Investigation of Viscoelastic Properties of Polymer-Modified Asphalt at Low Temperature Based on Gray Relational Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Test Methods
2.3. Flowchart
3. Results and Discussions
3.1. Creep Stiffness and Creep Rate
3.2. Low-Temperature Continuous Classification Temperature
3.3. ΔTC
3.4. m/S
3.5. Burgers Model
3.6. Low-Temperature Bending Test of PAM
3.7. Gray Relational Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, R.; Jiang, W.; Xiao, J.J.; Yuan, D.D.; Li, Y.P.; Hou, Y.K.; Liu, C.C. Evaluation of moisture migration characteristics of permeable asphalt pavement: Field research. J. Environ. Manag. 2023, 330, 117176. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wen, Y.; Wang, D.; Li, R.; Zhang, J.; Pei, J.; Xie, J. Investigation on the cohesion and adhesion behavior of high-viscosity asphalt binders by bonding tensile testing apparatus. Constr. Build. Mater. 2020, 261, 120011. [Google Scholar] [CrossRef]
- Büchler, S.; Falchetto, A.C.; Walther, A.; Riccardi, C.; Wang, D.; Wistuba, M.P. Wearing course mixtures prepared with high reclaimed asphalt pavement content modified by rejuvenators. Transp. Res. Rec. 2018, 2672, 96–106. [Google Scholar] [CrossRef]
- Fang, C.; Li, T.; Zheng, C.; Jiang, D. Research Advances in Polymer Modified Asphalt. Mater. Rev. 2006, 20, 55–57. [Google Scholar]
- Yan, K.Z.; You, L.Y.; Wang, D.C. High-Temperature Performance of Polymer-Modified Asphalt Mixes: Preliminary Evaluation of the Usefulness of Standard Technical Index in Polymer-Modified Asphalt. Polymers 2019, 11, 1404. [Google Scholar] [CrossRef]
- Wegan, V. The Structure of Polymer Modified Binders and Corresponding Asphalt Mixtures. In Proceedings of the 74th Annual Meeting on Asphalt Paving Technology, Chicago, IL, USA, 8–10 March 1999; pp. 64–88. [Google Scholar]
- Rivera, C.; Caro, S.; Arambula-Mercado, E.; Sanchez, D.B.; Karki, P. Comparative evaluation of ageing effects on the properties of regular and highly polymer modified asphalt binders. Constr. Build. Mater. 2021, 302, 124163. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.B. Preparation and Properties of High Viscosity Modified Asphalt. Polym. Compos. 2017, 38, 936–946. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Sha, A.; Xiao, J.; Wu, W.; Wang, T. Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect. Appl. Energy 2023, 331, 120459. [Google Scholar] [CrossRef]
- Li, L.M.; Guo, Z.Y.; Ran, L.F.; Zhang, J.W. Study on Low-Temperature Cracking Performance of Asphalt under Heat and Light Together Conditions. Materials 2020, 13, 1541. [Google Scholar] [CrossRef]
- Guo, X.-x.; Zhang, C.; Cui, B.-x.; Wang, D.; Tsai, J. Analysis of impact of transverse slope on hydroplaning risk level. Procedia-Soc. Behav. Sci. 2013, 96, 2310–2319. [Google Scholar] [CrossRef]
- Jin, D.Z.; Boateng, K.A.; Ge, D.D.; Che, T.K.; Yin, L.; Harrall, W.; You, Z.P. A case study of the comparison between rubberized and polymer modified asphalt on heavy traffic pavement in wet and freeze environment. Case Stud. Constr. Mater. 2023, 18, e01847. [Google Scholar] [CrossRef]
- Kong, L.; Ren, D.Y.; Zhou, S.X.; He, Z.Y.; Ai, C.F.; Yan, C.Q. Evaluating the evolution of fiber-reinforced emulsified asphalt cold-recycled mixture damage using digital image correlation. Int. J. Pavement Eng. 2023, 24, 2176495. [Google Scholar] [CrossRef]
- Yu, J.Y.; Zhang, H.L.; Sun, P.; Zhao, S.F. Laboratory performances of nano-particles/polymer modified asphalt mixtures developed for the region with hot summer and cold winter and field evaluation. Road Mater. Pavement Des. 2020, 21, 1529–1544. [Google Scholar] [CrossRef]
- Behnia, B.; Buttlar, W.; Reis, H. Evaluation of Low-Temperature Cracking Performance of Asphalt Pavements Using Acoustic Emission: A Review. Appl. Sci. 2018, 8, 306. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, D.; Shan, J.; Ye, W.; Lu, H.; Sha, A. Experimental study of the performance of porous ultra-thin asphalt overlay. Int. J. Pavement Eng. 2022, 23, 2049–2061. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Ayatollahi, M. Asphalt concrete resistance against fracture at low temperatures under different modes of loading. Cold Reg. Sci. Technol. 2015, 110, 149–159. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, F.; Amirkhanian, S.; Huang, W.; Zheng, M. A review on low temperature performances of rubberized asphalt materials. Constr. Build. Mater. 2017, 145, 483–505. [Google Scholar] [CrossRef]
- Du, Z.Y.; Jiang, C.S.; Yuan, J.; Xiao, F.P.; Wang, J.G. Low temperature performance characteristics of polyethylene modified asphalts—A review. Constr. Build. Mater. 2020, 264, 120704. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, C.; Feng, D.; Sun, L. Influence of Fine Aggregate Content on Low-Temperature Cracking of Asphalt Pavements. J. Test. Eval. 2017, 45, 835–842. [Google Scholar] [CrossRef]
- Li, Z.S.; Tan, Y.Q. Low-Temperature Cracking Analysis of Asphalt Pavement. In Proceedings of the 3rd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2013), Jinan, China, 24–26 May 2013; pp. 1625–1628. [Google Scholar]
- Hasan, M.A.; Tarefder, R.A. Laboratory Investigation of Low-Temperature Performance of the SBS Modified Mixtures. In Proceedings of the International Conference on Airfield and Highway Pavements, Chicago, IL, USA, 21–24 July 2019; pp. 109–113. [Google Scholar]
- Yuan, D.; Jiang, W.; Sha, A.; Xiao, J.; Shan, J.; Wang, D. Energy output and pavement performance of road thermoelectric generator system. Renew. Energy 2022, 201, 22–33. [Google Scholar] [CrossRef]
- Bai, M. Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder. Constr. Build. Mater. 2017, 150, 766–773. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Yu, S.; Song, Z.; Fu, H.; An, T. Low-temperature mechanical properties of polyurethane-modified waterborne epoxy resin for pavement coating. Int. J. Pavement Eng. 2022, 1–13. [Google Scholar] [CrossRef]
- Moon, K.H.; Falchetto, A.C.; Marasteanu, M.O. Investigation of limiting criteria for low temperature cracking of asphalt mixture. KSCE J. Civ. Eng. 2014, 18, 172–181. [Google Scholar] [CrossRef]
- Moon, K.H.; Falchetto, A.C.; Hu, J.W. Investigation of asphalt binder and asphalt mixture low temperature creep properties using semi mechanical and analogical models. Constr. Build. Mater. 2014, 53, 568–583. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Fan, X.H.; Zhang, H.Z. Development and Evaluation of the Hard-Grade Asphalt. J. Mater. Civ. Eng. 2010, 22, 800–805. [Google Scholar]
- Wang, C.; Zhang, H.; Castorena, C.; Zhang, J.X.; Kim, Y.R. Identifying fatigue failure in asphalt binder time sweep tests. Constr. Build. Mater. 2016, 121, 535–546. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Lu, Q.; Guan, W. Low Temperature Performance of TB Crumb Rubber Composite SBS Modified Asphalt and Mixture. J. Build. Mater. 2021, 24, 131–136. [Google Scholar]
- Zhou, J.; Chen, X.H.; Xu, G.; Zhang, H.Y. Evaluation on low temperature characteristics of SBS/CR modified asphalt binder under different aging conditions. In Proceedings of the 4th International Conference on Civil Engineering and Materials Science (ICCEMS 2019), Bangkok, Thailand, 17–19 May 2019; Volume 652. [Google Scholar]
- Zheng, W.H.; Yang, Y.; Chen, Y.; Yu, Y.; Hossiney, N.; Tebaldi, G. Low temperature performance evaluation of asphalt binders and mastics based on relaxation characteristics. Mater. Struct. 2022, 55, 7. [Google Scholar] [CrossRef]
- Wang, L.; Wei, J.; Zhang, Y. Evaluation on low temperature performance of paving asphalt using bending beam rheometer. J. China Univ. Pet. Ed. Nat. Sci. 2009, 33, 150–153. [Google Scholar]
- Sun, Z.; Xu, H.; Tan, Y.; Lv, H.; Assogba, O.C. Low-temperature performance of asphalt mixture based on statistical analysis of winter temperature extremes: A case study of Harbin China. Constr. Build. Mater. 2019, 208, 258–268. [Google Scholar] [CrossRef]
- Dong, W.; Guan, W.; Huang, W. Low Temperature Performance Analysis of SBS Modified Asphalt under Different Aging Process. J. Build. Mater. 2018, 21, 268–274. [Google Scholar]
- Wei, J.; Huang, M.; Zhou, Y.; Li, P.; Yu, F.; Ju, H.; Shi, S. Research of Low-Temperature Performance of Polyphosphoric Acid-Modified Asphalt. Materials 2022, 16, 111. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, H.; Sun, J.; Yu, T. Comparative analysis on rheological characteristics of different modified asphalt based on DSR and BBR evaluation. J. Eng. Des. Technol. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Yan, K.; Wang, D. Low Temperature Performance Index of Polymer Modified Asphalt. J. Build. Mater. 2020, 23, 479–484. [Google Scholar]
- Gu, F.; Xu, B.; Wang, K. Low temperature performance and evaluation indexes of foamed warm mixed crumb rubber modified asphalt. J. Henan Univ. Sci. Technol. Nat. Sci. 2016, 37, 69–72. [Google Scholar]
- Huang, W.D.; Tang, N.P. Characterizing SBS modified asphalt with sulfur using multiple stress creep recovery test. Constr. Build. Mater. 2015, 93, 514–521. [Google Scholar] [CrossRef]
- Xu, J.; Yang, E.; Wang, S.; Li, S. Study on Low Temperature Performance Evaluation Indicator of Sasobit Warm Mix Asphalt. J. Highw. Transp. Res. Dev. 2020, 37, 8. [Google Scholar]
- Geng, H.; Li, L.H.; Han, H. Viscosity criteria and methodology for estimating the optimum compaction temperatures of polymer modified asphalt binders in hot mix asphalt design. Constr. Build. Mater. 2016, 128, 308–314. [Google Scholar] [CrossRef]
- Hui, G.; Bo, X. Research on Climatic Influencing Factors of Low Temperature Cracking Index of Asphalt Pavement in Cold Area. IOP Conf. Ser. Earth Environ. Sci. 2021, 651, 042032. [Google Scholar]
- Rodríguez-Alloza, A.M.; Gallego, J.; Pérez, I. Study of the effect of four warm mix asphalt additives on bitumen modified with 15% crumb rubber. Constr. Build. Mater. 2013, 43, 300–308. [Google Scholar] [CrossRef]
- Guo, M.; Liu, H.; Jiao, Y.; Mo, L.; Tan, Y.; Wang, D.; Liang, M. Effect of WMA-RAP technology on pavement performance of asphalt mixture: A state-of-the-art review. J. Clean. Prod. 2020, 266, 121704. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, T.; Pei, J.; Amirkhanian, S.; Xiao, F.; Ye, Q.; Fan, Z. Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure. J. Clean. Prod. 2019, 234, 1262–1274. [Google Scholar] [CrossRef]
- ASTM D 7643-10; Standard Test Method for Determining the Continuous Grade of Asphalt Binder. ASTM International: West Conshohocken, PA, USA, 2012.
- Christensen, D.; Mensching, D.; Rowe, G.; Anderson, R.M.; Hanz, A.; Reinke, G.; Anderson, D. Past, Present, and Future of Asphalt Binder Rheological Parameters: Synopsis of 2017 Technical Session 307 at the 96th Annual Meeting of the Transportation Research Board; Transportation Research Circular; Transportation Research Board: Washington, DC, USA, 2019; Volume E-C241. [Google Scholar]
- Fan, X.; Lu, W.; Lv, S.; He, F. Improvement of low-temperature performance of Buton rock asphalt composite modified asphalt by adding styrene-butadiene rubber. Materials 2019, 12, 2358. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Huang, W.; Tang, N.; Xiao, F.; Li, Y. Understanding the low temperature properties of Terminal Blend hybrid asphalt through chemical and thermal analysis methods. Constr. Build. Mater. 2018, 169, 543–552. [Google Scholar] [CrossRef]
- Haghshenas, H.F.; Rea, R.; Reinke, G.; Zaumanis, M.; Fini, E. Relationship between colloidal index and chemo-rheological properties of asphalt binders modified by various recycling agents. Constr. Build. Mater. 2022, 318, 126161. [Google Scholar] [CrossRef]
- Kumar, R.; Katyal, P.; Kumar, K. Effect of End Milling Process Parameters and Corrosion Behaviour of ZE41A Magnesium Alloy using Taguchi Based GRA. Biointerface Res. Appl. Chem. 2023, 13, 3. [Google Scholar]
- Ou, L.; Zhu, H.; Xu, Y.; Chen, R.; Yang, X. Gray correlation entropy analysis of zero shear viscosity and high-temperature rheological parameters of phosphogypsum-modified asphalt. Case Stud. Constr. Mater. 2022, 17, e01448. [Google Scholar] [CrossRef]
- Tan, Y.; Fu, Y.; Ji, L.; Zhang, L. Low-temperature evaluation index of rubber asphalt. J. Harbin Inst. Technol. 2016, 48, 66–70. [Google Scholar]
Type | Penetration (25 °C, 5 s, 100 g)/(0.1 mm) | Softening Point/°C | Ductility (5 °C)/cm | Dynamic Viscosity (60 °C)/(Pa·s) | Perfomance Grade |
---|---|---|---|---|---|
SK-90 | 97.1 | 47.4 | 9.7 | 140.3 | / |
HVMA-Ⅰ | 51.1 | 84.3 | 64.3 | 38,696.9 | PG64-22 |
HVMA-Ⅱ | 54.6 | 85.9 | 59.9 | 20,425.1 | PG64-22 |
SBS | 64.0 | 94.2 | 45.7 | 14,169.2 | PG58-22 |
CRMA | 51.1 | 63.2 | 13.3 | 3177.7 | PG52-22 |
Sieve Size/mm | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
Passing Ratio (by pass)/% | 100.0 | 92.3 | 70.4 | 18.9 | 15.9 | 13.0 | 11.1 | 8.2 | 6.7 | 4.6 |
Type | HVMA-Ⅰ | HVMA-Ⅱ | SBS | CRMA |
---|---|---|---|---|
εB/με | 3281.5 | 3498.8 | 3547.9 | 3956.1 |
E(S) | E(m) | E(TC) | E(ΔTC) | E(m/S) | ||
---|---|---|---|---|---|---|
0.9957 | 0.9982 | 0.9997 | 0.9329 | 0.9996 | 0.9592 | 0.9838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Lu, R.; Fu, Z.; Li, J.; Li, P.; Wang, D.; Wei, B.; Zhu, W.; Wang, Z.; Wang, X. Investigation of Viscoelastic Properties of Polymer-Modified Asphalt at Low Temperature Based on Gray Relational Analysis. Sustainability 2023, 15, 6858. https://doi.org/10.3390/su15086858
Huang Z, Lu R, Fu Z, Li J, Li P, Wang D, Wei B, Zhu W, Wang Z, Wang X. Investigation of Viscoelastic Properties of Polymer-Modified Asphalt at Low Temperature Based on Gray Relational Analysis. Sustainability. 2023; 15(8):6858. https://doi.org/10.3390/su15086858
Chicago/Turabian StyleHuang, Zhongcai, Rong Lu, Zhiyu Fu, Jingxiao Li, Pengfei Li, Di Wang, Ben Wei, Weining Zhu, Zujian Wang, and Xinyu Wang. 2023. "Investigation of Viscoelastic Properties of Polymer-Modified Asphalt at Low Temperature Based on Gray Relational Analysis" Sustainability 15, no. 8: 6858. https://doi.org/10.3390/su15086858
APA StyleHuang, Z., Lu, R., Fu, Z., Li, J., Li, P., Wang, D., Wei, B., Zhu, W., Wang, Z., & Wang, X. (2023). Investigation of Viscoelastic Properties of Polymer-Modified Asphalt at Low Temperature Based on Gray Relational Analysis. Sustainability, 15(8), 6858. https://doi.org/10.3390/su15086858