensity farmland has gradually developed into a new concept, high
nature value farmland (HNVf), which was devised by the European Union (EU) as a new
farmland development framework [12,13]. It emphasizes some characteristics of low-
intensity land use, including a high proportion of semi-natural vegetation, a low input of
agricultural chemicals, and carbon sequestration. These high nature value (HNV) farmlands
have a positive effect on biodiversity improvement and landscape heterogeneity. Currently,
HNVf is divided into three types [14–16]:

Type 1 is farmland with a high proportion of semi-natural vegetation.
Type 2 is farmland with low-intensity agriculture composed of natural and structural

elements, such as field edges, hedgerows, forest land, small rivers, etc.
Type 3 is farmland that supports rare plants and animals, or a high percentage of European

or world population farmland (existing in small-scale and centrally managed landscapes).
At present, the identification and evaluation of HNVf relies on various database meth-

ods, including the CORINE Land Cover (CLC) database, the farming systems approach
(FSA), and the Integrate Administrative and Control System (IACS). The identification
and evaluation indicators of HNVf involved in these databases are mainly divided into
three categories: land cover (LC), the intensity of farming practices (farm area, production
method, livestock, input levels, etc.), and high-precision farm information (farm type, farm
area and the number of animals, etc.) [17]. Land cover is the basic indicator of HNVf
identification and is regarded as an important representation of the transition from human
activity to nature [13]. It describes the artificial gradient of the spatial distribution of natural
and semi-natural elements in HNVf by dividing the study area into urban areas, arable
lands, forests, wetlands, and other land use types. However, the spatial resolution of the
indicator of land cover is low, can only infer the spatial location of potential HNVf, and
cannot further obtain other HNVf characteristics in these areas (such as the intensity of
agricultural activities), so the identification results have great uncertainty.

The second indicator is the intensity of farming practices, which infers HNVf by
introducing factors such as farm area and input levels to identify farmland with low-
intensity agricultural characteristics in the area where the accuracy of land cover data
cannot be improved [13,15,18]. However, the agricultural activity intensity index from
the Farm Accountancy Data Network (FADN) lacks precise localization information for
HNVf; that is, if the sample sizes in the area are too small, the identification results have
low accuracy. The third indicator is high-precision farm information from IACS [19–21],
which provides high-precision farm information and parcel-level information updated
by EU member states every year, and overcomes the uncertainty of identification results
caused by the low spatial resolution of land cover and the shortcomings resulting from
missing samples of agricultural activity intensity. However, due to information protection
for farmers’ privacy, these indicators are difficult to obtain and cannot be used for the
large-scale identification and mapping of HNVf.

Among the above indicators, land cover plays a key role in the identification of
HNVf, and its spatial resolution directly affects identification accuracy [14,22]. For example,
Maxwell et al. (2017) used the Shannon index (SH) and the Simpson index (SI) for enhancing
land cover mapping classification to identify existing HNV and areas with the potential
to revert to HNVf type 2 in Wales [23]. In addition, they analyzed the lack of small
patches resulting from the low resolution of land cover data, which affects the identification
accuracy of HNVf. Bonato et al. (2019) mapped and assessed HNVf and non-HNVf in parts
of the Veneto Plain in northeastern Italy in more detail based on the Land Use and Land
Cover (LULC) indicator, combining it with information on the intensity of agricultural
practices and census data [17]. However, as it is limited to the low spatial resolution of
land cover, HNVf is only calculated to the city-level scale. In particular, one shortcoming of
the current database methods is their limited use in the EU region, and there are no cases
of HNVf identification in China. In China, traditional farmland is facing the challenges of
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biodiversity loss, non-point source pollution, and carbon loss [9,24–26]. For example, at
least 60% of arable land (arable non-agricultural land) in China is distributed in ecologically
fragile areas, which are very difficult to develop and utilize [5]. He et al. (2017) found that
there were a large number of soil pollution cases in China. The development of HNVf is
important in addressing these issues [27].

The key way to identify HNVf currently is to develop high spatial resolution land
cover data. In recent years, machine learning methods combined with high-resolution
remote sensing images were used to classify land use effectively [28], with the advantages
of high classification precision and computation speed. The higher the spatial resolution
of land cover data, the more significant the characteristics of HNVf in the transition zone.
Due to the potential importance and practicality of HNVf identification using land cover
indicators, the aim of this study is to confirm the usefulness of identifying potential HNVf
with high-resolution data, which has never been done before. Therefore, our objectives are
as follows:

(a) High-resolution (2 m × 2 m) indicators (i.e., LC, NDVI, SH, and SI) are applied for
first time to develop a potential HNVf map based on a coastal delta in China;

(b) The role of the HNVf map in landscape and soil pollution assessment is analyzed.

2. Materials and Methods
2.1. Study Area

The study area is located in the Yellow River Delta (YRD) in China (39◦07′ N–39◦42′ N,
116◦46′ E–117◦19′ E) (Figure 1). It has a semiarid continental monsoon climate, with
an average annual temperature of 14.2 ◦C, an annual average illumination of 2502.3 h,
and an average annual precipitation of 628 mm. The YRD has serious soil salinization
problems due to the low level of the terrain near the sea, improper irrigation, and other
human activities. As a result, the ecology of the YRD has suffered severe damage, which
has dramatically restricted the sustainable development of agriculture and the economy in
this region. On 16 November 2022, the General Office of Shandong Provincial People’s Gov-
ernment issued the “Support a number of policy measures to promote ecological protection
and high-quality development of the Yellow River Basin in 25 counties (cities, districts)
along the Yellow River” (http://www.shandong.gov.cn/, (accessed on 25 November 2022)),
pointing out the necessity to construct a green ecological corridor in the lower Yellow River,
supporting the comprehensive utilization of saline–alkaline land, along with the protection
and restoration of wetland ecosystem in the YRD. Therefore, as a natural and semi-natural
agricultural system with low-density tillage and various land cover types, HNVf will play
a key role in biodiversity protection, ecosystem restoration, and sustainable agricultural
development in the YRD.

2.2. Indicators and Auxiliary Data
2.2.1. Land Cover Indicator

Table 1 shows the spatial resolution statistics of the land cover maps used in the study
of HNVf identification. The indicators used in these studies all contain land cover data,
with the spatial resolution constantly improving from 3 km to 30 m, which shows that the
improvement in the spatial resolution of this indicator has a great effect on HNVf. In this
study, Landsat 8 operational land imager (OLI) (30 m × 30 m) (10 November 2020) and
Gaofen-1B (GF1B) panchromatic multispectral scanner (PMS) (2 m × 2 m) (10 November
2020) images were selected to calculate land cover maps. Over these months, intensive
farmland crops are harvested in northern China, with most of the surface being bare soil,
which avoids confusion between crops and shrubs or grass. The GF1B PMS image was
derived from the natural resource satellite remote sensing cloud service platform (http:
//www.sasclouds.com/chinese/home/ (accessed on 30 December 2020)), and the Landsat
8 OLI images came from the geospatial data cloud (http://www.gscloud.cn/#page1/1
(accessed on 25 January 2022)). The OLI and PMS image processing steps were as follows:

http://www.shandong.gov.cn/
http://www.sasclouds.com/chinese/home/
http://www.sasclouds.com/chinese/home/
http://www.gscloud.cn/#page1/1
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(1). Radiometric calibration and atmospheric correction were used to preprocess the
PMS and OLI images in ENVI 5.3 software, and the panchromatic band from the GF1B
satellite was calibrated using ortho-correction;

(2). The preprocessed images were combined with a support vector machine (SVM)
algorithm to perform sample selection and supervised classification in ENVI 5.3 software.
Overall accuracy and Kappa coefficient of supervised classification for the OLI (94.77% and
0.9027) and PMS images (93.26% and 0.9088) were determined in combination with the
validation samples, which exhibited a powerful recognition performance from SVM for
land types. Based on existing research [29], land cover data were classified into five classes;

(3). Finally, two land cover maps (2 m × 2 m and 30 m × 30 m) were obtained. The
types of LC included built-up area (L1), intensive farmland (L2), woodland and grassland
(L3), water body (L4), and semi-natural vegetation (L5) (i.e., shrubs, artificial linear forests,
small rivers, ecological ditches, wetlands, and wasteland with herbaceous plants).
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Table 1. Spatial resolution of land cover maps on study of HNVf identification.

Study Area Resolution Land Cover Types HNVf Identification Result Reference

Ireland 2 km × 2 km Beach, water, pasture, arable land,
and shrubs

It represents the most comprehensive
method to identify the HNVf [29]

Estonia 1 km × 1 km Inland plots, coastline intersection
or contact plots, and urban areas

Better recognition in coastal areas,
flood plain valleys, and moraine land [21]

Wales 1 km × 1 km Semi-natural land

At low-intensity land use, species-rich
groups include wetland plants, plant

habitat indicators, upland birds,
and so on

[30]
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Table 1. Cont.

Study Area Resolution Land Cover Types HNVf Identification Result Reference

France 250 m × 250 m Semi-natural elements, urban and
agricultural areas

All indicators can relate to the
dimensions of land use intensity [31]

Italy 100 m × 100 m Farmland, non-irrigation
arable crops Better recognition of HNVf type 3 [32]

Italy 50 m × 50 m
Urban fabric, arable lands,

permanent crops, pastures, and
heterogeneous agricultural areas

Compared to traditional land cover
map, agricultural statistics improved

the identification results of HNVf
[17]

United
Kingdom 30 m × 30 m The UK Biodiversity Action Plan

Broad Habitats

Land cover type have been the main
data used for reporting but no

consistent set of data metrics have
been agreed

[23]

2.2.2. Vegetation Indicator

The vegetation index is an important indicator used to characterize HNVf type
2 (field edges, hedgerows, woodlands or bushes, etc.), and it is also critical for accu-
rately identifying the location of HNVf. However, there are two challenges in extracting
this vegetation information. On the one hand, the spatial resolution of a land cover map can
clearly express vegetation features. On the other hand, confusing vegetation information
with farm crops should be avoided. In particular, the normalized difference vegetation
index (NDVI) contains more information on woodland, bush, grass, and wetland plants,
which could ideally reflect the spatial location of HNVf. In order to ensure the high resolu-
tion of the vegetation index, the GF1B panchromatic band and the PMS multi-band images
were fused based on the NNDiffuse pan-sharpening algorithm in ENVI 5.3 software, and
then a multi-band image with a resolution of 2 m × 2 m was obtained. The NDVI was
calculated based on the near-infrared (NIR) and infrared (R) bands (Equation (1)) of the
preprocessed OLI images (30 m×30 m) and GF1B image (2 m × 2 m) [33]:

NDVI = (NIR − R)/(NIR + R) (1)

2.2.3. Richness Indicator

Species richness (such as insects, birds, etc.) is an important indicator for distinguish-
ing between intensive farmland and HNVf. However, the traditional rich data acquisition
method requires field observation, which takes a lot of time and is high in cost. The land-
scape index can highlight the macro-distribution of different populations in the region,
which could play a significant role in identifying HNVf. We selected two landscape indices
(SH and SI) as the identification indicators of HNVf. Among them, SH (Equation (2)) is one
of the most commonly used indicators to measure biodiversity [34]. It estimates the average
uncertainty regarding the type of land cover a random pixel belongs to, and is especially
sensitive to the non-equilibrium distribution of each land cover type, emphasizing the
contribution of rare objects to biodiversity information. SI (Equation (3)) is a comprehensive
index that can describe uniformity and richness [35]. Since SI is less affected by the type of
rare land cover, it is more inclined to express evenness.

SH =
s

∑
i=1

pi lnpi (2)

SI =
S

∑
I=1

pi
2 (3)

where s represents the total number of land cover types and pi is the proportion of the
total area of the ith land cover type. Based on the land cover maps from the OLI and GF1B
remote sensing images, the SH and SI, respectively, were calculated using FRASTATICS
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4.2.1 software. In addition, in order to unify the levels of indicators in the process of
weighted superposition, we normalized the levels of NDVI, SH, and SI maps from 1 to
5 using a grid calculator and the natural breakpoint methods in ArcGIS 10.6 software.

2.2.4. Soil Sampling Data

In order to quantify the soil characteristics of HNVf and non-HNVf, soil heavy metal
was selected for a comparative analysis of the identified HNVf maps. Based on the potential
HNVf map, we collected 64 soil samples (40 in HNVf regions and 24 in non-HNVf regions).
Approximately 1 kg of soil samples were collected and GPS coordinates were recorded. The
physical treatment of all samples included indoor air drying, crushing and grinding, and
passing through 200-mesh nylon sieves. Amounts of 6 mL HNO3, 2 mL HCl, and 2 mL HF
were added to the pretreated samples according to the proportion of 3:1:1. A GSS-1 standard
soil sample and a blank were added to each batch of samples. After microwave digestion,
the soil samples were measured on an inductively coupled plasma mass spectrometer
(Agilent 7500ce, SC, CA, USA). Finally, the measured contents of As, Cr, Cu, Ni, and Zn in
the study area were obtained.

2.2.5. Migration Distance and Landscape Index

To explore the effect of spatiotemporal variations in intensive farmland for HNVf
in the study area, we collected Landsat satellite time series images from 2002 to 2020
(Table 2). The SVM was used to classify the Landsat Enhanced Thematic Mapper Plus
(ETM+) and OLI images, as well as the extracted intensive farmland information. The
migration distance of the center of gravity of intensive farmland was then calculated from
2002 to 2020. The formula (Equation (4)) for the center of gravity is [36]:

x =
∑n

j=1 TjXj

∑n
j=1 Tj

y =
∑n

j=1 TjYj

∑n
j=1 Tj

, (4)

where x and y denote the longitude and latitude of the coordinates of the center of gravity
of farmland in the study area; n is the number of secondary units; Xj and Yj represent the
geographic center coordinates of the jth subunit; and Tj represents a property value for
a range. The center of gravity coordinates can be used to calculate the moving distance
of farmland in the space. The center of gravity analysis was implemented using ENVI
5.3 software.

Table 2. Images of Landsat satellites and classification accuracy using SVM from 2002 to 2020.

Sensor Time Accuracy Sensor Time Accuracy

ETM+ 15 October 2002 90.69% ETM+ 27 November 2012 93.52%
ETM+ 21 November 2004 90.10% OLI 9 November 2014 94.56%
ETM+ 11 November 2006 91.15% OLI 30 November 2016 94.88%
ETM+ 18 December 2008 92.40% OLI 20 November 2018 93.25%
ETM+ 8 December 2010 91.51% OLI 10 November 2020 94.77%

In addition, the landscape index indirectly reflects the spatiotemporal evolution of
HNVf through the description of regional biodiversity and the degree of human activity.
Based on the results of land cover, four landscape indices from 2002 to 2020 were calculated
in the FRASTATICS 4.2 software, including the patch COH index (COH) [37], the landscape
division index (DIS) [38], SH, and SI.

2.3. Weight and Verification

We assigned different weights to LC, NDVI, SH, and SI, based on existing studies [29].
For example, Paracchini et al. (2008) [15] and Sullivan et al. (2013) [39] used semi-natural
habitat coverage as a direct indicator of HNVf and assigned it maximum weight (45%).
Therefore, this study set the weight of LC to 45%, ensuring that the weight allocation
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results were similar to those of other studies. The weight of NDVI was 25%, reflecting the
characteristics of shrubs, grassland, and forest within the boundary of the field as much
as possible. The SH and SI weights were both 15%, reflecting high levels of semi-natural
habitat, species diversity, and block boundary.

The verification of the HNVf identification result is relatively diversified. Many studies
ascertain whether the identification results conform to the characteristics of HNVf based
on HNV theory without quantitative verification. This is due to the lack of real validation
data; it is difficult to obtain an HNVf identification patch from high-resolution real images.
Recently, real-life data from Google Maps has been proven to be effective for verifying HNVf
maps [17]. In this study, the results of potential HNVf identification are quantified using
Map World real-life data (https://www.tianditu.gov.cn/ (accessed on 15 October 2022))
and field surveys. Map World integrates enormous basic geographic information resources
such as 0.6 m resolution remote sensing images, built by the National Administration
of Surveying, Mapping and Geoinformation. Six regions were randomly selected in the
potential HNVf map to verify whether the HNVf identification result was accurate. In order
to overlay a range of verification regions between the Map World images and the HNVf
map, we unified the coordinate system as WGS_1984_Web_Mercator_Auxiliary_Sphere.
In addition, we also conducted a field survey based on potential HNVf patches in the
study area and compared the differences between high-potential HNVf elements and
intensive farmlands.

3. Results
3.1. Land Cover across YRD

Based on LC results from two resolution types (2 m × 2 m and 30 m × 30 m), the
pixel proportions of five types (i.e., built-up area, intensive farmland, woodland and
grassland, water body, and semi-natural vegetation) were counted (Figure 2a). According
to the statistical result of LC with high resolution (2 m × 2 m), intensive farmland made
up 41.05% of the study area. Woodland and grassland, water bodies, and semi-natural
vegetation were widely distributed (39.47% of which were above L3), indicating that there
was a strong HNVf development potential in the study area. The statistical result of LC
with low resolution (30 m × 30 m) was similar to that of LC with high resolution. However,
there was a large difference between built-up area and semi-natural vegetation, which may
have been affected by the pixel resolution. In general, intensive agriculture was the main
land cover type in the study area, followed by woodland and grassland and semi-natural
vegetation. The LC map with high resolution provided a more accurate description of each
land cover type.
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3.2. High Nature Value Farmlands across the YRD

The HNVf map was obtained using the weighted superposition of LC, NDVI, SH, and
SI in the YRD (Figure 3). Grade 1 and grade 2 (white patches) indicated the non-HNVf (i.e.,
built-up area and intensive farmland), and these patches did not exhibit features of HNV.
Orange and green patches (above grade 3) were considered a high likelihood of HNVf,
including HNVf type 1 and HNVf type 2. According to the HNVf maps with two types
of resolution (2 m × 2 m and 30 m × 30 m), the pixel proportions of the five grades were
counted (Figure 2b). The statistical results of the two HNVf maps were similar, with pixel
proportions (above G3) of 43.02% and 44.3%, respectively. The spatial distribution of HNVf
type 2 was focused on the edge of intensive farmland and its transition zone with rivers,
and these patches were fragmented and scattered. The patches of HNVf were larger and
more concentrated around estuaries in the north and the east of the study area.
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Compared with the low-resolution HNVf map (30 m × 30 m), the high-resolution
HNVf map (2 m × 2 m) better described the edge of intensive farmland and its transition
zone. For example, the G3 patches in the low-resolution HNVf map were observed in both
the north and the east of the study area, whereas these patches in the high-resolution HNVf
map had a gradient and transitional feature from G3 to G5, showing that high-resolution
indicators described HNVf more accurately. In addition, the high-resolution HNVf map
could extract more refined patches on the edge of intensive farmland and its transition zone.
Furthermore, these patches exhibited significant characteristics of HNVf type 2 (spotted
and linear distribution) between woodland and intensive farmland, which is consistent
with the real distribution. In fact, the real distribution of HNVf was a slow transition
from intensive farmland to natural vegetation. In particular, the statistical results of the
HNVf pixels showed a similar trend to the proportion of LC pixels, indicating that the LC
indicator plays an important driving role in HNVf identification.

3.3. Validation of the HNVf Map

According to the comparison results of the Map World real data corresponding to the
selected HNVf areas, the farmland in all regions showed significant HNV characteristics
(Figure 4). Elements (i.e., linear forests, rivers, and semi-natural vegetation, etc.) of HNVf
accounted for more than 70% of these regions. Among these validation areas, elements
of HNVf were prominent in the field edges and in the transition zone between forest
and intensive farmland (Figure 4a–c). These landscape patches contained linear forests,
shrubs, rivers, and semi-natural vegetation, which exhibited high potential for HNVf type
2. Figure 4d–f show that the proportion of semi-natural vegetation landscape was higher
(more than 80%) than for other verification areas, and only sporadic fields were distributed,
so these areas had significant high-intensity HNVf characteristics. The dominant HNVf in
the study area was type 2, that is, the intensive farmland edge, and its transition landscapes
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with forests and rivers were distributed on almost all urban surfaces in the region. The Map
World real data could effectively verify the characteristics of HNVf. The study area had
good HNVf and potential HNVf, and there was less interference from intensive farmland.
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In addition, some of the field survey pictures based on the identified HNVf patches
are shown in Figure 5. Ten pictures of potential HNVf patches from the field survey
showed rich elements of HNVf, such as linear forests, shrubs, grasslands, and small rivers
(Figure 5a), exhibiting significant differences compared with intensive farmland (Figure 5b).
Particularly near the coastline, semi-natural vegetation is the dominant landscape type,
whereas farmland is extremely scarce. As a reliable verification method, field surveys are
an effective way to overcome the uncertainty of real-life data from high-resolution remote
sensing images for identified HNVf maps.
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4. Discussion
4.1. Indicator Characteristics and Development Potential of HNVf

LC is not only a proxy indicator of farming systems intensity [24,40], but it is also the
most basic indicator for the identification of HNVf in comparison with other indicators. LC
is usually limited to low spatial resolution, which cannot improve the identification accu-
racy of HNVf. The NDVI can reflect hedgerows, grass slopes, and tree lines [41,42], further
demonstrating HNVf feature information. It can be used as a good supplementary indicator
to improve the identification accuracy of HNVf, such as fences and shrubs in patches, and
to compensate for the spatial resolution shortcomings of land cover classification. In fact,
vegetation data have been applied at local scales [43,44].

However, it is difficult to identify rare objects at intensive farmland edges and tran-
sition zones using LC and NDVI, whereas SH and SI are particularly influenced by rare
objects [23]. SH and SI are used as the basic and most common measures of diversity, largely
because of the simplicity and intuitiveness of the concept [45,46]. For example, auxiliary
indicators based on the Shannon Evenness Index (SEI) were considered to improve the
accuracy of the HNVf assessment analysis [20,47]. SH and SI accurately express a measure
of the variability (heterogeneity) in LC within a small neighborhood, which indicates that
SH and SI are very effective for the expression of potential HNVf characteristics at intensive
farmland edges and transition zones.

The dominant HNVf in the study area is type 2, based on the HNVf map. HNVf
type 2 can be seen as a transition between type 1 and type 3. Typically, HNVF type 1
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(i.e., semi-natural vegetation) is most easily described, while HNVf type 3 is most easily
ignored [48]. This is due to the lack of indicators corresponding to HNVf type 3. Some
habitat characteristics of rare animals (such as the crested ibis, golden monkey, and other
large marine animals) are difficult to obtain. HNVf type 2 superimposes the HNV features
of both type 1 and type 3 transition regions, exhibiting the uncertainty of the HNVf map.
For example, the southeastern corner of the study area is the “Shandong Yellow River
Delta National Nature Reserve”, which has a clear HNVf type 3 but is mixed with type 2
characteristics.

In this study, we developed a set of minimum common indicators for identifying
HNVf in plains areas. However, in order to accurately assess the development potential of
HNVf in other regions with different geographical environment conditions, the climate,
terrain, biological species, and soil of the region also need to be further considered. For
example, climatic conditions have a greater impact (through crop type, soil structure, and
crop growth cycle) on farmland from the aspects of precipitation, temperature, humidity,
and light. Climate changes such as increased temperature and precipitation affect the
growth of vegetation, thus affecting the soil hydrothermal conditions, organic matter
content, and formation and development [49]. Ouyang et al. (2017) also showed that, in
rice-growing areas, an increase in temperature promotes the expansion of paddy field areas
in horizontal and vertical directions [50]. In some scenarios, climatic conditions may be
extremely important indicators for the evaluation of the development potential of HNVf. It
is essential to consider the impact of other indicators in western China, and the topographic
relief and climatic conditions caused by land cover significantly affect the identification
accuracy of the HNVf map.

HNVf is a new type of sustainable ecological agriculture, which is reflected in two
aspects: ecological technology and policy management. On one hand, many studies have
developed ecological technologies such as microbial fertilizers and environmentally friendly
fertilizers to promote the development of sustainable agriculture by reducing the utilization
intensity of agricultural soil [51,52], which is consistent with the original intention of
HNVf [53]. On the other hand, the formulation of farmland protection policies needs to
evaluate the value of farmland from many perspectives, and HNVf can provide support for
the deep excavation of the natural value of farmland and the multi-dimensional evaluation
of farmland quality, as well as contributing a scientific basis and theoretical support for
the establishment of a sound farmland protection system [54]. In terms of sustainable
agricultural development in China, HNVf is of great significance for the optimization of
agricultural structure layout, improvement in the quality of agricultural development,
and the structural reform of agricultural supply [55]. Although China has established
a strict system for farmland protection, it is necessary to strengthen the formulation and
implementation of the laws related to sustainable agricultural development [56]. HNVf
also has an impact on policy changes, while policies affect the spatial distribution and time
changes in HNVf. Overall, sustainable ecological agriculture can provide scientific and
effective guidance for the identification and development of HNVf in terms of improvement
measures for low agricultural intensity and ecological cycle protection.

4.2. Effect of Spatiotemporal Evolution of Intensive Farmland on HNV

Figure 6 shows the gravity center migration of intensive farmland in the study area
from 2002 to 2020, and the migration distances in turn were 6.42 km, 5.33 km, 1.54 km,
2.33 km, 2.30 km, 2.53 km, 3.31 km, 3.57 km, and 2.04 km. The migration distance of
the gravity center of intensive farmland in the study area exhibited a trend of slowing
expansion, and the total migration distance from 2002 to 2020 was 7.65 km. The migration
direction of the gravity center of intensive farmland was from northeast to southwest.
This may be due to the decrease in the sediment deposition rate in the estuary. The
deposition rate of estuary sediment drastically declined from 2007 to 2018 [57]. For this
reason, the inland areas that can benefit from riverine flow upstream increased [58], and
the increased sediment and water input, as well as land reclamation projects, increased
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the water accessibility of inland areas [59]. Then, the migration direction of the gravity
center of intensive farmland was from the coastline to inland. In other words, the intensive
farmland was farther away from the coastline, indicating that the ecological protection of
the study area was strengthened.
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In addition, the characteristic description of four landscape indices from 2002 to
2020 are shown in Figure 7. The parallel trends of COH and SH were similar, exhibiting
a fluctuation change and a slow increase after 2010, and indicating that the species richness
and biodiversity in the study area improved (Figure 7a,c). Changes in the DIS and SI were
smoothed out, indicating that the patch dispersion and species evenness in the study area
were less influenced by urbanization and human activity after 2010 (Figure 7b,d). The
landscape index results indicated that the biodiversity and landscape heterogeneity in the
study area increased significantly after 2010. In addition, the response to the character-
istics of HNVf elements (semi-natural vegetation, linear forest, hedgerows, and rivers)
is very strong. Due to the implementation of environmental policies from 2006 to 2018,
a north–south direction (near the coastline) of wetland area development was increased in
the study area [60]; that is, the spatial distribution of HNV areas became more extensive,
and the proportion of semi-natural vegetation became more balanced.

In 2009, the State Council of the People’s Republic of China formally approved
an instructive document on the plan for developing the Yellow River Delta into an efficient
and ecological economic zone, with the ecological protection of the YRD becoming a national
strategy. In 2021, the Communist Party of China Central Committee and the State Council
jointly issued a document outlining the ecological protection and high-quality development
of the Yellow River Basin, which pointed out that the natural extension trend of the YRD
coastline should be restored; the protection of biological species resources in salt marshes,
tidal flats, and wetlands of estuary shallow seas should be strengthened; and the use of
unconventional water sources to supply bird habitats should be explored. Then, in 2022, the
Ministry of Ecology and Environment of the People’s Republic of China issued a document
outlining the 14th five-year ecological protection supervision plan, which also emphasized
that the YRD has a rich biodiversity. It is a migration transfer point and a habitat for rare
and endangered birds, making it an important area for the protection of wetland ecosystem
biodiversity. A series of ecological and environmental protection measures provide effective
guarantees for the restoration of species diversity in the study area. These policies have
a positive impact on the development of HNVf.
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4.3. Characterization of Soil Heavy Metals in the HNVf and Non-HNVf

Figure 8 shows the statistical results of the soil heavy metal content in the HNVf and
non-HNVf regions. The average contents of As, Cr, Cu, Ni, and Zn in the HNVf were
20.99 mg kg−1, 121.11 mg kg−1, 21.97 mg kg−1, 29.34 mg kg−1, and 41.68 mg kg−1, respec-
tively (Figure 8). Compared with the intensive farmland (non-HNVf), the soil heavy metal
content of the HNVf area was lower. The numerical distribution showed that the values of
As, Cu, and Zn in the non-HNVf region were concentrated in the high-value region and
were greatly affected by human activities. Furthermore, we counted the content of soil
heavy metal in the high semi-natural vegetation area (S1), the transition area from intensive
farmland to the river (S2 and S3), and the edge area of the farmland (S4) (Figure 9a). All
heavy metals (except Cr and Ni) in S1 were lower in comparison with other HNVf areas,
and minimum values of As, Cr, Cu, Ni, and Zn were in S3-HNVf (19.48 mg kg−1), S3-
HNVf (98.43 mg kg−1), S1-HNVf (17.72 mg kg−1), S3-HNVf (26.97 mg kg−1), and S1-HNVf
(33.04 mg kg−1), respectively. In the S4 area, the heavy metal content in the HNVf soil was
also low, and was very close to that of non-HNVf soil (Figure 9b).
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Figure 9. Soil sampling area in (a) high semi-natural vegetation area (S1), transition area from
intensive farmland to the river (S2 and S3), and farmland edge area (S4), and (b) statistics of soil
heavy metal content.

Studies on the soil heavy metal content in intensive farmland and other land use
types (woodlands, grasslands, etc.) are shown in Figure 10. The highest accumulation
levels of heavy metals in intensive farmland, grassland, and woodland soils were Zn
(2527.02 mg kg−1), Cu (1050.04 mg kg−1), and Cr (522.20 mg kg−1) (Figure 10). Compared
with woodland and grassland soils, intensive farmland soils had the highest accumula-
tion concentrations of As (942.34 mg kg−1), Cr (601.11 mg kg−1), Cu (1932.11 mg kg−1),
Ni (167.66 mg kg−1), and Zn (2527.02 mg kg−1), which is consistent with the result of
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this study, indicating that intensive farmland regions are strongly influenced by human
activities (agrochemical inputs and sewage irrigation) [61,62]. A large number of pesti-
cides and fertilizers are applied to farmland, which usually contain high concentrations
of Cu and Zn [63]. The topsoil of farmlands is affected by agricultural chemicals, and the
mean values of As, Cu, Cd, N, K, P, OM, and Zn were significantly higher than those of
grasslands [63–65]. In addition, the accumulation of Cd and Zn in farmland around the
smelter may also come from surface runoff and atmospheric deposition. The woodland
has a dense vegetation canopy to intercept the atmospheric deposition from the smelter,
so its soil heavy metal content was low [66]. The Cr content in the intensive farmland and
woodland soils and the As content in the grassland soils were similar (Figure 10). This may
be because As and Cr are derived from terrestrial (rock and soil) weathering, with greater
uncertainty in different land cover types [67].
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In addition, similar studies also found that the sources of soil heavy metals in the
YRD could be divided into natural sources and human sources [68–70]. Natural sources
including silicate- and oxide-based parent materials, through weathering, caused soil heavy
metal content changes [68]. That is, the sediment transport and deposition of the Yellow
River from the Loess Plateau implies that this is the main reason for the redistribution and
deposition of heavy metals in the YRD [69]. Human sources include the applications of
agrochemicals and fertilizers, the atmospheric deposition of coal combustion, the artificial
input of wastewater, industrial emissions, and oil exploitation [71,72]. The HNVf soil at
the edge of the farmland in this study was significantly influenced by human activities,
which was also the key reason for the heavy metal content being similar to that of intensive
farmland soil. In this study, the selected high-resolution indicators reflected the principle of
easy access and strong representativeness for the identification of HNVf type 2. Particularly,
these indicators were effective for the HNVf identification of farmland edges and transition
zones in the study area. The HNVf not only reflects the economic value of intensive
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farmland, but also exhibits natural value and ecological value. On the whole, the HNVf
provides a great deal of potential guidance for the development and protection of farmland
biodiversity, landscape heterogeneity, the bearing capacity of soil ecosystem, and carbon
sequestration in regional HNVf areas in China.

5. Conclusions

In this study, we developed high spatial resolution indicators (LC, NDVI, SH, and SI)
to identify and map potential HNVf in the YRD in China. The proportion of HNVf type
2 characteristics was over 40% in the study area, and real-life images and a field survey
based on potential HNVf patches also exhibited significant HNVf characteristics (i.e., linear
forests, rivers, and semi-natural vegetation, etc.). These areas were concentrated in the
north, the east, and the transition zones of intensive farmlands. In particular, the total
migration (7.65 km) of the gravity center of intensive farmland moved inland from the
coastline, and the landscape indices slowly increased from 2002 to 2020, exhibiting larger
patches of HNVf and higher proportions of semi-natural vegetation around the estuaries
in the north and the east of the study area. Furthermore, the intensive farmland was
significantly influenced by human activities (agrochemicals inputs and sewage irrigation)
in the study area, with the soil heavy metal content found to be higher than that in the
HNVf areas (i.e., the high semi-natural vegetation area, the transition area from intensive
farmland to the river, and the edge area of intensive farmland). In the future, soil heavy
metal can be regarded as a potential indicator for the accurate identification of different
types of HNVf, which supports the high-quality development of sustainable farmland and
provides powerful guidance for ecological protection policies.
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