Spatial Distribution and Controlling Factors of Groundwater Quality Parameters in Yancheng Area on the Lower Reaches of the Huaihe River, Central East China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Regional Geography
2.1.2. Hydrogeology
2.2. Sample Collection and Analysis
2.3. Water Quality Index for Drinking (DWQI)
2.4. Integrated Irrigation Water Quality Index (IIWQI)
2.5. Chlor–Alkali Index
3. Results
3.1. Groundwater Chemical Composition
3.2. Groundwater Quality Assessment for Drinking Purposes
3.3. Groundwater Quality Assessment for Irrigation
3.3.1. TDS for Irrigation Purposes
3.3.2. Magnesium Adsorption Ratio (MAR)
3.3.3. Residual Sodium Carbonate (RSC)
3.3.4. Permeability Index (PI)
3.3.5. Sodium Adsorption Ratio (SAR)
3.3.6. Integrated Irrigation Water Quality Index (IIWQI)
4. Discussion
4.1. Geochemical Factors on Water Quality
4.2. Impact of Seawater and Human Activities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osiakwan, G.M.; Appiah-Adjei, E.K.; Kabo-Bah, A.T.; Gibrilla, A.; Anornu, G. Assessment of groundwater quality and the controlling factors in coastal aquifers of Ghana: An integrated statistical, geostatistical and hydrogeochemical approach. J. Afr. Earth Sci. 2021, 184, 104371. [Google Scholar] [CrossRef]
- Li, P.Y.; He, S.; Yang, N.N.; Xiang, G. Groundwater quality assessment for domestic and agricultural purposes in Yan’an City, northwest China: Implications to sustainable groundwater quality management on the Loess Plateau. Environ. Earth Sci. 2018, 77, 775. [Google Scholar] [CrossRef]
- Lima, I.Q.; Muñoz, M.O.; Ramos, O.E.; Bhattacharya, P.; Choque, R.Q.; Aguirre, J.Q.; Sracek, O. Hydrochemical assessment with respect to arsenic and other trace elements in the Lower Katari Basin, Bolivian Altiplano. Groundw. Sustain. Develop. 2019, 8, 281–293. [Google Scholar] [CrossRef]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef]
- Qin, J.; Duan, W.; Chen, Y.; Dukhovny, V.A.; Sorokin, D.; Li, Y.; Wang, X. Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia. Renew. Sustain. Energy Rev. 2022, 157, 112061. [Google Scholar] [CrossRef]
- He, S.; Wu, J.H. Hydrogeochemical characteristics, groundwater quality, and health risks from Hexavalent Chromium and Nitrate in groundwater of Huanhe formation in Wuqi County, Northwest China. Expo. Health 2019, 11, 125–137. [Google Scholar] [CrossRef]
- Liu, S.F.; Gao, B.; Zhang, H.Y.; Fan, H.; Jiang, W.B. Evaluation of groundwater quality and fluoride enrichment characteristics in western Tarim Basin: A case study of Akto County. Arid Land Geogr. 2021, 4, 1261–1271. [Google Scholar]
- Su, H.; Kang, W.D.; Xu, Y.J.; Wang, J.D. Assessment of groundwater quality and health risk in the oil and gas field of Dingbian County, Northwest China. Expo. Health 2016, 9, 227–242. [Google Scholar] [CrossRef]
- Wu, J.H.; Zhang, Y.X.; Zhou, H. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry 2020, 80, 125607. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Li, P.Y.; Xue, L.L.; Dong, Z.; Li, D. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 80, 125609. [Google Scholar] [CrossRef]
- Brahim, F.B.; Boughariou, E.; Bouri, S. Multicriteria-analysis of deep groundwater quality using WQI and fuzzy logic tool in GIS: A case study of Kebilli region, SW Tunisia. J. Afr. Earth Sci. 2021, 180, 104224. [Google Scholar] [CrossRef]
- Liu, J.N.; Du, J.Z.; Yu, X.Q. Submarine groundwater discharge enhances primary productivity in the Yellow Sea, China: Insight from the separation of fresh and recirculated components. Geosci. Front. 2021, 12, 101204. [Google Scholar] [CrossRef]
- Mao, C.P.; Tan, H.B.; Song, Y.X.; Rao, W.B. Evolution of groundwater chemistry in coastal aquifers of the Jiangsu, east China: Insights from a multi-isotope (δ2H, δ18O, 87Sr/86Sr, and δ11B) approach. J. Contam. Hydrol. 2020, 235, 103730. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.O.; Xian, Y.; Li, W.; Zhang, D.Z.; Zhuang, X.M. Hydrogeochemical evolution of groundwater flow system in the typical coastal plain: A case study of Hangjiahu plain. Earth Sci. 2021, 46, 2565–2582. [Google Scholar]
- Wang, J.N.; Li, A.M.; Wang, Q.J.; Zhou, Y.; Fu, L.C.; Li, Y. Assessment of the manganese content of the drinking water source in Yancheng, China. J. Hazard. Mater 2010, 182, 259–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, C.C.; Mao, L.; Gong, X.L.; Li, X.Q. Hydrochemical characteristics and formation mechanism of the groundwater in Yancheng, Jiangsu province. Res. Environ. Yangtze Basin 2017, 26, 598–605. [Google Scholar]
- Fu, C.C.; Li, X.Q.; Zhang, Y.; Mao, L.; Gong, X.L. Groundwater quality evaluation and the health risk assessment of Yancheng Coastal Plain. J. Water Res. Water Eng. 2017, 28, 54–60. [Google Scholar]
- Zhang, H.B.; Zhen, Y.; Zhang, Y.F. Changes and patterns of spartina alterniflora salt marshes in Yancheng for 4 periods since 1997. Wetl. Sci. 2018, 16, 582–586. [Google Scholar]
- Zhou, F.; Yu, H.H.; Liu, C.Y. Change of rivers system in the Lixiahe region during urbanization. South-to-North Water Transf. Water Sci. 2018, 16, 144–150. [Google Scholar]
- Gu, F. Water resources status and problems in Yancheng city. Hydrology 2003, 23, 53–55. [Google Scholar]
- Yu, G.; Ye, L.T.; Liao, M.N. Simulations of coastal sediment patterns during the Late Pleistocene in Jiangsu coast. Acta Sedimentol. Sin. 2016, 34, 670–678. [Google Scholar]
- Wang, J.; Zhang, H.B.; Xu, J.L.; Li, Y.S. Provenance of Groundwater Solute and Its Controlling Factors in Yancheng Area. Environ. Sci. 2022, 43, 1908–1919. [Google Scholar]
- Sahu, P.; Sikdar, P.K. Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ. Geol. 2008, 55, 823–835. [Google Scholar] [CrossRef]
- Sutradhar, S.; Mondal, P. Groundwater suitability assessment based on water quality index and hydrochemical characterization of Suri Sadar Sub-division, West Bengal. Ecol. Inform. 2021, 64, 101335. [Google Scholar] [CrossRef]
- Amalraj, A.; Pius, A. Assessment of groundwater quality for drinking and agricultural purposes of a few selected areas in Tamil Nadu South India: A GIS-based study. Sustain. Water Resour. Manag. 2018, 4, 1–21. [Google Scholar] [CrossRef]
- Hossain, M.; Patra, P.K.; Begum, S.N.; Rahaman, C.H. Spatial and sensitivity analysis of integrated groundwater quality index towards irrigational suitability investigation. Appl. Geochem. 2020, 123, 104782. [Google Scholar] [CrossRef]
- Haldar, K.; Kujawa-Roeleveld, K.; Dey, P.; Bosu, S.; Datta, D.K.; Rijnaarts, H. Spatiotemporal variations in chemical-physical water quality parameters influencing water reuse for irrigated agriculture in tropical urbanized deltas. Sci. Total Environ. 2019, 708, 134559. [Google Scholar] [CrossRef]
- Sidhu, N.; Rishi, M.S.; Kishore, N. A water quality index approach to appraise temporal variation and heavy metal accumulation in urban storm water flow with special emphasis on irrigation utility, Chandigarh, India. Int. J. Eng. Sci. Res. Technol. 2015, 4, 484–496. [Google Scholar]
- Zaidi, F.K.; Nazzal, Y.; Jafri, M.K.; Naeem, M.; Ahmed, I. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environ. Monit. Assess. 2015, 187, 607. [Google Scholar] [CrossRef]
- Zhou, H.F.; Tan, H.B.; Zhang, X.Y.; Zhang, W.J.; Sun, X. Recharge source, hydrochemical characteristics and formation mechanism of groundwater in Nantong, Jiangsu Province. Geochimica 2011, 40, 566–576. [Google Scholar]
- Zheng, T.; Jiao, T.L.; Hu, B.; Gong, J.S.; Hou, M.X.; Wang, H.S. Hydrochemical characteristics and its origin of groundwater in the middle part of Guohe river basin. Environ. Sci. 2021, 42, 766–775. [Google Scholar]
- Xia, Y.Q.; Li, Y.F.; Zhang, X.Y.; Yan, X.Y. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems. J. Geophys. Res. Biogeosci. 2017, 122, 2–14. [Google Scholar] [CrossRef]
- He, M.X.; Zhang, B.; Xia, W.X.; Cui, X.; Wang, Z.L. Hydrochemical characteristics and analysis of Qilihai Wetland, Tianjin. Environ. Sci. 2021, 42, 776–785. [Google Scholar]
- Zhang, J.Q.; Liu, J.; Kong, X.Z.; Xue, C.T.; Liu, X.B.; Sun, L.S.; Yue, B.J.; Wen, C. Clay mineral assemblage of sediments from middle reach of Huaihe river. Mar. Geol. Quatern. Geol. 2011, 31, 21–29. [Google Scholar] [CrossRef]
- Bao, J.L. The research about saltworks migration and vicissitude of Huai Salterns in Ming and Qing Dynasties. Res. Chin. Econ. Hist. 2016, 1, 114–124. [Google Scholar]
- Esmaeili-Vardanjan, M.; Rasa, I.; Amiri, V.; Yazdi, M.; Pazand, K. Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water samples in Kadkan aquifer, Khorasan-e-Razavi Province, Iran. Environ. Monit. Assess. 2015, 187, 53. [Google Scholar] [CrossRef] [PubMed]
- Xian, X.X.; Kong, F.L.; Zhu, M.K.; Li, Y.; Xi, M. Effects of water and salt gradients on soil nutrient indices and enzyme activities in coastal wetlands. Bull. Soil Water Conserv. 2019, 39, 65–71. [Google Scholar]
- Batarseh, M.; Imreizeeq, E.; Tilev, S.; Alaween, M.A.; Alawneh, M.A. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundw. Sustain. Dev. 2021, 14, 100611. [Google Scholar] [CrossRef]
- Verma, A.; Yadav, B.K.; Singh, N.B. Hydrochemical exploration and assessment of groundwater quality in part of the Ganga-Gomti fluvial plain in northern India. Groundw. Sustain. Dev. 2021, 13, 100560. [Google Scholar] [CrossRef]
- Rao, K.N.; Latha, P.S. Groundwater quality assessment using water quality index with a special focus on vulnerable tribal region of Eastern Ghats hard rock terrain, Southern India. Arab. J. Geosci. 2019, 12, 267. [Google Scholar] [CrossRef]
- Roy, A.; Keesari, T.; Mohokar, H.; Sinha, U.K.; Bitra, S. Assessment of groundwater quality in hard rock aquifer of central Telangana state for drinking and agriculture purposes. Appl. Water Sci. 2018, 8, 124. [Google Scholar] [CrossRef]
- Han, D.M.; Currell, M.J. Review of drivers and threats to coastal groundwater quality in China. Sci. Total Environ. 2022, 806, 150913. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Su, Q.; Wang, S.; Gao, Z.J.; Liu, J.T. Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern China coastal zone. Environ. Pollut. 2021, 290, 118016. [Google Scholar] [CrossRef] [PubMed]
- Cravotta III, C.A.; Senior, L.A.; Conlon, M.D. Factors affecting groundwater quality used for domestic supply in Marcellus Shale region of North-Central and North-East Pennsylvania, USA. Appl. Geochem. 2022, 137, 105149. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Qian, H.; Ren, W.H.; Wang, H.K.; Liu, F.X. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. J. Clean Prod. 2020, 260, 121006. [Google Scholar] [CrossRef]
- He, J.Y.; Zhang, D.; Zhao, Z.Q. Spatial and temporal variations in hydrochemical composition of river water in Yellow River Basin, China. Chin. J. Ecol. 2017, 36, 1390–1401. [Google Scholar]
- Fang, M.; Zong, L.G. Changes of Jiangsu coast and its influence on the development of tidal flats. Agr. Hist. China 1989, 2, 31–37. [Google Scholar]
- Vuai, S.A.; Tokuyama, A. Solute generation and CO2 consumption during silicate weathering under subtropical, humid climate, northern Okinawa Island, Japan. Chem. Geol. 2007, 236, 199–216. [Google Scholar] [CrossRef]
- Bhadra, T.; Hazra, S.; Roy, S.; Barman, B.C. Assessing the groundwater quality of the coastal aquifers of a vulnerable delta: A case study of the Sundarban Biosphere Reserve, India. Groundw. Sustain. Develop. 2020, 11, 100438. [Google Scholar] [CrossRef]
- Gibrilla, A.; Fianko, J.R.; Ganyaglo, S.; Adomako, D.; Anornu, G.; Zakaria, N. Nitrate contamination and source apportionment in surface and groundwater in Ghana using dual isotopes (15N and 18O-NO3) and a Bayesian isotope mixing model. J. Contam. Hydrol. 2020, 233, 103658. [Google Scholar] [CrossRef]
- Cui, Y.H.; Wang, J.; Liu, Y.C.; Hao, S.; Cao, X. Hydro-chemical charateristics and ion origin analysis of surface groundwater at the Shengjin Lake and Yangtze River interface. Environ. Sci. 2021, 42, 3223–3231. [Google Scholar]
Parameters | TDS | TH | Na+ | Cl− | SO42− | NO3− | pH |
---|---|---|---|---|---|---|---|
mg/L | meq/L | ||||||
Standards * | 1000 | 450 | 8.7 | 7.04 | 5.21 | 1.43 | 6.5–8.5 |
Weight (wi) | 5 | 3 | 5 | 4 | 1 | 1 | 1 |
Relative weight (Rwi) | 0.25 | 0.15 | 0.25 | 0.20 | 0.05 | 0.05 | 0.05 |
Indices | Excellent | Good | Doubtful | Unsuitable |
---|---|---|---|---|
TDS/(mg/L) | <500 | 500–1000 | 1000–2000 | ≥2000 |
SAR | <10 | 10–18 | 18–26 | ≥26 |
SSP | <20 | 20–60 | 60–80 | ≥80 |
MAR | <50 | ≥50 | ||
RSC/(meq/L) | <1.25 | 1.25–2.50 | ≥2.50 | |
PI | ≥75 | 25–75 | <25 |
Items | Na+ | K+ | Mg2+ | Ca2+ | Cl− | SO42− | NO3− | HCO3− | EC | TDS | TH | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
meq/L | μs/cm | mg/L | ||||||||||
Mean | 10.79 | 0.51 | 3.00 | 1.90 | 4.45 | 0.67 | 0.16 | 11.05 | 2252.30 | 1126.25 | 245.05 | 7.30 |
Min | 0.91 | 0.02 | 0.21 | 0.13 | 0.17 | 0.01 | 0.00 | 2.86 | 422 | 211 | 19.18 | 5.96 |
Max | 69.35 | 3.11 | 8.26 | 8.85 | 38.74 | 3.74 | 1.06 | 37.19 | 12,420 | 6220 | 657.78 | 8.23 |
SD | 12.49 | 0.53 | 1.74 | 1.43 | 7.03 | 0.62 | 0.19 | 4.80 | 1937.54 | 969.11 | 131.42 | 0.36 |
CV | 115.66 | 103.32 | 57.78 | 75.19 | 157.95 | 92.47 | 119.89 | 43.49 | 86.02 | 86.05 | 53.63 | 4.87 |
% of SEAL (1) | 37.39 | 15.65 | 0.00 | 0.00 | 32.17 | 6.96 | 1.74 |
Items | Calculation Result Statistics | Proportion of Classification | |||||
---|---|---|---|---|---|---|---|
Average | Max | Min | Excellent | Good | Doubtful | Unsuitable | |
TDS/(mg/L) | 1126.25 | 6220 | 211 | 10.43% | 57.40% | 23.47% | 8.70% |
SAR | 7.92 | 36.59 | 0.62 | 76.52% | 10.43% | 5.22% | 7.83% |
SSP | 61.41 | 96.9 | 18.31 | 0.87% | 48.70% | 26.96% | 23.48% |
MAR | 61.77 | 91.1 | 28.98 | 19.13% | 80.87% | ||
RSC/(meq/L) | 6.14 | 30.98 | −9.77 | 10.43% | 7.83% | 81.74% | |
PI | 87.23 | 131.68 | 30.87 | 74.78% | 25.22% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, J. Spatial Distribution and Controlling Factors of Groundwater Quality Parameters in Yancheng Area on the Lower Reaches of the Huaihe River, Central East China. Sustainability 2023, 15, 6882. https://doi.org/10.3390/su15086882
Wang J, Xu J. Spatial Distribution and Controlling Factors of Groundwater Quality Parameters in Yancheng Area on the Lower Reaches of the Huaihe River, Central East China. Sustainability. 2023; 15(8):6882. https://doi.org/10.3390/su15086882
Chicago/Turabian StyleWang, Jian, and Junli Xu. 2023. "Spatial Distribution and Controlling Factors of Groundwater Quality Parameters in Yancheng Area on the Lower Reaches of the Huaihe River, Central East China" Sustainability 15, no. 8: 6882. https://doi.org/10.3390/su15086882
APA StyleWang, J., & Xu, J. (2023). Spatial Distribution and Controlling Factors of Groundwater Quality Parameters in Yancheng Area on the Lower Reaches of the Huaihe River, Central East China. Sustainability, 15(8), 6882. https://doi.org/10.3390/su15086882