Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development
Abstract
:1. Introduction
2. Background
3. Method: Digitainability Assessment
- Participants of the DSS are grouped based on their preference or considering the equal distribution of multidisciplinary experts with diverse experiences in each group;
- Each group brainstorms and identify the DI, measures, actors, target group, context, and targeted SDG indicator they want to consider for digitainability assessment;
- Each group performs their research based on the scope decided in previous steps;
- Each group starts evaluation and gathers relevant information, refining and populating the information in the DAF with group discussion;
- Collaborative participants discuss the individual findings with the group to analyze the impacts of DI in a particular context and its interlinked effects on all the indicators of SDGs beyond the targeted indicator;
- External experts’ help can be requested to develop coherent insights from the general analysis, and participants can learn about the essential knowledge points;
- Depending on the level of evidence and type of integration identified, the group starts populating the impacts on DAF;
- If participants identify any vital information that DAF does not allow incorporating, the comment section could be used to integrate this essential information with other inputs;
- After various group discussions and consciences, groups summarize the results, map the impact and develop the overall impact profile of DI on SDGs in the DAF;
- All groups discuss and learn from the digitainability assessment exercise and provide feedback to each other for corrective knowledge synthesis and actions.
3.1. Group 1: Smart Home Technologies (SHTs) as DI for Energy Efficiency
3.2. Group 2: Blockchain as a DI for Food Security
3.3. Group 3: AI as a DI for Land Use Cover and Changes (LUCC)
3.4. Group 4: Big Data as DI for International Law
4. Result/Outcome
4.1. Group 1: Smart Home Technologies (SHTs) as DI
4.2. Group 2: Blockchain as a DI
4.3. Group 3: AI as a DI
4.4. Group 4: Big Data as DI for International Law
5. Discussion
- The DAF helped to assess the impact of the SHT on the SDGs and provided a means of examining this association more scientifically and adopting a broader, multidimensional perspective of analysis. Hence, it provides the foundation for a more purposeful, wiser, and inclusive implementation of digital interventions for sustainability;
- International and interdisciplinary applied research from a broad spectrum of thematic expertise is needed to fill the knowledge gaps on ecological, economic, and social processes interacting with blockchain technology in the context of food security. We need to critically assess the usefulness of specific indicators which lack contextual country-level application potential or explore avenues for qualitative assessment which could complement the picture. Thus, a more holistic impact assessment using the SDGs as a compass or navigating framework is deemed an advisable starting point which, however, needs to be enhanced through qualitative means of SDG assessment. However, we believe that the SDGs and the associated focus on the indicators provide an interesting avenue for further exploration, as the indicators offer an impact-based assessment and contribution to the grand challenges of our time;
- There exists a burgeoning research landscape and huge opportunities but also several caveats, data and reporting gaps, lack of accountability, and limited literature on the contribution of AI to most SDG metrics that merit further research. In addition, contexts are highly relevant, and further research is needed in underrepresented countries, especially from the Global South.
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
AI | Artificial intelligence |
ANN | Artificial Neural Network |
DAF | Digitainability Assessment Framework |
DIs | Digital Interventions |
DL | Deep Learning |
DSS | Digitainable Spring School |
EO | Earth Observation |
ESG | Environmental, Social, and Governance |
GDP | Gross Domestic Product |
GNI | Gross National Income |
ICT | Information and Communications Technology |
IoP | Internet of People |
IoT | Internet of Things |
LUCC | Land Use and Cover Change |
ML | Machine learning |
ODA | Official Development Assistance |
PDS | Public Distribution System |
SDGs | Sustainable Development Goals |
SD | Sustainable Development |
SHT | Smart Home Technology |
ToC | Theory of Change |
UN | United Nations |
XAI | Explainable AI |
References
- Balogun, A.L.; Marks, D.; Sharma, R.; Shekhar, H.; Balmes, C.; Maheng, D.; Arshad, A.; Salehi, P. Assessing the potentials of digitalization as a tool for climate change adaptation and sustainable development in urban centres. Sustain. Cities Soc. 2020, 53, 101888. [Google Scholar]
- Appio, F.P.; Frattini, F.; Petruzzelli, A.M.; Neirotti, P. Digital transformation and innovation management: A synthesis of existing research and an agenda for future studies. J. Prod. Innov. Manag. 2021, 38, 4–20. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Gossen, M.; Rohde, F.; Santarius, T. A Marriage Story of Digitalisation and Sustainability? Okol. Wirtsch. Fachz. 2021, 36, 4–8. [Google Scholar]
- Korwatanasakul, U. Monitoring, reporting, and verification framework for nationalisation and regionalisation of indicators for the sustainable development goals. In Sustainable Development Goals and Pandemic Planning; Springer: Cham, Switzerland, 2022; pp. 567–599. [Google Scholar]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [PubMed]
- George, G.; Merrill, R.K.; Schillebeeckx, S.J. Digital sustainability and entrepreneurship: How digital innovations are helping tackle climate change and sustainable development. Entrep. Theory Pract. 2021, 45, 999–1027. [Google Scholar]
- Magistretti, S.; Dell’Era, C.; Petruzzelli, A.M. How intelligent is Watson? Enabling digital transformation through artificial intelligence. Bus. Horizons 2019, 62, 819–829. [Google Scholar]
- Chui, M.; Manyika, J.; Miremadi, M.; Henke, N.; Chung, R.; Nel, P.; Malhotra, S. Notes from the AI frontier: Insights from hundreds of use cases; McKinsey Global Institute: Washington, DC, USA, 2018; p. 28. [Google Scholar]
- Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. A definition, benchmark and database of AI for social good initiatives. Nat. Mach. Intell. 2021, 3, 111–115. [Google Scholar]
- I.T.U. AI Repository. 2022. Available online: https://www.itu.int/en/ITU-T/AI/Pages/ai-repository.aspx (accessed on 5 May 2022).
- Leal Filho, W.; Yang, P.; Eustachio, J.H.P.P.; Azul, A.M.; Gellers, J.C.; Gielczyk, A.; Dinis, M.A.P.; Kozlova, V. Deploying digitalisation and artificial intelligence in sustainable development research. Environ. Dev. Sustain. 2022, 22, 1–32. [Google Scholar] [CrossRef]
- Khakurel, J.; Penzenstadler, B.; Porras, J.; Knutas, A.; Zhang, W. The rise of artificial intelligence under the lens of sustainability. Technologies 2018, 6, 100. [Google Scholar]
- Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. The AI gambit: Leveraging artificial intelligence to combat climate change—Opportunities, challenges, and recommendations. AI Soc. 2021, 38, 283–307. [Google Scholar]
- Wu, C.J.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Aga, F.; Huang, J.; Bai, C.; et al. Sustainable ai: Environmental implications, challenges and opportunities. Proc. Mach. Learn. Syst. 2022, 4, 795–813. [Google Scholar]
- Van Wynsberghe, A. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Makridakis, S. The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures 2017, 90, 46–60. [Google Scholar] [CrossRef]
- Tomašev, N.; Cornebise, J.; Hutter, F.; Mohamed, S.; Picciariello, A.; Connelly, B.; Belgrave, D.; Ezer, D.; van der Haert, F.C.; Mugisha, F.; et al. AI for social good: Unlocking the opportunity for positive impact. Nat. Commun. 2020, 11, 2468. [Google Scholar]
- Coeckelbergh, M. AI for climate: Freedom, justice, and other ethical and political challenges. AI Ethics 2021, 1, 67–72. [Google Scholar]
- Gupta, S.; Motlagh, M.; Rhyner, J. The digitalization sustainability matrix: A participatory research tool for investigating digitainability. Sustainability 2020, 12, 9283. [Google Scholar] [CrossRef]
- Lichtenthaler, U. Digitainability: The combined effects of the megatrends digitalization and sustainability. J. Innov. Manag. 2021, 9, 64–80. [Google Scholar] [CrossRef]
- Gupta, S.; Rhyner, J. Mindful application of digitalization for sustainable development: The Digitainability Assessment Framework. Sustainability 2022, 14, 3114. [Google Scholar]
- Hellemans, I.; Porter, A.J.; Diriker, D. Harnessing digitalization for sustainable development: Understanding how interactions on sustainability-oriented digital platforms manage tensions and paradoxes. Bus. Strategy Environ. 2022, 31, 668–683. [Google Scholar]
- Del Río Castro, G.; González Fernández, M.C.; Uruburu Colsa, Á. Unleashing the convergence amid digitalization and sustainability towards pursuing the Sustainable Development Goals (SDGs): A holistic review. J. Clean. Prod. 2021, 280, 122204. [Google Scholar] [CrossRef]
- Wood, L. Building capacity for community-based research. In Community-Based Research with Vulnerable Populations: Ethical, Inclusive and Sustainable Frameworks for Knowledge Generation; Springer: Cham, Switzerland, 2022; pp. 57–84. [Google Scholar]
- Pérez-Martínez, J.; Hernandez-Gil, F.; San Miguel, G.; Ruiz, D.; Arredondo, M.T. Analysing associations between digitalization and the accomplishment of the Sustainable Development Goals. Sci. Total Environ. 2023, 857, 159700. [Google Scholar] [CrossRef] [PubMed]
- Naudé, W.; Vinuesa, R. Data deprivations, data gaps and digital divides: Lessons from the COVID-19 pandemic. Big Data Soc. 2021, 8, 20539517211025545. [Google Scholar] [CrossRef]
- Guandalini, I. Sustainability through digital transformation: A systematic literature review for research guidance. J. Bus. Res. 2022, 148, 456–471. [Google Scholar] [CrossRef]
- Wood, L. Youth leading youth: A PALAR approach to enabling action for sustainable social change. Educ. Action Res. 2021, 29, 603–618. [Google Scholar] [CrossRef]
- Zuber-Skerritt, O. Participatory action learning and action research (PALAR) for community engagement: A theoretical framework. Educ. Res. Soc. Chang. 2015, 4, 5–25. [Google Scholar]
- McGill, I.; Brockbank, A. Action Learning Handbook; Taylor & Francis: Abingdon, UK, 2003; p. 2. [Google Scholar]
- Bibri, S.E. Data-driven smart sustainable cities of the future: An evidence synthesis approach to a comprehensive state-of-the-art literature review. Sustain. Futur. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-driven environmental solutions for smart sustainable cities: Strategies and pathways for energy efficiency and pollution reduction. Euro-Mediterr. J. Environ. Integr. 2020, 5, 66. [Google Scholar] [CrossRef]
- Singh, J. Why Energy Efficiency Matters and How to Scale it Up; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Ponnusamy, V.K.; Kasinathan, P.; Madurai Elavarasan, R.; Ramanathan, V.; Anandan, R.K.; Subramaniam, U.; Ghosh, A.; Hossain, E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability 2021, 13, 13322. [Google Scholar] [CrossRef]
- Traunmueller, M.; Peter-Andres, J.; Kozlowska, A.; Buruzs, A.; Melnyk, O. AI-Supported Approaches for Sustainable Urban Development: Analysis of Case Studies. 2021. Available online: https://toolkit-digitalisierung.de/app/uploads/2021/03/GIZ-AIT-BMZ_2021_AI-supported-approaches-for-sustainable-urban-development.pdf (accessed on 29 April 2022).
- Tyczewska, A.; Woźniak, E.; Gracz, J.; Kuczyński, J.; Twardowski, T. Towards food security: Current state and future prospects of agrobiotechnology. Trends Biotechnol. 2018, 36, 1219–1229. [Google Scholar] [CrossRef]
- Roser, M.; Ritchie, H. Our World in Data. Hunger and Undernourishment. 2019. Available online: https://ourworldindata.org/hunger-and-undernourishment?utm_campaign=The%20Preface&utm_medium=email&utm_source=Revue%20newsletter (accessed on 5 May 2022).
- Pereira, M.; Oliveira, A.M. Poverty and food insecurity may increase as the threat of COVID-19 spreads. Public Health Nutr. 2020, 23, 3236–3240. [Google Scholar] [CrossRef]
- Di Caracalla, V.D.T. The Impacts on Global Food Security and Nutrition of the Military Conflict in Ukraine. 2022. Available online: https://www.fao.org/fileadmin/templates/cfs/Docs2122/Bur/220429/Impacts_of_the_military_conflict_in_Ukraine_on_global_FSN___HLPE_briefing_note___2022-04-14.pdf (accessed on 5 May 2022).
- Feng, H.; Wang, X.; Duan, Y.; Zhang, J.; Zhang, X. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. J. Clean. Prod. 2020, 260, 121031. [Google Scholar] [CrossRef]
- Nurgazina, J.; Pakdeetrakulwong, U.; Moser, T.; Reiner, G. Distributed ledger technology applications in food supply chains: A review of challenges and future research directions. Sustainability 2021, 13, 4206. [Google Scholar] [CrossRef]
- Patidar, A.; Sharma, M.; Agrawal, R.; Sangwan, K.S. A Smart Contracts and Tokenization Enabled Permissioned Blockchain Framework for the Food Supply Chain. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Nantes, France, 5–9 September 2021; Springer: Cham, Switzerland, 2021; pp. 228–235. [Google Scholar]
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Xu, B.; Agbele, T.; Jiang, R. Biometric blockchain: A better solution for the security and trust of food logistics. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Beijing, China, 1–3 August 2019; IOP Publishing: Beijing, China, 2019; Volume 646, p. 012009. [Google Scholar]
- Van Hilten, M.; Ongena, G.; Ravesteijn, P. Blockchain for organic food traceability: Case studies on drivers and challenges. Front. Blockchain 2020, 3, 567175. [Google Scholar] [CrossRef]
- Giuliani, G.; Chatenoux, B.; Benvenuti, A.; Lacroix, P.; Santoro, M.; Mazzetti, P. Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG15–exploring the potential of data cube. Big Earth Data 2020, 4, 3–22. [Google Scholar] [CrossRef]
- Sætra, H.S. AI in context and the sustainable development goals: Factoring in the unsustainability of the sociotechnical system. Sustainability 2021, 13, 1738. [Google Scholar] [CrossRef]
- Ishtiaque, A.; Masrur, A.; Rabby, Y.W.; Jerin, T.; Dewan, A. Remote sensing-based research for monitoring progress towards SDG 15 in Bangladesh: A review. Remote Sens. 2020, 12, 691. [Google Scholar] [CrossRef]
- O’Connor, B.; Moul, K.; Pollini, B.; de Lamo, X.; Simonson, W.; Allison, H.; Albrecht, F.; Guzinski, M.; Larsen, H.; McGlade, J.; et al. Earth Observation for SDG—Compendium of Earth Observation Contributions to the SDG Targets and Indicators; ESA: Harwell, UK, 2020. [Google Scholar]
- NASA. Landsat Science. 2022. Available online: https://landsat.gsfc.nasa.gov// (accessed on 7 May 2022).
- Boyd, D.; Crawford, K. Critical Questions for Big Data in Information, “Communication & Society”. Commun. Soc. 2012, 15, 662–679. [Google Scholar]
- Yifang, B.; Gong, P.; Gini, C. Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS J. Photogramm. Remote. Sens. 2015, 103, 1–6. [Google Scholar]
- Efremova, N.; West, D.; Zausaev, D. AI-based evaluation of the SDGs: The case of crop detection with earth observation data. arXiv 2019, arXiv:1907.02813. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, Y.; Hou, D.; Disse, M.; Brieden, A.; Zhang, H.; Yu, R. The study of artificial intelligence for predicting land use changes in an arid ecosystem. J. Geogr. Sci. 2022, 32, 717–734. [Google Scholar] [CrossRef]
- Isabelle, D.A.; Westerlund, M. A Review and Categorization of Artificial Intelligence-Based Opportunities in Wildlife, Ocean and Land Conservation. Sustainability 2022, 14, 1979. [Google Scholar] [CrossRef]
- Mayfield, H.J.; Smith, C.; Gallagher, M.; Hockings, M. Considerations for selecting a machine learning technique for predicting deforestation. Environ. Model. Softw. 2020, 131, 104741. [Google Scholar] [CrossRef]
- Leal, F.A.; Miguel, E.P.; Matricardi, E.A.T. Estimates of deforestation rates in rural properties in the legal amazon. Floresta Ambiente 2020, 27, e20170283. [Google Scholar] [CrossRef]
- Irvin, J.; Sheng, H.; Ramachandran, N.; Johnson-Yu, S.; Zhou, S.; Story, K.; Rustowicz, R.; Elsworth, C.; Austin, K.; Ng, A.Y. ForestNet: Classifying Drivers of Deforestation in Indonesia using Deep Learning on Satellite Imagery. arXiv 2020, arXiv:2011.05479. [Google Scholar]
- Conservation International. Trends Earth, a New Tool to Assess the Health of the Land That Supports Us. Available online: http://docs.trends.earth/en/latest/general/index.html (accessed on 7 December 2022).
- ESA. Using AI and Satellites to Combat Poaching of Endangered Species. 2021. Available online: https://business.esa.int/news/using-ai-and-satellites-to-combat-poaching-endangered-species (accessed on 7 May 2022).
- Kaiser, C. Catching Poachers with Machine Learning. 2020. Available online: https://towardsdatascience.com/catching-poachers-with-machine-learning-118eec41d5b9 (accessed on 8 May 2022).
- Kwok, R. AI empowers conservation biology. Nature 2019, 567, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Carter, S.; van Rees, C.; Hand, B.K.; Muhlfeld, C.; Luikart, G.; Kimball, J.S. Testing a generalizable machine learning workflow for aquatic invasive species on rainbow trout (Oncorhynchus mykiss) in Northwest Montana. Front. Big Data 2021, 4, 734990. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.; Seerup Hass, F.; Seam Akbar, M.; Holm Petersen, P.; Jokar Arsanjani, J. Employing machine learning for detection of invasive species using sentinel-2 and aviris data: The case of Kudzu in the United States. Sustainability 2020, 12, 3544. [Google Scholar] [CrossRef]
- Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.; Melero, F.J.; Molina, D.; Fernández, B.; et al. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Appl. Intell. 2021, 51, 6497–6527. [Google Scholar] [CrossRef]
- Kolevatova, A.; Riegler, M.A.; Cherubini, F.; Hu, X.; Hammer, H.L. Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence. Big Data Cogn. Comput. 2021, 5, 55. [Google Scholar] [CrossRef]
- Johns, F.; Grolman, L. Big Data and International Law. 2021. Available online: https://www.oxfordbibliographies.com/view/document/obo-9780199796953/obo-9780199796953-0176.xml (accessed on 30 May 2022).
- Kitchin, R. Big Data, new epistemologies and paradigm shifts. Big Data Soc. 2014, 1, 2053951714528481. [Google Scholar] [CrossRef]
- Barberis, J.A. El concepto de tratado internacional. Anu. Español Derecho Int. 1982, 6, 3–28. [Google Scholar] [CrossRef]
- United Nations. Goal 2: Zero Hunger. United Nations Sustainable Development. 2015. Available online: https://www.un.org/sustainabledevelopment/hunger/ (accessed on 30 May 2022).
- United Nations. Progress towards the Sustainable Development Goals—Report of the Secretary-General. 2021. Available online: https://documents-dds-ny.un.org/doc/UNDOC/GEN/N21/109/71/PDF/N2110971.pdf?OpenElement (accessed on 5 May 2022).
- Serrano, J.L.; Serrano, J.L. El Derecho internacional público y el desequilibrio de los Estados con economías subdesarrolladas frente a la globalización económica. Espac. Públicos 2008, 11, 312–337. [Google Scholar]
- Bachmann, N.; Tripathi, S.; Brunner, M.; Jodlbauer, H. The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals. Sustainability 2022, 14, 2497. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Martiskainen, M.; Del Rio, D.D.F. Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion. Energy Policy 2021, 153, 112196. [Google Scholar] [CrossRef]
- Nicholls, L.; Strengers, Y. Robotic vacuum cleaners save energy? Raising cleanliness conventions and energy demand in Australian households with smart home technologies. Energy Res. Soc. Sci. 2019, 50, 73–81. [Google Scholar] [CrossRef]
- Jensen, R.H.; Strengers, Y.; Raptis, D.; Nicholls, L.; Kjeldskov, J.; Skov, M.B. Exploring Hygge as a desirable design vision for the sustainable smart home. In Proceedings of the 2018 Designing Interactive Systems Conference, Hong Kong, China, 9–13 June 2018; pp. 355–360. [Google Scholar]
- Nelson, S.; Allwood, J.M. Technology or behaviour? Balanced disruption in the race to net zero emissions. Energy Res. Soc. Sci. 2021, 78, 102124. [Google Scholar] [CrossRef]
- Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the energy sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef]
- Herrero, S.T.; Nicholls, L.; Strengers, Y. Smart home technologies in everyday life: Do they address key energy challenges in households? Curr. Opin. Environ. Sustain. 2018, 31, 65–70. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 2021, 140, 110755. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart energy and smart energy systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Nazeer, O.; Javaid, N.; Rafique, A.A.; Kiani, S.; Javaid, Y.; Khurshid, Z. Home energy management using hybrid meta-heuristic optimization technique. In Proceedings of the International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Kitakyushu, Japan, 29 June–1 July 2018; Springer: Cham, Switzerland, 2018; pp. 599–609. [Google Scholar]
- European Commission DG Environment News Alert Service, Edited by SCU, The University of the West of England. Household Energy Efficiency Could Help Boost the Economy. 2016. Available online: https://ec.europa.eu/environment/integration/research/newsalert/pdf/household_energy_efficiency_could_help_boost_economy_49si7_en.pdf (accessed on 30 April 2022).
- Malone, L. The Economic Impact of Improved Energy Efficiency in Canada; Clean Energy Canada: Vancouver, BC, Canada, 2018. [Google Scholar]
- US EPA. Local Residential Energy Efficiency. 2021. Available online: https://www.epa.gov/statelocalenergy/local-residential-energy-efficiency (accessed on 30 April 2022).
- Ugarte, S.; van der Ree, B.; Voogt, M.; Eichhammer, W.; Ordoñez, J.A.; Reuter, M.; Schlomann, B.; Lloret Gallego, P.; Villafafila Robles, R. Energy Efficiency for Low-Income Households; European Parliment: Strasbourg, France, 2016. [Google Scholar]
- Figus, G.; Turner, K.; McGregor, P.; Katris, A. Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits. Energy Policy 2017, 111, 157–165. [Google Scholar] [CrossRef]
- Brockway, P.E.; Sorrell, S.; Semieniuk, G.; Heun, M.K.; Court, V. Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications. Renew. Sustain. Energy Rev. 2021, 141, 110781. [Google Scholar] [CrossRef]
- Nyborg, S.; Røpke, I. Energy impacts of the smart home: Conflicting visions. In Energy Efficiency First: The Foundation of a Low-Carbon Society; European Council for an Energy Efficient Economy: Stockholm, Sweeden, 2011; pp. 1849–1860. [Google Scholar]
- Sovacool, B.; Del Rio, D.F.; Griffiths, S. Policy mixes for more sustainable smart home technologies. Environ. Res. Lett. 2021, 16, 054073. [Google Scholar] [CrossRef]
- Del Rio, D.D.F.; Sovacool, B.K.; Bergman, N.; Makuch, K.E. Critically reviewing smart home technology applications and business models in Europe. Energy Policy 2020, 144, 111631. [Google Scholar] [CrossRef]
- Pilipczuk, O. Sustainable smart cities and energy management: The labor market perspective. Energies 2020, 13, 6084. [Google Scholar] [CrossRef]
- Ivezic, M. Smart Home/Smart Building Connectivity Options and Their Cybersecurity. 2020. Available online: https://cyberkinetic.com/miot-5g/smart-building-smart-home-connectivity-cybersecurity/ (accessed on 3 May 2022).
- Bedi, P.; Goyal, S.; Rajawat, A.S.; Shaw, R.N.; Ghosh, A. Application of AI/IoT for smart renewable energy management in smart cities. In AI and IoT for Smart City Applications; Springer: Cham, Switzerland, 2022; pp. 115–138. [Google Scholar]
- Ringel, M.; Laidi, R.; Djenouri, D. Multiple benefits through smart home energy management solutions—A simulation-based case study of a single-family-house in algeria and Germany. Energies 2019, 12, 1537. [Google Scholar] [CrossRef]
- Frilingou, N.; Bouris, D. Effects of Building Energy Efficiency Measures on Air Quality at the Neighborhood Level in Athens, Greece. Energies 2020, 13, 5689. [Google Scholar] [CrossRef]
- Falcone, P.M.; Imbert, E. Bringing a sharing economy approach into the food sector: The potential of food sharing for reducing food waste. In Food Waste Reduction and Valorisation; Springer: Cham, Switzerland, 2017; pp. 197–214. [Google Scholar]
- Pandey, V.; Pant, M.; Snasel, V. Blockchain technology in food supply chains: Review and bibliometric analysis. Technol. Soc. 2022, 69, 101954. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Q.; Liu, Y.; Zhu, L.; Yao, H.; Vasilakos, A.V. Designing blockchain-based applications a case study for imported product traceability. Future Gener. Comput. Syst. 2019, 92, 399–406. [Google Scholar] [CrossRef]
- Ekawati, R.; Arkeman, Y.; Titi, C.S. Proposed Design of White Sugar Industrial Supply Chain System based on Blockchain Technology. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 7. [Google Scholar] [CrossRef]
- Kochupillai, M.; Gallersdörfer, U.; Köninger, J.; Beck, R. Incentivizing research & innovation with agrobiodiversity conserved in situ: Possibilities and limitations of a blockchain-based solution. J. Clean. Prod. 2021, 309, 127155. [Google Scholar]
- Patel, N.; Shukla, A.; Tanwar, S.; Singh, D. KRanTi: Blockchain-based farmer’s credit scheme for agriculture-food supply chain. Trans. Emerg. Telecommun. Technol. 2021, 2021, e4286. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Z.; Dong, W. Overview of edge computing in the agricultural internet of things: Key technologies, applications, challenges. IEEE Access 2020, 8, 141748–141761. [Google Scholar] [CrossRef]
- Vivaldini, M. Blockchain in operations for food service distribution: Steps before implementation. Int. J. Logist. Manag. 2021, 32, 995–1029. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, S.; Zhang, Y.; Hu, B. Construct food safety traceability system for people’s health under the internet of things and Big Data. IEEE Access 2021, 9, 70571–70583. [Google Scholar] [CrossRef]
- Iftekhar, A.; Cui, X.; Yang, Y. Blockchain Technology for Trustworthy Operations in the Management of Strategic Grain Reserves. Foods 2021, 10, 2323. [Google Scholar] [CrossRef]
- Kaur, H. Modelling internet of things driven sustainable food security system. Benchmarking: Int. J. 2019, 28, 1740–1760. [Google Scholar] [CrossRef]
- Rao, M.S.; Chakraborty, G.; Murthy, K.S. Market drivers and discovering technologies in meat species identification. Food Anal. Methods 2019, 12, 2416–2429. [Google Scholar] [CrossRef]
- Scuderi, A.; Foti, V.; Timpanaro, G. The supply chain value of pod and pgi food products through the application of blockchain. Calitatea 2019, 20, 580–587. [Google Scholar]
- Kakkar, A. A Blockchain Technology Solution to Enhance Operational Efficiency of Rice Supply Chain for Food Corporation of India. In Proceedings of the International Conference on Sustainable Communication Networks and Application, Online, 30–31 July 2019; Springer: Cham, Switzerlad, 2019; pp. 24–31. [Google Scholar]
- Liu, Y.; Ma, D.; Hu, J.; Zhang, Z. Sales mode selection of fresh food supply chain based on blockchain technology under different channel competition. Comput. Ind. Eng. 2021, 162, 107730. [Google Scholar] [CrossRef]
- Dong, S.; Yang, L.; Shao, X.; Zhong, Y.; Li, Y.; Qiao, P. How can channel information strategy promote sales by combining ICT and blockchain? Evidence from the agricultural sector. J. Clean. Prod. 2021, 299, 126857. [Google Scholar] [CrossRef]
- Behnke, K.; Janssen, M. Boundary conditions for traceability in food supply chains using blockchain technology. Int. J. Inf. Manag. 2020, 52, 101969. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital livestock farming. Sens.-Bio-Sens. Res. 2021, 32, 100408. [Google Scholar] [CrossRef]
- Lin, Y.P.; Mukhtar, H.; Huang, K.T.; Petway, J.R.; Lin, C.M.; Chou, C.F.; Liao, S.W. Real-time identification of irrigation water pollution sources and pathways with a wireless sensor network and blockchain framework. Sensors 2020, 20, 3634. [Google Scholar] [CrossRef]
- Arsyad, A.A.; Dadkhah, S.; Köppen, M. Two-factor blockchain for traceability cacao supply chain. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems, Erode, India, 30–31 July 2019; Springer: Cham, Switzerland, 2018; pp. 332–339. [Google Scholar]
- Duan, J.; Zhang, C.; Gong, Y.; Brown, S.; Li, Z. A content-analysis based literature review in blockchain adoption within food supply chain. Int. J. Environ. Res. Public Health 2020, 17, 1784. [Google Scholar] [CrossRef]
- Luzzani, G.; Grandis, E.; Frey, M.; Capri, E. Blockchain Technology in Wine Chain for Collecting and Addressing Sustainable Performance: An Exploratory Study. Sustainability 2021, 13, 12898. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Z.; Lin, F.; Zhuang, P. Effective management for blockchain-based agri-food supply chains using deep reinforcement learning. IEEE Access 2021, 9, 36008–36018. [Google Scholar] [CrossRef]
- Fan, Z.P.; Wu, X.Y.; Cao, B.B. Considering the traceability awareness of consumers: Should the supply chain adopt the blockchain technology? Ann. Oper. Res. 2020, 309, 837–860. [Google Scholar] [CrossRef]
- Guo, J.; Cengiz, K.; Tomar, R. An IOT and Blockchain Approach for Food Traceability System in Agriculture. Scalable Comput. Pract. Exp. 2021, 22, 127–137. [Google Scholar] [CrossRef]
- Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.; Sharif, S.; Yada, R.Y. Transparency in food supply chains: A review of enabling technology solutions. Trends Food Sci. Technol. 2019, 91, 240–247. [Google Scholar] [CrossRef]
- Katsikouli, P.; Wilde, A.S.; Dragoni, N.; Høgh-Jensen, H. On the benefits and challenges of blockchains for managing food supply chains. J. Sci. Food Agric. 2021, 101, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, M.; Schmidhuber, J. Optimising traceability in trade for live animals and animal products with digital technologies. Rev. Sci. Tech 2020, 39, 235–244. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, D.; Gupta, S.; Kumar, D.; Kumar, P. Online food court payment system using blockchain technolgy. In Proceedings of the 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), IEEE, Gorakhpur, India, 2–4 November 2018; pp. 1–7. [Google Scholar]
- Alshakhs, A.; Ramirez, R.; Khuntia, J. Blockchain for Supply Chain Management: Practice-Based View. In Proceedings of the AMCIS 2020, Virtual Conference, 15–17 August 2020. [Google Scholar]
- Li, J.; Maiti, A.; Springer, M.; Gray, T. Blockchain for supply chain quality management: Challenges and opportunities in context of open manufacturing and industrial internet of things. Int. J. Comput. Integr. Manuf. 2020, 33, 1321–1355. [Google Scholar] [CrossRef]
- Markovic, M.; Edwards, P.; Jacobs, N. Recording provenance of food delivery using IoT, semantics and business blockchain networks. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), IEEE, Granada, Spain, 22–25 October 2019; pp. 116–118. [Google Scholar]
- Rejeb, A.; Keogh, J.G.; Zailani, S.; Treiblmaier, H.; Rejeb, K. Blockchain technology in the food industry: A review of potentials, challenges and future research directions. Logistics 2020, 4, 27. [Google Scholar] [CrossRef]
- Friedman, N.; Ormiston, J. Blockchain as a sustainability-oriented innovation?: Opportunities for and resistance to Blockchain technology as a driver of sustainability in global food supply chains. Technol. Forecast. Soc. Chang. 2022, 175, 121403. [Google Scholar] [CrossRef]
- Patil, A.S.; Tama, B.A.; Park, Y.; Rhee, K.H. A framework for blockchain based secure smart green house farming. In Advances in Computer Science and Ubiquitous Computing, Proceedings of the CSA 2017, Taichung, Taiwan, 18–20 December 2017; Springer: Cham, Switzerland, 2017; pp. 1162–1167. [Google Scholar]
- Benyam, A.A.; Soma, T.; Fraser, E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. J. Clean. Prod. 2021, 323, 129099. [Google Scholar] [CrossRef]
- Kayikci, Y.; Usar, D.D.; Aylak, B.L. Using blockchain technology to drive operational excellence in perishable food supply chains during outbreaks. Int. J. Logist. Manag. 2021, 33, 836–876. [Google Scholar] [CrossRef]
- Thakur, S.; Breslin, J.G. Scalable and secure product serialization for multi-party perishable good supply chains using blockchain. Internet Things 2020, 11, 100253. [Google Scholar] [CrossRef]
- Valoppi, F.; Agustin, M.; Abik, F.; Morais de Carvalho, D.; Sithole, J.; Bhattarai, M.; Varis, J.J.; Arzami, A.; Pulkkinen, E.E.; Mikkonen, K.S.; et al. Insight on current advances in food science and technology for feeding the world population. Front. Sustain. Food Syst. 2021, 5, 626227. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Abdollahi, A.; Zailani, S.; Iranmanesh, M.; Ghobakhloo, M. Digitalization in food supply chains: A bibliometric review and key-route main path analysis. Sustainability 2021, 14, 83. [Google Scholar] [CrossRef]
- Mangla, S.K.; Kazancoglu, Y.; Ekinci, E.; Liu, M.; Özbiltekin, M.; Sezer, M.D. Using system dynamics to analyze the societal impacts of blockchain technology in milk supply chainsrefer. Transp. Res. Part E: Logist. Transp. Rev. 2021, 149, 102289. [Google Scholar] [CrossRef]
- Cruz, E.F.; da Cruz, A.M.R. Using Blockchain to Implement Traceability on Fishery Value Chain. In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), Online, 7–9 July 2020; pp. 501–508. [Google Scholar]
- Mondragon, A.E.C.; Mondragon, C.E.C.; Coronado, E.S. Feasibility of Internet of Things and Agnostic Blockchain Technology Solutions: A Case in the Fisheries Supply Chain. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), IEEE, Bangkok, Thailand, 16–21 April 2020; pp. 504–508. [Google Scholar]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N. Determining the provenance and authenticity of seafood: A review of current methodologies. Trends Food Sci. Technol. 2019, 91, 294–304. [Google Scholar] [CrossRef]
- Sengupta, T.; Narayanamurthy, G.; Moser, R.; Pereira, V.; Bhattacharjee, D. Disruptive technologies for achieving supply chain resilience in COVID-19 era: An implementation case study of satellite imagery and blockchain technologies in fish supply chain. Inf. Syst. Front. 2021, 24, 1107–1123. [Google Scholar] [CrossRef] [PubMed]
- Lupu, N.; Michelitch, K. Advances in survey methods for the developing world. Annu. Rev. Political Sci. 2018, 21, 195–214. [Google Scholar] [CrossRef]
- Caiserman, A.; Dumas, D.; Bennafla, K.; Faour, G.; Amiraslani, F. Application of remotely sensed imagery and socioeconomic surveys to map crop choices in the Bekaa Valley (Lebanon). Agriculture 2019, 9, 57. [Google Scholar] [CrossRef]
- Tabbussum, R.; Dar, A.Q. Performance evaluation of artificial intelligence paradigms—Artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Environ. Sci. Pollut. Res. 2021, 28, 25265–25282. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M.; Fernández, J.; Garcıa-Dıez, M.; Goergen, K.; Güttler, I.; et al. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef]
- Singh, R.; Srivastava, S.; Mishra, R. AI and IoT based monitoring system for increasing the yield in crop production. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), IEEE, Gorakhpur, India, 14–15 February 2020; pp. 301–305. [Google Scholar]
- Eli-Chukwu, N.; Ogwugwam, E. Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands – Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of Artificial Intelligence in Transport: An Overview. Sustainability 2019, 11, 189. [Google Scholar] [CrossRef]
- Abduljabbar, R.L.; Liyanage, S.; Dia, H. The role of micro-mobility in shaping sustainable cities: A systematic literature reviewt. Transp. Res. Part D: Transp. Environ. 2021, 92, 102734. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Díaz-Ramírez, A.; Miranda-Vega, J.E.; Trujillo, L.; Mejía-Alvarez, P. A Systematic Review of Computer Science Solutions for Addressing Violence Against Women and Children. IEEE Access 2021, 9, 114622–114639. [Google Scholar] [CrossRef]
- Nuseir, M.T.; Al Kurdi, B.H.; Alshurideh, M.T.; Alzoubi, H.M. Gender discrimination at workplace: Do Artificial Intelligence (AI) and Machine Learning (ML) have opinions about it. In Proceedings of the the International Conference on Artificial Intelligence and Computer Vision, Settat, Morocco, 28–30 June 2021; Springer: Cham, Switzerland, 2021; pp. 301–316. [Google Scholar] [CrossRef]
- Nesti, G. Mainstreaming gender equality in smart cities: Theoretical, methodological and empirical challenges. Inf. Polity 2019, 24, 289–304. [Google Scholar] [CrossRef]
- Ondili, M. Artificial Intelligence: Labour Gender Gap in Africa; Strathmore University: Nairobi, Kenya, 2021. [Google Scholar]
- Forum, W.E. Harnessing Artificial Intelligence to Accelerate the Energy Transition. In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021), Settat, Morocco, 28–30 June 2021. [Google Scholar]
- Mosavi, A.; Salimi, M.; Faizollahzadeh Ardabili, S.; Rabczuk, T.; Shamshirband, S.; Varkonyi-Koczy, A.R. State of the art of machine learning models in energy systems, a systematic review. Energies 2019, 12, 1301. [Google Scholar] [CrossRef]
- Perera, K.S.; Aung, Z.; Woon, W.L. Machine learning techniques for supporting renewable energy generation and integration: A survey. In Proceedings of the International Workshop on Data Analytics for Renewable Energy Integration, Nancy, France, 19 September 2014; Springer: Cham, Switzerland, 2014; pp. 81–96. [Google Scholar] [CrossRef]
- Ramchurn, S.D.; Vytelingum, P.; Rogers, A.; Jennings, N.R. Putting the’smarts’ into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 2012, 55, 86–97. [Google Scholar] [CrossRef]
- Alonso, S.; Montes, R.; Molina, D.; Palomares, I.; Martínez-Cámara, E.; Chiachio, M.; Chiachio, J.; Melero, F.J.; García-Moral, P.; Fernández, B.; et al. Ordering artificial intelligence based recommendations to tackle the sdgs with a decision-making model based on surveys. Sustainability 2021, 13, 6038. [Google Scholar] [CrossRef]
- Clutton-Brock, P.; Rolnick, D.; Donti, P.L.; Kaack, L. Climate Change and AI. Recommendations for Government Action; Technical Report; GPAI: Ath, Belgium; Climate Change AI: Quebec City, QC, Canada, 2021. [Google Scholar]
- Pigola, A.; da Costa, P.R.; Carvalho, L.C.; Silva, L.F.d.; Kniess, C.T.; Maccari, E.A. Artificial Intelligence-Driven Digital Technologies to the Implementation of the Sustainable Development Goals: A Perspective from Brazil and Portugal. Sustainability 2021, 13, 13669. [Google Scholar] [CrossRef]
- Herweijer, C.; Waughray, D. Fourth Industrial Revolution for the Earth Harnessing Artificial Intelligence for the Earth. A report of PricewaterhouseCoopers (PwC). 2018. Available online: https://www.pwc.com/gx/en/sustainability/assets/ai-for-the-earth-jan-2018.pdf (accessed on 5 May 2022).
- Mayer, K.; Rausch, B.; Arlt, M.L.; Gust, G.; Wang, Z.; Neumann, D.; Rajagopal, R. 3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D. Appl. Energy 2022, 310, 118469. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling climate change with machine learning. ACM Comput. Surv. (CSUR) 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Senocak, A.A.; Goren, H.G. Forecasting the biomass-based energy potential using artificial intelligence and geographic information systems: A case study. Eng. Sci. Technol. Int. J. 2022, 26, 100992. [Google Scholar] [CrossRef]
- Taylor, W.O.; Watson, P.L.; Cerrai, D.; Anagnostou, E.N. Dynamic modeling of the effects of vegetation management on weather-related power outages. Electr. Power Syst. Res. 2022, 207, 107840. [Google Scholar] [CrossRef]
- Ahmad, I.; Sana, A.; Kano, M.; Cheema, I.I.; Menezes, B.C.; Shahzad, J.; Ullah, Z.; Khan, M.; Habib, A. Machine learning applications in biofuels’ life cycle: Soil, feedstock, production, consumption, and emissions. Energies 2021, 14, 5072. [Google Scholar] [CrossRef]
- Kwak, Y.; Deal, B.; Heavisides, T. A large scale multi criteria suitability analysis for identifying solar development potential: A decision support approach for the state of Illinois, USA. Renew. Energy 2021, 177, 554–567. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Abdallah, M.; Shanableh, A.; Alani, S.; Obaid, L.; Gibril, M.B.A. Waste to energy spatial suitability analysis using hybrid multi-criteria machine learning approach. Environ. Sci. Pollut. Res. 2022, 29, 2613–2628. [Google Scholar] [CrossRef]
- IEA. Case Study: Artificial Intelligence for Building Energy Management Systems. Available online: https://www.iea.org/articles/case-study-artificial-intelligence-for-building-energy-management-systems (accessed on 5 May 2022).
- Lee, M.; He, G. An empirical analysis of applications of artificial intelligence algorithms in wind power technology innovation during 1980–2017. J. Clean. Prod. 2021, 297, 126536. [Google Scholar] [CrossRef]
- Ermoliev, Y.; Zagorodny, A.G.; Bogdanov, V.L.; Ermolieva, T.; Havlik, P.; Rovenskaya, E.; Komendantova, N.; Obersteiner, M. Linking Distributed Optimization Models for Food, Water, and Energy Security Nexus Management. Sustainability 2022, 14, 1255. [Google Scholar] [CrossRef]
- Peponi, A.; Morgado, P.; Kumble, P. Life cycle thinking and machine learning for urban metabolism assessment and prediction. Sustain. Cities Soc. 2022, 80, 103754. [Google Scholar] [CrossRef]
- Sorrell, S. Jevons’ Paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy 2009, 37, 1456–1469. [Google Scholar] [CrossRef]
- Coulombel, N.; Boutueil, V.; Liu, L.; Viguie, V.; Yin, B. Substantial rebound effects in urban ridesharing: Simulating travel decisions in Paris, France. Transp. Res. Part D: Transp. Environ. 2019, 71, 110–126. [Google Scholar] [CrossRef]
- Dobbe, R.; Whittaker, M. AI and Climate Change: How They’re Connected, and What We Can Do About it. AI Now Institute, Medium, 17 October 2019. Available online: https://medium.com/@AINowInstitute/ai-and-climate-change-how-theyre-connected-and-what-we-can-do-about-it-6aa8d0f5b32c (accessed on 4 May 2022).
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for deep learning in NLP. arXiv 2019, arXiv:1906.02243. [Google Scholar]
- Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the systematic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res. 2020, 21, 1–43. [Google Scholar]
- Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. arXiv 2019, arXiv:1907.10597. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. J. Clean. Prod. 2018, 177, 448–463. [Google Scholar]
- Sætra, H.S. A shallow defence of a technocracy of artificial intelligence: Examining the political harms of algorithmic governance in the domain of government. Technol. Soc. 2020, 62, 101283. [Google Scholar] [CrossRef] [PubMed]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef]
- Global Partnership on AI Report In collaboration with Climate Change AI and the Centre for AI & Climate. Climate Change and AI: Recommendations for Government Action. 2021. Available online: https://gpai.ai/projects/responsible-ai/environment/climate-change-and-ai.pdf (accessed on 30 April 2022).
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine learning and deep learning in smart manufacturing: The smart grid paradigm. Comput. Sci. Rev. 2021, 40, 100341. [Google Scholar] [CrossRef]
- Gupta, S.; Degbelo, A. An Empirical Analysis of AI Contributions to Sustainable Cities (SDG11). arXiv 2022, arXiv:2202.02879. [Google Scholar]
- Rasol, M.; Pais, J.C.; Pérez-Gracia, V.; Solla, M.; Fernandes, F.M.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR monitoring for road transport infrastructure: A systematic review and machine learning insights. Constr. Build. Mater. 2022, 324, 126686. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, W.; Ding, C.; Xia, M. Multi-Resolution Transformer Network for Building and Road Segmentation of Remote Sensing Image. ISPRS Int. J. Geo-Inf. 2022, 11, 165. [Google Scholar] [CrossRef]
- Wu, X.; Yang, D.; Wu, R.; Gu, J.; Wen, Y.; Zhang, S.; Wu, R.; Wang, R.; Xu, H.; Zhang, K.M.; et al. High-resolution mapping of regional traffic emissions using land-use machine learning models. Atmos. Chem. Phys. 2022, 22, 1939–1950. [Google Scholar] [CrossRef]
- Zou, L.; Shu, S.; Lin, X.; Lin, K.; Zhu, J.; Li, L. Passenger Flow Prediction Using Smart Card Data from Connected Bus System Based on Interpretable XGBoost. Wirel. Commun. Mob. Comput. 2022, 2022, 5872225. [Google Scholar] [CrossRef]
- Zhang, S.; Mehta, N.; Singh, P.V.; Srinivasan, K. Frontiers: Can an artificial intelligence algorithm mitigate racial economic inequality? an analysis in the context of airbnb. Mark. Sci. 2021, 40, 813–820. [Google Scholar] [CrossRef]
- Abbasian, H.; Solgi, E.; Hosseini, S.M.; Kia, S.H. Modeling terrestrial net ecosystem exchange using machine learning techniques based on flux tower measurements. Ecol. Model. 2022, 466, 109901. [Google Scholar] [CrossRef]
- Zhu, X.H.; Lu, K.F.; Peng, Z.R.; He, H.D.; Xu, S.Q. Spatiotemporal variations of carbon dioxide (CO2) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources. Sustain. Cities Soc. 2022, 78, 103646. [Google Scholar] [CrossRef]
- Berral, J.L.; Goiri, Í.; Nou, R.; Julià, F.; Guitart, J.; Gavaldà, R.; Torres, J. Towards energy-aware scheduling in data centers using machine learning. In Proceedings of the 1st International Conference on energy-Efficient Computing and Networking, Passau, Germany, 13–15 April 2010; pp. 215–224. [Google Scholar]
- Zhang, X.; Hug, G.; Kolter, J.Z.; Harjunkoski, I. Model predictive control of industrial loads and energy storage for demand response. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), IEEE, Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Prioux, N.; Ouaret, R.; Hetreux, G.; Belaud, J.P. Environmental assessment coupled with machine learning for circular economy. Clean Technol. Environ. Policy 2022, 25, 689–702. [Google Scholar] [CrossRef]
- Naik, D.; Sireesha, P.; De, T. Machine learning-based green and energy efficient traffic grooming architecture for next generation cellular networks. In Evolutionary Computing and Mobile Sustainable Networks; Springer: Cham, Switzerland, 2021; pp. 261–269. [Google Scholar]
- Petric, M.; Neskovic, A.; Neskovic, N.; Borenovic, M. Indoor localization using multi-operator public land mobile networks and support vector machine learning algorithms. Wirel. Pers. Commun. 2019, 104, 1573–1597. [Google Scholar] [CrossRef]
- Goyal, A.; Aneja, R. Artificial intelligence and income inequality: Do technological changes and worker’s position matter? J. Public Aff. 2020, 20, e2326. [Google Scholar] [CrossRef]
- Luengo-Oroz, M.; Bullock, J.; Pham, K.H.; Lam, C.S.N.; Luccioni, A. From artificial intelligence bias to inequality in the time of COVID-19. IEEE Technol. Soc. Mag. 2021, 40, 71–79. [Google Scholar] [CrossRef]
- Joyce, K.; Smith-Doerr, L.; Alegria, S.; Bell, S.; Cruz, T.; Hoffman, S.G.; Noble, S.U.; Shestakofsky, B. Toward a sociology of artificial intelligence: A call for research on inequalities and structural change. Socius 2021, 7, 2378023121999581. [Google Scholar] [CrossRef]
- Lutz, C. Digital inequalities in the age of artificial intelligence and big data. Hum. Behav. Emerg. Technol. 2019, 1, 141–148. [Google Scholar] [CrossRef]
- Zajko, M. Artificial intelligence, algorithms, and social inequality: Sociological contributions to contemporary debates. Sociol. Compass 2022, 16, e12962. [Google Scholar] [CrossRef]
- Sampath, P.G. Governing Artificial Intelligence in an Age of Inequality. Glob. Policy 2021, 12, 21–31. [Google Scholar] [CrossRef]
- Truby, J. Governing artificial intelligence to benefit the UN sustainable development goals. Sustain. Dev. 2020, 28, 946–959. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Sarkodie, S.A. Causal effect of environmental factors, economic indicators and domestic material consumption using frequency domain causality test. Sci. Total Environ. 2020, 736, 139602. [Google Scholar] [CrossRef]
- Buhl, J.; Liedtke, C.; Teubler, J.; Schuster, S.; Bienge, K. A material footprint model for green information systems–using statistical learning to identify the predictors of natural resource use. Cogent Eng. 2019, 6, 1616655. [Google Scholar] [CrossRef]
- Patil, A.; Tatke, A.; Vachhani, N.; Patil, M.; Gulhane, P. Garbage Classifying Application Using Deep Learning Techniques. In Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), IEEE, Bangalore, India, 27–28 August 2021; pp. 122–130. [Google Scholar]
- Sharifi, M.; Hadidi, M.; Vessali, E.; Mosstafakhani, P.; Taheri, K.; Shahoie, S.; Khodamoradpour, M. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran. Waste Manag. 2009, 29, 2740–2758. [Google Scholar] [CrossRef]
- Van Fan, Y.; Jiang, P.; Tan, R.R.; Aviso, K.B.; You, F.; Zhao, X.; Lee, C.T.; Klemeš, J.J. Forecasting plastic waste generation and interventions for environmental hazard mitigation. J. Hazard. Mater. 2022, 424, 127330. [Google Scholar] [CrossRef]
- Verge, A.; Rowe, R.K. A framework for a decision support system for municipal solid waste landfill design. Waste Manag. Res. 2013, 31, 1217–1227. [Google Scholar] [CrossRef]
- Wu, P.Y.; Mjörnell, K.; Mangold, M.; Sandels, C.; Johansson, T. A data-driven approach to assess the risk of encountering hazardous materials in the building stock based on environmental inventories. Sustainability 2021, 13, 7836. [Google Scholar] [CrossRef]
- Xiong, N.; Yang, X.; Zhou, F.; Wang, J.; Yue, D. Spatial distribution and influencing factors of litter in urban areas based on machine learning–A case study of Beijing. Waste Manag. 2022, 142, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Anggraeni, M.C.; Silaban, C.A.; Anggreainy, M.S.; Cahyadi, E. Role of Artificial Intelligence in the Management of Food Waste. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Data Sciences (AiDAS), IEEE, Ipoh, Malaysia, 8–9 September 2021; pp. 1–6. [Google Scholar]
- Amentae, T.K.; Gebresenbet, G. Digitalization and future agro-food supply chain management: A literature-based implications. Sustainability 2021, 13, 12181. [Google Scholar] [CrossRef]
- Restrepo, D.S.; Pérez, L.E.; López, D.M.; Vargas-Cañas, R.; Osorio-Valencia, J.S. Multi-Dimensional Dataset of Open Data and Satellite Images for Characterization of Food Security and Nutrition. Front. Nutr. 2021, 8, 796082. [Google Scholar] [CrossRef]
- D’Amato, V.; D’Ecclesia, R.; Levantesi, S. Fundamental ratios as predictors of ESG scores: A machine learning approach. Decis. Econ. Financ. 2021, 44, 1087–1110. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Farinha, F.; Oliveira, M.J.; Silva, E.M.; Lança, R. Comparison of artificial intelligence algorithms to estimate sustainability indicators. Sustain. Cities Soc. 2020, 63, 102430. Available online: https://www.sciencedirect.com/science/article/abs/pii/S221067072030651X (accessed on 30 April 2022). [CrossRef]
- Bora, I.; Duan, H.K.; Vasarhelyi, M.A.; Zhang, C.; Dai, J. The Transformation of Government Accountability and Reporting. J. Emerg. Technol. Account. 2021, 18, 21. [Google Scholar] [CrossRef]
- Sætra, H.S. A Framework for Evaluating and Disclosing the ESG Related Impacts of AI with the SDGs. Sustainability 2021, 13, 8503. [Google Scholar] [CrossRef]
- Arreeras, T.; Arimura, M.; Asada, T.; Arreeras, S. Association rule mining tourist-attractive destinations for the sustainable development of a large tourism area in Hokkaido using Wi-Fi tracking data. Sustainability 2019, 11, 3967. [Google Scholar] [CrossRef]
- Joshi, S.; Mittal, S.; Holloway, P.; Shukla, P.R.; Ó Gallachóir, B.; Glynn, J. High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation. Nat. Commun. 2021, 12, 5738. [Google Scholar] [CrossRef]
- Okuda, A.; Vakataki‘Ofa, S. Artificial intelligence and broadband development through the Asia-Pacific Information Superhighway. J. Infrastruct. Policy Dev. 2018, 2, 319–342. [Google Scholar] [CrossRef]
- Jain, S.K.; Jain, S. Artificial intelligence applied to multi-and broadband antenna design. Artif. Intell. Signal Process. Wirel. Commun. 2022, 11, 69. [Google Scholar]
- ESCAP, U. Artificial Intelligence and Broadband Divide: State of ICT Connectivity in Asia and the Pacific 2017 Report. 2017. Available online: https://www.unescap.org/resources/artificial-intelligence-and-broadband-divide-state-ict-connectivity-asia-and-pacific-2017 (accessed on 5 May 2022).
- Mehmood, H.; Liao, D.; Mahadeo, K. A Review of Artificial Intelligence Applications to Achieve Water-related Sustainable Development Goals. In Proceedings of the 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G), Geneva, Switzerland, 21–25 September 2020; pp. 135–141. [Google Scholar] [CrossRef]
- Merodio Gómez, P.; Juarez Carrillo, O.J.; Kuffer, M.; Thomson, D.R.; Olarte Quiroz, J.L.; Villaseñor García, E.; Vanhuysse, S.; Abascal, Á.; Oluoch, I.; Nagenborg, M.; et al. Earth observations and statistics: Unlocking sociodemographic knowledge through the power of satellite images. Sustainability 2021, 13, 12640. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
- Goralski, M.A.; Tan, T.K. Artificial intelligence and sustainable development. Int. J. Manag. Educ. 2020, 18, 100330. [Google Scholar] [CrossRef]
- Müller, V.C. Risks of Artificial Intelligence, 1st ed.; Prentice Hall: Caracas, Venezuela; CRC Press: Caracas, Venezuela, 2016. [Google Scholar]
- How, M.L.; Cheah, S.M.; Chan, Y.J.; Khor, A.; Say, E. Artificial Intelligence-Enhanced Decision Support for Informing Global Sustainable Development: A Human-Centric AI-Thinking Approach. Information 2020, 11, 39. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti, M. AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef]
- Dignum, V. Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Lannelongue, L.; Grealey, J.; Inouye, M. Green Algorithms: Quantifying the Carbon Footprint of Computation. Adv. Sci. 2021, 8, 2100707. [Google Scholar] [CrossRef]
- Visvizi, A. Computers and human behavior in the smart city: Issues, topics, and new research directions. Comput. Hum. Behav. 2022, 140, 107596. [Google Scholar] [CrossRef]
- Walsh, P.P.; Murphy, E.; Horan, D. The role of science, technology and innovation in the UN 2030 agenda. Technol. Forecast. Soc. Chang. 2020, 154, 119957. [Google Scholar] [CrossRef]
- Linares, A. Derecho Internacional Público, 2nd ed.; Anauco: Caracas, Venezuela, 1992; Volume 1. [Google Scholar]
- Pulido-Ortiz, F.E. Elementos relevantes para el análisis de las sentencias de la Corte Constitucional colombiana. Novum Jus: Rev. Espec. Sociol. Jurid. Politica 2008, 2, 125–152. [Google Scholar]
- Cling, J.P.; Delecourt, C. Interlinkages between the sustainable development goals. World Dev. Perspect. 2022, 25, 100398. [Google Scholar] [CrossRef]
- Coenen, J.; Glass, L.M.; Sanderink, L. Two degrees and the SDGs: A network analysis of the interlinkages between transnational climate actions and the Sustainable Development Goals. Sustain. Sci. 2022, 17, 1489–1510. [Google Scholar] [CrossRef]
- Cook, D.; Davíðsdóttir, B. An appraisal of interlinkages between macro-economic indicators of economic well-being and the sustainable development goals. Ecol. Econ. 2021, 184, 106996. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Nazzal, M.A.; Darras, B.M. Cyber-physical systems as an enabler of circular economy to achieve sustainable development goals: A comprehensive review. Int. J. Precis. Eng.-Manuf.-Green Technol. 2021, 9, 955–975. [Google Scholar] [CrossRef]
- Dang, H.A.H.; Serajuddin, U. Tracking the sustainable development goals: Emerging measurement challenges and further reflections. World Dev. 2020, 127, 104570. [Google Scholar] [CrossRef]
- Bellantuono, L.; Monaco, A.; Amoroso, N.; Aquaro, V.; Lombardi, A.; Tangaro, S.; Bellotti, R. Sustainable development goals: Conceptualization, communication and achievement synergies in a complex network framework. Appl. Netw. Sci. 2022, 7, 14. [Google Scholar] [CrossRef] [PubMed]
DAF Outcome for SHT | |
---|---|
Impact Type | Indicators |
Synergy | 3.1.1, 7.1.1, 7.1.2, 7.2.1, 8.1.1, 8.2.1, 8.3.1, 8.4.1, 8.4.2, 8.5.1, 8.5.2, 9.4.1, 9.5.1, 9.5.2, 9.b.1, 10.1.1, 10.2.1, 11.1.1, 11.6.2, 12.2.1, 12.2.2, 13.2.2, 15.1.1, 17.2.1, 17.3.1, 17.4.1, 17.7.1, 17.8.1, 17.10.1, 17.12.1, 17.14.1 |
Ambivalent | 9.c.1, 10.4.1, 16.6.2 |
Trade-offs | 1.1.1, 9.2.1,9.2.2, 12.4.2 |
Uncertain | 3.9.1, 5.2.1, 5.4.1, 6.3.1, 6.3.2, 6.4.1, 9.3.1, 9.3.2, 10.3.1, 10.b.1, 10.c.1, 11.2.1, 12.5.1, 12.6.1, 12.a.1, 12.c.1, 14.1.1, 15.3.1, 15.5.1, 15.8.1, 16.2.1, 17.1.1, 17.1.2, 17.3.2, 17.9.1, 17.11.1, 17.13.1 |
Bi-Directional | 4.4.1, 5.b.1, 11.3.1, 12.8.1, 13.3.1, 17.5.1, 17.6.1 |
DAF Outcome for blockchain | |
---|---|
Impact Type | Indicators |
Synergy | 6.4.1, 6.4.2, 9.2.1, 12.3.1, 14.1.1, 14.4.1 |
Ambivalent | NA |
Trade-offs | NA |
Uncertain | 2.3.2, 2.4.1, 2.5.1, 2.c.1, 3.9.3, 6.3.2, 8.1.1, 8.2.1, 8.3.1, 8.4.2, 12.1.1, 12.2.1, 12.5.1, 12.7.1, 12.8.1, |
Bi-Directional | NA |
DAF Outcome for AI | |
---|---|
Impact Type | Indicators |
Synergy | 1.5.1, 1.5.2, 1.5.3, 1.5.4, 2.1.1, 2.1.2, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 3.1.1, 3.1.2, 3.4.1, 3.5.1, 3.6.1, 3.9.2, 3.b.1, 3.b.3, 3.c.1, 4.4.1, 4.a.1, 5.2.1, 5.5.2, 5.c.1, 6.1.1, 6.3.2, 6.4.1, 6.5.1, 6.a.1, 7.1.1, 7.1.2, 9.1.1, 9.1.2, 12.3.1, 12.6.1, 14.1.1, 14.3.1, 16.1.3, 16.1.4, 16.2.1, 16.6.2, 16.8..1, 16.9.1, 17.16.1, 17.18.1 |
Ambivalent | 3.2.1, 3.8.1, 4.7.1, 5.1.1, 5.a.1, 7.3.1, 8.1.1, 9.4.1, 12.2.1, 12.4.2, 12.5.1, 14.2.1, 16.2.2, 16.2.3, 16.3.1, 16.10.1, 16.b.1, |
Trade-offs | 1.2.2, 8.5.2 |
Uncertain | 3.9.3, 3.b.1, 3.d.1, 5.3.1, 5.4.1, 5.5.1, 6.2.1, 6.3.1, 6.4.2, 6.5.2, 9.2.1, 9.5.2, 9.a.1, 9.b.1, 16.1.1, 16.1.2, 16.3.3, 17.6.1, 17.14.1, 17.19.1 |
Bi-Directional | 6.6.1, 7.2.1, 7.b.1, 9.c.1, 12.a.1, 12.b.1, 12.a.1, 12.b.1 |
DAF Outcome for Big Data | |
---|---|
Impact Type | Indicators |
Synergy to Uncertain | 1.a.1, 1.a.2, 1.b.1, 2.5.1, 2.5.2, 2.a.1, 2.a.2, 2.b.1, 2.c.1, 3.d.1, 3.d.2, 7.a.1, 8.a.1, 9.b.1, 11.c.1, 13.a.1, 13.b.1, 15.1.1, 15.1.2, 16.8.2, 16.10.1, 16.10.2, 17.2.1, 17.4.1, 17.6.1, 17.9.1, 17.13.1, 17.16.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S.; Campos Zeballos, J.; del Río Castro, G.; Tomičić, A.; Andrés Morales, S.; Mahfouz, M.; Osemwegie, I.; Phemia Comlan Sessi, V.; Schmitz, M.; Mahmoud, N.; et al. Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development. Sustainability 2023, 15, 6844. https://doi.org/10.3390/su15086844
Gupta S, Campos Zeballos J, del Río Castro G, Tomičić A, Andrés Morales S, Mahfouz M, Osemwegie I, Phemia Comlan Sessi V, Schmitz M, Mahmoud N, et al. Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development. Sustainability. 2023; 15(8):6844. https://doi.org/10.3390/su15086844
Chicago/Turabian StyleGupta, Shivam, Jazmin Campos Zeballos, Gema del Río Castro, Ana Tomičić, Sergio Andrés Morales, Maya Mahfouz, Isimemen Osemwegie, Vicky Phemia Comlan Sessi, Marina Schmitz, Nady Mahmoud, and et al. 2023. "Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development" Sustainability 15, no. 8: 6844. https://doi.org/10.3390/su15086844
APA StyleGupta, S., Campos Zeballos, J., del Río Castro, G., Tomičić, A., Andrés Morales, S., Mahfouz, M., Osemwegie, I., Phemia Comlan Sessi, V., Schmitz, M., Mahmoud, N., & Inyaregh, M. (2023). Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development. Sustainability, 15(8), 6844. https://doi.org/10.3390/su15086844