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Abstract: Subsurface perforated pipes drain infiltrated stormwater runoff while attenuating the
peak flow. The Manning roughness coefficient (n) was identified as a fundamental parameter for
estimating roughness in various subsurface channels. Hence, in this work, the performance of a six-
row non-staggered sand-slot perforated pipe as a sample of the subsurface drainage is investigated
experimentally in a laboratory flume at Universiti Sains Malaysia (USM) aimed at determining the
Manning roughness coefficients (n) of the pipe and assessing the relationship between the Manning’s
n and the hydraulic parameters of the simulated runoff flow under the conditions of the tailgate
channel being opened fully (GFO) and partially (GPO), as well as the pipe having longitudinal slopes
of 1:750 and 1:1000. Water is pumped into the flume at a maximum discharge rate of 35 L/s, and the
velocity and depth of the flow are measured at nine points along the inner parts of the pipe. Based on
the calculated Reynolds numbers ranging from 38,252 to 64,801 for both GFO and GPO conditions,
it is determined that most of the flow in the perforated pipe is turbulent, and the calculated flow
discharges and velocities from the outlets under GFO are higher than the flow and velocity rates
under GPO with similar pipe slopes of 1:750 and 1:1000. The Manning coefficients are calculated
at nine points along the pipe and range from 0.004 to 0.009. Based on the ranges of the calculated
Manning’s n, an inverse linear relationships between the Manning coefficients and the flow velocity
under GFO and GPO conditions are observed with the R? of 0.975 and 0.966, as well as 0.819 and 0.992
resulting from predicting the values of flow velocities with the equations v = ((0.01440 — n)/0.009175),
v = ((0.01330 — n)/0.00890), v = ((0.02007 — n)/0.01814), and v = ((0.01702 — n)/0.01456) with pipe
slopes of 1:750 and 1:1000, respectively. It is concluded that since the roughness coefficient (Manning’s
n) of the pipe increases, it is able to reduce the flow velocity in the pipe, resulting in a lower peak of
flow and the ability to control the quantity of storm water in the subsurface urban drainages.

Keywords: urban subsurface drainages; Manning coefficient; sand-slot perforated pipe; stormwater
runoff

1. Introduction

Climate change intensifies as global temperatures increase because of social develop-
ment, altering regional hydrological cycles and water resource distribution [1,2], resulting in
an increase in the number of extreme precipitation events [3,4] and frequent flash-flooding
events [5]. Flood events have become the most frequent and severe natural disaster over
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the past 25 years [6]. Moreover, urbanization increases impervious areas, which reduces
infiltration rates, increasing the volume of urban stormwater runoff, peak flow rate, occur-
rences of flash flooding, and polluting the surrounding environment [7]. The first flush of
urban runoff accounts for 80-95% of the total annual loading of most stormwater pollutants
caused by rain events [8]. Hence, it is essential to remove the first flush of runoff to avoid
the majority of total annual pollutant loadings approaching the water bodies. Therefore, the
majority percentage of urban runoff was removed using infiltration trenches with the use
of subsurface perforated and porous drainpipes [7-19] and using the subsurface modular
tanks and channels in biological drainage systems [20-25] recommended by the River
Engineering and Urban Drainage Research Centre (REDAC) in Malaysia for managing
both water quantity and quality in urban areas. Groundwater recharge, low stream flow
augmentation, water quality enhancement, and a reduction in the total runoff volume are
also among the advantages of using the infiltration practices mentioned in the preceding
studies [7-25]. The performances of subsurface perforated and porous drainpipes were
often used in infiltration trenches for the removal of the urban stormwater runoff [7-19] and
were also used in agricultural lands as subsurface drainage systems [26-30]. Subsurface
perforated pipe drainage systems are used to drain away the subsurface water to minimize
surface water ponding and waterlogging of soils by decreasing water tables and increasing
soil strength by decreasing the soil moisture content. In addition, the use of subsurface
drainage is required to avoid damaging urban structures and infrastructures because of the
high level of the water table [31]. The use of perforated pipes reduces subgrade moisture,
which is crucial for durable and healthy pavement [14].

In a study conducted by Gaj and Madramootoo [26], it was stated that the corru-
gated high-density polyethylene (HDPE) perforated pipes were widely used as subsurface
drainage systems on agricultural lands. Ghane [27] indicated that the excess water draining
from the soil profile of agricultural lands using perforated pipes provides the required aer-
ation for appropriate crop root development. Moreover, the main advantages of subsurface
drainage of perforated pipes used in agricultural lands are increased crop yield, improved
soil structure and aeration, and decreased volume of surface runoff [28].

In another study stated by Ehsan Ghane [27], knitted-sock pipes and sand-slot per-
forated pipes (i.e., narrow-slot or knife-cut pipes) are frequently applied in agricultural
subsurface drainage in the U.S. and Canada to prevent sediment clogging of the drain
pipes. He also stated that the pipe with the longer and narrower slots has a higher drain
outflow than the pipe with the shorter and wider slots, even though both pipes have the
same perforation rows and patterns and an equal water inlet area per foot. Thus, slot length
is the most important pipe property affecting how fast water enters the pipe, and increasing
slot width slightly affects the drain outflow [27].

A design of the grass swale perforated pipe (Figure 1) as an urban subsurface drainage
system was used as infiltration stormwater runoff drainage by Abida and Sabourin in
2006 [7], which resulted in a reduction in the urban runoff discharge that was 13 times
smaller than for a conventional stormwater system, which had the potential to replace
open-ditch systems in low-density residential areas. The first flush of urban runoff is
captured directly by a perforated pipe system through an open-bottom catch basin or after
infiltration in the grass swale, where inflow is delayed by a time lag because of the thickness
of the backfill material above the pipe, allowing a portion of the runoff to infiltrate and
reduce some pollutants from the first flush of runoff.

The perforated pipe acts as a subdrainage system, draining water that has infiltrated
through the soil in the swale and helping in reducing the problem of standing water in swales
after rainfall events. As water flows in the perforated pipe system, water is exfiltrated from the
pipe to the surrounding trench through the pipe perforations (Figure 1). The proposed system
is best suited for urban areas with a relatively low imperviousness (less than 35%), where
there is sufficient area to install the roadside swales. It is also necessary to have relatively
permeable soils to maximize the infiltration of runoff from the trench into the native soil and
reduce the urban runoff volume and probable flash flooding [7].
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Figure 1. Grass swale perforated pipe system utilized as stormwater runoff subsurface drainage in
the United States (U.S.) and Canada [7] “Reprinted /adapted with permission from Ref. [7]. 2006,
Abida and Sabourin”.

The hydraulic performances of perforated pipe systems in terms of determining the
infiltration and exfiltration rates based on different inflow rates were investigated by [7]
conducting laboratory experiments under different design scenarios consisting of two pipes
with diameters of 300 and 450 mm and two orifices with diameters of 8 and 13 mm. A
3.66 m long smooth-wall perforated pipe section was placed inside a confining wood box
and surrounded by gravel. Eight equally spaced orifices around the perimeter of the pipe
with 5 cm spacings between rings of perforations were presented as pipe perforations. Pipe
slopes ranging from 0 to 2% were found in storm sewer designs.

The exfiltration rate of the perforated pipe was investigated versus the inflow rate
into the pipe, and it evidently showed that under phases of having different pipe slopes
of 0 to 2% and several rates of inflows from 2 to 12 L/s, the flow rates out of the pipe
perforations increased by reducing the percentages of the pipe slopes and increasing the
orifices dimensions [7].

Tu and Traver [12] evaluated the performance of a green infrastructure (GI) infiltration
trench. The GI consisted of an underground rock infiltration bed, inlet structures for
collecting runoff, and a perforated subsurface drainage pipe. The removal of 94% of the
contributing rainfall through infiltration was reported in the study [12].

Murphy et al. [13] performed an experimental study of the stage discharge relationship
for three porous pipes buried under loose-laid aggregate. The hydraulic performances
of a high-density polythene (HDPE) plastic corrugated staggered perforated pipe with a
slot diameter of 10.2 cm and two leached pipes with hole diameters of 10.2 and 15.2 cm,
respectively, and with all pipes having a similar length of 3.04 m, were tested during the
phase of running full flow at the outlets (GFO). The perforated pipe was cut into small,
staggered slots along the whole circumferences of the pipe, with the ratio of slots areas
as inlet areas being 2.3% of the entire pipe area, while each leached pipe had three holes
punched in the bottom side of the pipe circumference and seized 2.1 and 1.8% of the pipes’
areas with diameters of 10.2 and 15.2 cm, respectively [13].

A series of hydraulic experiments were conducted in which the velocity (/2 gH)
of flow in the pipe was measured for the given pipe discharges varying from 1.5 to
18.5 L/s [13]. The values of R? between discharge rates and flow velocity were re-
ported as 0.93 for the 10.2 cm perforated pipe and 0.83 for both leached pipes under GFO
conditions [13].
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The Manning’s roughness coefficient (n) was recommended by Ab. Ghani et al.
(2007) [32] and Pradhan and Khatua (2018) [33] as a fundamental parameter for estimating
roughness in various subsurface modular stormwater drainage channels. As evaluation of
the relationship between the calculated Manning’s roughness coefficients (n) of a six-row
sand-slot perforated subsurface stormwater drainage pipe and the hydraulic parameters
of the simulated runoff flow in the pipe under various scenarios of laboratory flume
longitudinal bed slopes and outlets tailgate openings of fully open (GFO) and partially
open (GPO) has not been reported in the past; thus, the objectives of this present work are
(1) to determine the manning’s roughness coefficients (n) of a six-row sand-slot subsurface
perforated pipe under different scenarios of laboratory flume longitudinal bed slopes and
outlets tailgate openings and (2) to assess the relationship between the obtained Manning’s
n and the depth, velocity, and Froude number of the simulated flow.

2. Materials and Methods
2.1. The Perforation Characteristics of a Six-Row Regular-Perforated Sand-Slot Pipe Sample

For the experimental work, a sample of a six-row regular-perforated sand-slot pipe
(Figures 2 and 3) from Timewell Drainage Products (Timewell, IL, USA) was obtained and
its hydraulic performance of Manning’s n for subsurface draining of stormwater runoff at
the Physical Laboratory, River Engineering and Urban Drainage Research Centre (REDAC),
Universiti Sains Malaysia, was evaluated. The values of the pipe’s outer radius (R,), inner
radius (R;), valley width (Bv), perforation width (Bs), perforation lengths (Api), perforation
spacing between the slots in a row (Sp), and number of longitudinal rows of perforation (N)
are 16.2 cm, 15cm, 1 cm, 0.3 cm, 3.5 cm, 11 cm, and 6, respectively, as shown in Figure 2.
A drainpipe sketch, along with detailed dimensions of the perforation on the pipe, and
a photo of the six-row regular-perforated non-staggered sand-slot pipe are presented in
Figure 3. As illustrated in Figure 2, a single sample of a six-row regular perforated non-
staggered sand-slot pipe wrapped in high-density polyethylene (HDPE) with a length of
3.0 m and an inner diameter of 300 mm was tested experimentally in this work.

UL L L L

(c)

Figure 2. Sketches of (a) the plan view of the six-row non-staggered sand-slot perforated pipe,
(b) the cut section view of the perforated pipe, and (c) the 3D view of the perforated pipe with the
total length.
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Figure 3. Photographs of (a) the sectional view and (b) the plan view of the HDPE perforated pipe,
as well as views of (c) the non-staggered inner and (d) the outer slots of the perforated pipe used in
this work.

2.2. Experimental Set-Up

The experiment was conducted in a rectangular straight flume with a length of
5.90 m at the Physical Laboratory, River Engineering and Urban Drainage Research Centre
(REDAC), Universiti Sains Malaysia. Figure 4 illustrates a sectional sketch of an experi-
mental channel. The slope of the channel can be adjusted using an adjustable jack. Water
was supplied at a maximum discharge of 35 L/s into the flume using two electrical water
pumps [23]. The water that flowed into the sand-slot perforated pipe placed in the flume
was pumped from an underground storage tank that was filled with urban stormwater
runoff with its corresponding contaminants collected from a pond behind the Physical
Laboratory. Hence, the Manning’s roughness coefficient (n) of the pipe was calculated
based on the velocity and flow rate of the above collected stormwater runoff into the
perforated pipe. The perforated pipe was cut into nine rectangular segments at the top
of the pipe for measuring the depth and velocity of the flow during the experiments, as
shown in Figure 5a,b. A total of nine points were measured along the perforated pipe as
depicted in Figure 5a.

The experiments were conducted in different phases of fully (GFO) and partially
(GPO) open tailgate (Figure 6a,b) with two longitudinal slopes of 1/750 and 1/1000 using a
six-row non-staggered sand-slot perforated pipe with a smooth inner liner (Figure 3a). The
first phase, namely, the GFO, was selected free-flow without the gate and the second GPO
for flow with gate and to consider the effect of backwater. A 10 mm propeller current meter
was used to measure the velocity profiles at each segment of the pipe (Figure 6d), and water
depth was measured using a ruler (Figure 6¢). The measurement of the velocity was taken
at 0.6Y (Y = depth of flow) from the water’s surface. The readings of flow velocity from the
current meter were taken from a digital counter that calculated the average velocity every
10 s. All measurements were done under uniform flow where the flow depth observed varies
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in a range of £2 mm, and three frequent readings were recorded at each measurement point
to record an average value of water depth for each test point. The method of using a ruler
for measuring the water depth in the subsurface channels was also reported in some studies
conducted by Kee L.C. et al. [23] and Mohammadpour R. et al. [25].

5900
ghilow from. Famp [ 1as0 1346, 1370 . |
t + - !
Upstream Baffle  Slot | i B LD | Adjustable Tallgate
\ |
-
J Test Section E
[_ I i = Outflow Tank 650
i s | o | | | y
L : i T | —
V4 Cast Iron Wheel | Slope Adjusting Device (Manual) /4 . I w
Adjustable Steel Gate Qutfiow ta Sump

Figure 4. Sectional drawing of experimental channel (unit: mm) [23] “Reprinted/adapted with
permission from Ref. [23]. 2011, Kee et al.”.

o 1900 _— 3000 a0
TESTPONT
§ G GATE OPENING
UPSTREAM PLAN VIEW DOWNSTREAM
(@)

Figure 5. (a) Schematic view of the perforated pipe test point and (b) photo of the flow measurement
segments on the top of the perforated pipe.

© (d)

Figure 6. Photographs of (a) fully open tailgate and (b) partially open tailgate, as well as (c) measuring
the depth and (d) velocity of the flow in that perforated pipe.
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2.3. Calculations of Roughness/Manning (n) of the Pipe and Froude Number (Fr) of the Flow

The hydraulic parameters considered and calculated in this study are Manning (n),
Froude number (Fr), Reynolds number (Re), flow depth (y), flow velocity, and discharge
(Q). The laboratory results were analyzed using the Manning (n) formula in metric, which
was calculated using the following Equation (1) [34]:

N—=

R3S

<=

n—

)

where

n: Manning

v: Velocity of flow (m/s)
R: Hydraulic Radius

S: Longitudinal Slope

Furthermore, the Froude number, which is related to the flow condition, was calculated
using Equation (2) and the state of flow is indicated in Table 1 [34].

Fr=— 2)

where

Fr: Froude number

V: Velocity of flow (m/s)

G: Acceleration of gravity (m?/s)
Y: Depth of the flow section (m)

Table 1. State of flow described by the Froude number [32] "Reprinted /adapted with permission
from Ref. [32]. 2007, Ab Ghani et al.”.

Froude Number, Fr State of Flow Description
Fr=1 Critical Flow celerity equal to flow velocity
Fr<1 Subcritical Slow flow—tranquil and streaming
Fr>1 Supercritical High velocity—rapid, shooting, and torrential
3. Results

The summary of the conditions of GFO (tailgate fully open) and GPO (tailgate partially
open) investigated in the flume of a perforated pipe is shown in Table 2. The flow discharges
from GFO outlets with pipe slopes of 1:750 and 1:1000 ranged higher than the flow rates
from GPO with similar slopes. The calculated flow velocities under GFO conditions in the
perforated pipe with slopes of 1:750 and 1:1000 were also higher than the velocities under
GPO conditions, while the depths of flow were lower under GFO conditions compared
to depths of flow under GPO conditions (Table 2). Froude numbers were computed for
flow in the perforated pipe under GFO and GPO flow conditions. As shown in Table 2,
subcritical and supercritical flows occurred in the perforated pipe under GFO conditions
as the computed Froude numbers were lower and higher than 1, respectively, while only
subcritical flow occurred in the pipe under GPO conditions where the flow was slow with
low velocity. Based on the calculated Reynolds number, which ranged from 38,252 to
64,801 for both GFO and GPO conditions, most of the flow was turbulent in the perforated
pipe (Table 2).
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Table 2. Experimental study on the perforated pipe.

Range
Perforated Pipe under GFO Perforated Pipe under GPO
Flow Parameter L N
Conditions Conditions
Slope 1:750 Slope 1:1000 Slope 1:750 Slope 1:1000
Flow Rate, Q (m3/s) 0.017-0.021 0.017-0.021 0.008-0.009 0.013-0.015
Velocity, V (m/s) 0.810-1.117 0.817-1.070 0.620-0.660 0.537-0.603
Flow Depth, Y (m) 0.080-0.120 0.080-0.120 0.100-0.110 0.110-0.120
Hydraulic Radius, R (m) 0.046-0.062 0.047-0.062 0.056-0.058 0.061-0.062
Reynolds Number, Re 57,912-64,801 57,124-64,393 41,041-43,103 38,252-43,579
Froude Number, Fr 0.763-1.261 0.769-1.193 0.611-0.666 0.508-0.568

Effects of Hydraulic Performance of Manning Coefficient (n) versus Flow Velocity, Flow Depth, and
Froude Number for Gate Fully Open (GFO) and Gate Partially Open (GPO) Scenarios with
Longitudinal Slopes of 1:750 and 1:1000

Manning's n for the perforated pipe was computed using Equation (1) and is shown in
Table 3. The Manning’s n calculated for two slopes of 1:750 and 1:1000 under the scenarios
of GFO and GPO ranged from 0.004 to 0.009, as shown in Table 3. In general, the n values
of the perforated pipe under the GFO condition ranged from 0.004-0.007, while for GPO
condition, the range of n values was between 0.008-0.009. In this work, the relationship
between the calculated Manning’s n for the nine points in the perforated pipe and the
hydraulic parameters of flow velocity, depth, and Froude number was evaluated, as shown
in Figures 7-9. The relationship between Manning’s n and flow velocity varied inversely,
with calculated coefficients of determination (Rz) of 0.975, 0.966, 0.819, and 0.992 for the
flow under conditions of GFO with slopes of 1:750 and 1:1000 and GPO with slopes of
1:750 and 1:1000, respectively. On the other hand, the Manning’s n decreased linearly with
increasing flow velocity (Figure 7) in the pipe under both GFO and GPO flow conditions.
Within the ranges of 0.004-0.009 obtained for the Manning’s n of the perforated pipe used
in this work, the values of velocity (v) of the flow under GFO conditions with slopes of
1:750 and 1:1000 and GPO conditions with slopes of 1:750 and 1:1000 were estimated as
v = ((0.01440 — n)/0.009175), v = ((0.01330 — n)/0.00890), v = ((0.02007 — n)/0.01814), and
v =((0.01702 — n)/0.01456), respectively (Figure 7).

Manning’s n was observed to increase with increasing flow depth for the flow con-
dition under fully open tailgate (GFO) with slopes of 1:750 and 1:1000, indicating that
the Manning’s n of the pipe varied proportionally with the depths of flow, and the re-
lationship between Manning’s n and the depths of flow was linear as the coefficients of
determination (R?) were obtained at 0.939 and 0.933 for the GFO with slopes of 1:750 and
1:1000, respectively. Within the ranges of 0.004-0.009 obtained for the Manning’s n of the
perforated pipe using Equation (1) in this work, the values of depth (d) for the flow under
GFO with slopes of 1:750 and 1:1000 were obtained as y = ((n + 0.001979)/0.07571) and
y = ((n + 0.000921)/0.05884), respectively. In the GPO flow condition, a low R? was obtained,
indicating that the Manning’s n deviated further from the regression line, as shown in
Figure 8. This is due to the effect of backwater under the GPO condition.

Table 3. Ranges of Manning’s n for the perforated pipe under phases of GFO and GPO with slopes of
1:750 and 1:1000.

Range
Perforated Pipe under GFO Perforated Pipe under GPO
Parameter - o
Conditions Conditions
Slope 1:750 Slope 1:1000 Slope 1:750 Slope 1:1000

Manning'n 0.004-0.007 0.004-0.006 0.008-0.009 0.008-0.009
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Figure 7. Relationship between flow velocity and Manning’s n under the phases of GFO and GPO
with longitudinal slopes of 1:750 and 1:1000.

Manning's n Vs Flow Depth (m)
Manning n_1:750_GFO*Depth_1:750_GFO Manning n_1:1000_GFO*Depth_1:1000_GFO
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w o 0.0040
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e o — n=0.02413-0.1326y R-sq=0.150
0.0084 e o ——_ 0.0087 *
n=0.009410-0.009258y R-sq=0.199
0.0082 0.0084
Y L ]
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0.08 0.09 0.10 on 0.12 0.1130 0.1135 0.1140 0.1145 0.1150
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Figure 8. Relationship between flow depth and Manning’s n under the phases of GFO and GPO with
longitudinal slopes of 1:750 and 1:1000.

The Manning coefficients were also observed to decrease with increasing Froude
numbers, which are proportional to the velocities of the flow according to Equation (2).
It was shown that the relationship between Manning’s n and the Froude number (Fr)
was inversely linear as the calculated coefficients of determination (R?) were obtained at
0.971, 0.979, 0.999, and 0.999 for the flow under conditions of GFO with slopes of 1:750
and 1:1000 and GPO with slopes of 1:750 and 1:1000, respectively (Figure 9). Within
the ranges of 0.004-0.009 obtained for the Manning’s n of the perforated pipe used in
this work, the values of Froude number (Fr) of the flow under GFO with slopes of
1:750 and 1:1000 and GPO conditions with slopes of 1:750 and 1:1000 were obtained as
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Fr = ((0.01113 — n)/0.005630), Fr = ((0.009894 — n)/0.005168), Fr = ((0.01707 — n)/0.01350),
and Fr = ((0.01742 — n)/0.01620), respectively (Figure 9).

Manning's n Vs Froude Number (Fr)
Manning n_1:750_GFO*Fr_1:750_GFO Manning n_1:1000_GFO*Fr_1:1000_GFO
0007 * 00060 *
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Figure 9. Relationship between the Froude number (Fr) and the Manning’s n under the phases of
GFO and GPO with longitudinal slopes of 1:750 and 1:1000.

4. Discussion

Flow velocities in the perforated pipe under two slopes of 1:750 and 1:1000 under
phases of GFO and GPO were proportional to the flow rates (Table 2), which results agreed
with the findings of the research done by Kee et al. [23] and Bakry [35] using modular
channels. The ranges of flow velocity and depth in the GPO condition were lower than
those ranges in the GFO condition under two slopes of 1:750 and 1:1000 (Table 2), which
was due to the impact of backwater that occurred at the GPO condition. The flow depth
downstream of the GPO perforated pipe increased because of the effect of the existing gate
at the end of the flume. This result followed a similar trend under a study conducted by
Mohammadpour et al. [25] using modular channels. Obviously, the GFO condition gave
lower Manning’s n values for the perforated pipe compared to the GPO condition (Table 3).
A similar trend was also seen in a previous study conducted by Mohammadpour et al. [25]
using modular channels.

The relationship between the obtained Manning’s n for the perforated pipe under
two slopes of 1:750 and 1:1000 under phases of GFO and GPO and the measured flow
velocities in the perforated pipe in this work (Figure 7) agreed with Manning’s equation
(Equation (1)), where the Manning coefficient varied inversely with flow velocity [34]. This
relationship followed a similar pattern to studies conducted by Kee et al. [23], Moham-
madpour et al. [25], Barky [35], Trout [36], and Chang et al. [37] using modular channels
and Chen et al. [38], Fathi-Moghadam and Drikvandi [39], and Conesa-Garcia et al. [40]
using vegetated channels for the runoff infiltration purposes. The relationship between
the obtained Manning’s n for the perforated pipe and the measured Froude numbers (Fr)
also followed a trend similar to studies conducted by Kee et al. [23] and Mohammad-
pour et al. [25] using modular channels and Chen et al. [38] and Fathi-Moghadam and
Drikvandi [39] using vegetated channels for the runoff infiltration purposes. The findings
of the laboratory simulation in this work indicated that with the implementation of the
perforated pipes in swales and infiltration trenches in Malaysia, the speed and discharge of
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tropical monsoon runoff will be reduced, which aids in reducing the peak runoff volume
and preventing the occurrence of flash flooding in the cities. Thus, for the upcoming work
at REDAC, the performance of a six-row sand-slot perforated pipe located beneath the
layers of soil, sand, aggregates chip stones, and gravel of the laboratory infiltration trenches
in terms of determining the infiltration and exfiltration rates of the perforated pipe will be
investigated, which is shown in Figure 10.

- 1900 N 3000 1000
A | TEST POINT
b= e | P GATE OPENING
w i
! J——- |
UPSTREAM PLAN VIEW DOWNSTREAM
g R sac GIRANERS SIS : | /TEST POINT J| GATE OPENING
1 . PERFORATED PIPE . /i
B 3000 -l 1000 |
UPSTREAM SIDE VIEW DOWNSTREAM

Figure 10. Sketch of a six-row perforated pipe acting as subsurface drainage beneath an infiltration
trench filled with gravel and sand.

5. Conclusions

Research was carried out to investigate the flow resistance and the Manning co-
efficients effects along a six-row regular-perforated sand-slot pipe acting as subsurface
drainage on the hydraulic parameters of flow velocity, depth, and the Froude number to
control the quantity of stormwater runoff under two flow conditions of GFO and GPO
with two slopes of 1:750 and 1:1000 in a laboratory flume in this work, which concluded
as follows:

(@) The results of a flow condition in the above perforated pipe under GFO showed a
significant relationship between the Manning’s n and other hydraulic parameters of
flow velocity, depth, and Froude number, and the R? value was close to 1 with both
pipe slopes of 1:750 and 1:1000. Since the roughness coefficient (Manning’s n) of the
pipe increases, it is able to reduce the flow velocity in the pipe, resulting in a lower
peak of flow and the ability to control the quantity of the storm water in the subsurface
urban drainages. An inverse linear relationship between the Manning coefficients
and the flow velocity was also achieved with the coefficients of determination (R?) of
0.975 and 0.966, which resulted in predicting the values of flow velocities based on the
calculated Manning’s n that fell within the range of 0.004 to 0.009 using the equations
v =((0.01440 — n)/0.009175) and v = ((0.01330 — n)/0.00890), with the various pipe
slopes of 1:750 and 1:1000, respectively. However, as the Manning’s n increased,
the depth of flow in the perforated pipe also increased linearly, and the equations
y = ((n+0.001979)/0.07571) and y = ((n + 0.000921) /0.05884) were attained when the
ranges of Manning’s n were within 0.004 to 0.009 for the pipe with slopes of 1:750 and
1:1000, respectively. On top of that, the calculated Froude numbers showed an inverse
linear relationship with the calculated Manning’s n of the pipe, and the equations
Fr = ((0.01113 — n)/0.005630) and Fr = ((0.009894 — n)/0.005168) can be found with
the Manning’s n ranging between 0.004 and 0.009 with pipe slopes of 1:750 and 1:1000,
respectively.
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(b) In addition, in a flow condition in the perforated pipe under GPO, the R? of 0.819
and 0.992 were achieved because of the converse linear relationship between the
Manning coefficients and the flow velocity, which resulted in predicting the values
of flow velocities based on the calculated Manning’s n that fell within
the range of 0.004 to 0.009 using the equations v = ((0.02007 — n)/0.01814) and
v = ((0.01702 — n)/0.01456), with the various pipe slopes of 1:750 and 1:1000, re-
spectively. However, it was perceived that increasing and decreasing the Manning
coefficients did not significantly affect the depths of flow in the pipe with both pipe
slopes. Even so, an inverse linear relationship was obtained between the Froude
number and the Manning’s n, yielding the equations Fr = ((0.01707 — n)/0.01350)
and Fr = ((0.01742 — n)/0.01620) with R? approximately close to 1.00 to find the
Froude numbers with the Manning’s n ranging between 0.004 and 0.009, respectively.
Thus, from the findings of this work, it was concluded that by using a perforated
pipe with a high Manning coefficient (n) along the pipe under both GFO and GPO
conditions with two slopes of 1:750 and 1:1000, the velocity of runoff inflow will
be decreased, thereby reducing the peak runoff volume and flash flooding. There-
fore, the subsurface perforated pipe under the GFO and GPO conditions can be
recommended to be used for the best management practices (BMP) in sustainable
stormwater management.
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