
Citation: Xiao, W.; Zhao, X.; Teng, Y.;

Wu, J.; Zhang, T. Review on

Biogeochemical Characteristics of

Typical Antibiotics in Groundwater

in China. Sustainability 2023, 15, 6985.

https://doi.org/10.3390/su15086985

Academic Editor: Fernando António

Leal Pacheco

Received: 16 March 2023

Revised: 16 April 2023

Accepted: 19 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Review on Biogeochemical Characteristics of Typical
Antibiotics in Groundwater in China
Wenyu Xiao 1, Xiaobing Zhao 2,*, Yanguo Teng 1,*, Jin Wu 3 and Tianyi Zhang 3

1 Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of
China, College of Water Sciences, Beijing Normal University, Beijing 100875, China

2 Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and
Environment, Beijing 100012, China

3 College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
* Correspondence: xiao66cy@163.com (X.Z.); ygteng@bnu.edu.cn (Y.T.)

Abstract: The problem of antibiotic contamination in the environment has attracted much attention
in recent years. However, studies on antibiotic contamination in groundwater have only emerged
in the last 15 years. In this study, we systematically reviewed the detection methods, distribution
characteristics, risk, fate, and sources of antibiotics in groundwater in China, listed the concentrations
of the main antibiotic types, and obtained the maximum concentrations by comparing the literature
published in the last 10 years. The results show that 65 antibiotics were detected in groundwater in
China, with sulfonamides and quinolones receiving the most attention. Antibiotic concentrations
are influenced by hydrogeological conditions and seasonal variations, and the ecological risk in
most areas is low to medium risk, which is relatively manageable. The highest concentrations found
in most of the literatures were in the range of 10–1000 ng/L, but the maximum concentration can
reach 47,444.5 ng/L, which requires extra attention. In addition, this study makes recommendations
for improving groundwater monitoring surveys and protection measures to prevent the antibiotic
contamination of groundwater more effectively.
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1. Introduction

Currently, antibiotics, which mainly include quinolones (QNs), sulfonamides (SAs),
tetracyclines (TCs), macrolides (MCs), chloramphenicols (CPs), β-Lactams (β-Ls), and
lincosamides (Lins), have been widely used in human and veterinary medicine and are
consumed in huge quantities [1–5]. According to surveys, the global consumption of antibi-
otics in agriculture ranges from 63,000 to 240,000 tons annually, and that of antimicrobials
in food animal production was 63,151 (±1560) tons by estimation in 2010 [1,3]. China is a
major producer and consumer of antibiotics. In 2013, the total usage was about 162,000 tons
in China, 52% of which was used for animals and 48% of which was for humans. With
the implementation of China’s policy, in 2020, the total usage of veterinary antimicrobials
declined to 32,776.298 tons [6–8].

Unfortunately, antibiotics cannot be completely removed, and eventually they are
released into the environment, affecting all kinds of organisms—even humans. Approx-
imately 70% of antibiotics are directly or indirectly released into the environment every
year in China, and according to the reports, antimicrobial resistance will cause the deaths
of 300 million individuals worldwide and economic damage amounting to 60–100 trillion
dollars in the next 35 years [9,10]. In terms of the impact of antibiotics, antibiotics can
exhibit cytotoxic effects in cells because of the induction of apoptosis, affecting the richness
of the microbial community [11,12]. When antibiotics are released into the environment
they can be toxic to algae, causing a significant decrease in photosynthesis, and can ad-
versely affect the liver, kidneys, and reproductive organs of animals over time. For example,
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tetracycline (TC) causes significant developmental delay in zebrafish embryos, while ce-
fotaxime, enrofloxacin, tetracycline, and sulfamonomethoxine significantly disrupt the
immune response of fish macrophages in vitro [13–15]. Moreover, according to the study
of trophodynamics in a marine food web from Laizhou Bay by Liu et al., SAs and trimetho-
prim have the possibility of biomagnification with trophic magnification factors of 1.2–3.9,
and their low metabolic transformation and effective assimilation in animals at higher
trophic levels are their possible reasons for biomagnification [16]. Most antibiotics are
partially metabolized in humans or animals, and whether through drinking groundwater
or eating animals who have antibiotic toxicity, the intake of antibiotics can have an impact
on the human body [16]. Zhang et al. suggested that chronic exposure to sulfonamides may
produce cytotoxicity, reduce cellular antioxidant capacity, and cause inflammation, and may
also cause genotoxicity at high concentrations. Long-term exposure to mixed sulfonamides
may cause liver tissue damage and affect the intestinal flora, resulting in adverse effects
on human health. [17]. Third, the occurrence of antibiotics in the environment may give
rise to the occurrence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria
(ARBs) in the environment, and their migration, transformation, and diffusion may also
have potential effects on the environment and humans [15].

What is worse, antibiotics not only pollute surface water, but also filter into ground-
water by the interaction of surface water and soil [18,19]. However, according to statistics,
groundwater utilization in China is large, and its average utilization rate is close to 30% [20].
As one of the important water resources, groundwater is commonly used for irrigation, in-
dustrial applications, services, and residential use [21]. In the north, groundwater supplies
about 60% of the total urban water use, about 50% of the total industrial water use, and
about 25% of the total agricultural water use. In the 41 major cities in the south, 39% of the
water supply is groundwater [20].

Unfortunately, less attention has been paid to antibiotic contamination in groundwater
compared to the organic and inorganic indicators. In order to have a clear understanding of
antibiotics in groundwater in China, our study here integrates the published research results
of the past ten years, sorts out the concentrations of antibiotics detected in groundwater
in China, and summarizes detection methods, concentrations, ecological risks, sources,
distribution characteristics, and the fate of antibiotics so as to provide a scientific basis for
the prevention and control of antibiotic pollutants.

2. Monitoring and Analysis of Antibiotics in Groundwater
2.1. Pretreatment Methods

As the concentration of antibiotics in groundwater in China is at trace level, the solid
phase extraction technique (SPE) is usually used for pre-treatment enrichment. It uses
selective adsorption and selective elution to enrich, separate, and purify the samples, which
can be done simultaneously to improve the detection sensitivity, processing speed, and
reproducibility, but the cost is high. In the studies of antibiotics in groundwater in China,
the water samples go through the steps of filtration, pH adjustment, activation of the
column, passing through the cartridge, washing, elution, evaporation, addition of internal
standard substances, volume replenishment with methanol, and so on.

In order to determine antibiotics in groundwater more effectively, many scholars
have improved and elaborated sample extraction schemes. The Oasis HLB SPE column
is commonly used for sample extraction. It is a hydrophilic-lipophilic polymeric packing
material that can purify and enrich compounds over a wide pH range [22]. Na2EDTA is
generally added in the pretreatment process because the concentration of metal cations in
groundwater is high and easily complexed with antibiotics, and Na2EDTA can complex
the metal cations and inhibit the complexation of metal cations with antibiotics, increasing
the recovery rates of antibiotics [2]. Tong et al. found that the recovery rates of TCs were
enhanced nearly 20% and those of other target compounds were not more than 10% in
samples with the addition of Na2EDTA, compared with samples without the addition of
Na2EDTA [23]. For water sample filtration, 0.2 µm, 0.22 µm, 0.45 µm, and 0.7 µm filter
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membranes are usually used [2,5,19,23–27]. For pH adjustment, different antibiotics have
different recovery rates at different pH conditions. Yang found that when pH was 7, the
ionization of FQs was inhibited, so it could be better retained on the packing polymer [7].
Tong L et al. analyzed SAs, FQs, TCs, and CAP, and found that the recovery rates were
within acceptable ranges from 54.2% to 98.7% under weakly acidic condition at pH 4.0 [23].
Therefore, during the pretreatment process, the pH of the water sample needs to be adjusted
according to the molecular structure characteristics of the analyzed antibiotics, which helps
to ensure the accuracy of the assay results. For column activation, methanol and water, or
methanol and Na2EDTA, are often used as activators. When passing through the cartridges,
due to the significant impact of the drying of the extraction column on the adsorption effect
of antibiotic, attention must be paid to the continuity of the water samples and try to avoid
interruption of the flow so as not to damage the membrane liquid on the absorbent or affect
the recovery rate and reproducibility. At the same time, it should be noted that a slow flow
rate can lead to the decomposition of antibiotics [7].

Notably, a few researchers have attempted antibiotic enrichment by solid phase mi-
croextraction (SPME). Esponda, SM et al. optimized SPME with regard to time, temperature,
pH, and ionic strength using a CW-TPR fiber, applied it with micellar desorption methodol-
ogy to the determination of antibiotics in several environmental liquid samples, including
groundwater, and the results were satisfactory with the mean recoveries of 81–116% [28].
However, Mcclure E L et al. suggested that it may not be feasible to apply SPME to waters
with lower antibiotic concentrations. They used high performance liquid chromatography
tandem mass spectrometry (HPLC-MS/MS) to analyze the influent and effluent of sewage
treatment plants and compared the difference in extraction effectiveness between SPE and
SPME. It was found that the RSD of SPE ranged from 1–19%, while that of SPME ranged
from 7–50%. The LOD of SPE influent and effluent were 0.41–6.1 ng/L and 0.08 to 1.8 ng/L,
while that of SPME ranged from 2.8 to 410 ng/L and 4.1 to 77 ng/L, respectively [29].

2.2. Analytical Methods

Commonly used antibiotic analysis methods in aquatic environment can be divided
into enzyme-linked immunosorbent assay (ELISA), capillary electrophoresis, chemilumi-
nescence analysis, electrochemical analysis, liquid chromatography, and their combination
methods, which have different characteristics when applied to antibiotic detection [7,30–33].
Among them, liquid chromatography (LC), including LC, HPLC and ultra high-performance
liquid chromatography (UPLC), is most commonly used in the detection of environmen-
tal water.

Detectors for LC include UV, fluorescence detector (FD), electrical conductivity de-
tector (ECD), diode array detector (DAD), and MS, which have different advantages and
disadvantages. Diode array detector (DAD), UV, and MS have been used in the detection
of antibiotics in groundwater [26,34–36]. Among them, HPLC-MS/MS and UPLC-MS/MS
are important methods for qualitative and quantitative detection, with high sensitivity
and accuracy, and can simultaneously detect multiple antibiotics in samples. Because the
antibiotics concentration is reduced by adsorption and degradation in groundwater and
soil, the concentration of antibiotics in groundwater is much lower than that in surface
water, sediments, and wastewater. In China, HPLC-MS/MS and UPLC-MS/MS are more
common in groundwater antibiotics analysis.

Many authors have also elaborated and improved LC detection schemes for more effi-
cient determination of antibiotics in groundwater. C18 reversed-phase chromatography is
commonly used because it is suitable for the separation of neutral or non-ionic compounds
that are soluble in water/organic mixtures. For elution, the most used method is gradient
elution, namely the concentration ratio of the mobile phase varies to a certain extent to
achieve better separation in the same analytical cycle. The mobile phase is mainly divided
into organic and aqueous phases. For the aqueous phase, 0.1% formic acid water is mainly
used [36–44]. Lang and Yang found that using methanol alone as the organic mobile phase
resulted in significant tail peaks for most antibiotics [2,7]. Conversely, acetonitrile makes the
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elution of most antibiotics fast and the separation of all substances may be poor, with peak
overlap. Lang et al. found that using 64 antibiotic assays with methanol/acetonitrile (1/1,
v/v) as an organic mobile phase not only ensures that the target analytes can be separated
within 15 min of detection, but also makes the peak pattern without significant tailings and
strong symmetry, improving accuracy [2]. In addition, the sensitivity of antibiotic detection
was significantly improved with the addition of 0.1% formic acid in the organic phase
compared to no formic acid and the addition of 0.2% formic acid. However, Yang found
that for the detection of FQs in isocratic elution, when the acetonitrile concentration ratio
was above 50%, it could not be completely separated, and when the concentration ratio was
40%, it could be completely separated within 22 min [7]. Therefore, the concentration ratio
of the eluate needs to be adjusted according to the specific assay target and assay method.

For MS detectors, the triple quadrupole mass spectrometer commonly used for mea-
suring antibiotic concentrations in water has shown some consistency in the detection
schemes of scholars. It a spatial tandem mass spectrometry detection technique which
can accurately detect the mass-to-charge ratio of the parent ions of the target compound
and the characteristic daughter ions of the target compound with a low LOD, suitable for
multi-component trace analysis [2]. It is usually equipped with an electrospray ionization
(ESI) source. ESI is the most commonly used ionization method in antibiotic analysis which
is excellent for manipulation and suitable for ionizing polar and non-polar compounds [45].
For MS/MS monitoring mode, the positive ionization mode and the multiple reactions
monitoring mode (MRM) are usually operated.

3. Distribution of Typical Antibiotics in Groundwater

The distribution of antibiotics in the environment can be influenced by many factors.
Due to the different residence time and distance from the contamination source to the
sampling well, groundwater has different degrees of attenuation and dilution. Therefore,
the detected concentration may be affected by various factors such as the contamination
source, sampling location, sampling depth, etc. [46,47]. Based on the investigations of
many scholars, we found that the concentrations of antibiotics in groundwater can vary
greatly due to different sampling seasons, different hydrogeological conditions, and the
inherent properties of antibiotics (such as water solubility, adsorption, degradation, and so
on). This chapter compiles the concentrations of antibiotics in the retrieved literature, as
well as the effect of seasonal variation and hydrogeological conditions on the concentration
of antibiotics in groundwater.

3.1. Levels of Typical Antibiotics in Groundwater

This study summarizes the concentrations of antibiotics detected in groundwater in
China from published reviews. The main types of detection (QNs, SAs, TCs, MCs, which
we consider typical antibiotics) and their corresponding concentrations in different regions
are shown in Tables 1–4. To date, a total of 64 antibiotics have been detected over the period
2007–2020, with the study areas being in northern and southern China. In the north, there
are more studies on groundwater in Beijing area, and in the south, there are more studies
on Jianghan Plain. TMP was classified as SAs in most studies because many scholars used
TMP as a sulfonamide potentiator in their studies [48]. QNs received the most attention
and are frequently detected, followed by SAs, MCs, TCs, CPs, β-Ls, and Lins when TMPs
are classified as SAs. Nitroimidazoles, aminocyclitols, and diaminopyrimidines have not
received much attention but can be detected in groundwater.
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Table 1. Comparison of QNs antibiotics in different regions.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North China

North China Difloxacin ND-22.05 [49]

North of the North
China Plain

Norfloxacin ND-7.92
[50]Ciprofloxacin ND-10.71

Enrofloxacin ND-33.29

Harbin

Norfloxacin 0.15–0.89

[5]
Ofloxacin 0.02–0.05

Ciprofloxacin 0.59–1.06
Enrofloxacin 0.19–0.64

Xinjiang

Pefloxacin 2.34–17.60

[38]

Norfloxacin 2.91–9.85
Ofloxacin 0.75–3.55

Ciprofloxacin 2.10–3.35
Marbofloxacin 0.85–14.85

Fleroxacin 1.10–17.15
Danofloxacin 0.92–4.82
Sarafloxacin 0.36–2.35

Beijing

Norfloxacin ND-657.7

[7,26,36,51]

Ofloxacin ND-152.1
Ciprofloxacin ND-27.4
Enrofloxacin ND-307.3

Difloxacin ND-9.2
Lomefloxacin ND-261.4

Tianjin Ciprofloxacin ND-42.5 [41]

Xiong’an New Area

Norfloxacin ND-0.18

[27]

Ofloxacin ND-1.6
Ciprofloxacin ND-6.38
Enrofloxacin ND-0.24
Flumequine ND-3.01

Enoxacin ND-7.52
Nalidixic acid ND-7.41
Danofloxacin ND-0.17
Sarafloxacin ND-0.29

Shijiazhuang

Norfloxacin ND-32.2

[19,42,52]

Ofloxacin ND-382.2
Ciprofloxacin ND-26.8
Enrofloxacin ND-182.2

Difloxacin ND-17.50
Oxolinic Acid 0.42–4.13
Flumequine 1.23–52.20

Pipemidic Acid ND-14.20
Marbofloxacin ND-1.44

Enoxacin ND-11.30
Fleroxacin ND-14.70

Sarafloxacin ND-0.96
Lomefloxacin 6.07 (Maximum)
Moxifloxacin 10.00 (Maximum)
Nalidixic acid 11.70 (Maximum)
Danofloxacin 12.80 (Maximum)

Cinoxacin 41.10 (Maximum)
Sparfloxacin 58.40 (Maximum)
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Table 1. Cont.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

Qingdao

Norfloxacin 23.5 (Maximum)

[2]

Ofloxacin 25.3 (Maximum)
Ciprofloxacin 19.4 (Maximum)
Enrofloxacin 13.2 (Maximum)

Difloxacin 19.1 (Maximum)
Flumequine 14.9 (Maximum)

Pipemidic Acid 25.4 (Maximum)
Enoxacin 57.7 (Maximum)

Fleroxacin 25.2 (Maximum)
Lomefloxacin 22.1 (Maximum)
Moxifloxacin 4.8 (Maximum)
Nalidixic acid 20.9 (Maximum)
Danofloxacin 15.0 (Maximum)

Cinoxacin 9.2 (Maximum)
Sparfloxacin 10.9 (Maximum)

South China

Changzhou

Norfloxacin 40.6–108.5

[36]

Ofloxacin 1.0–3.0
Ciprofloxacin ND-61.5
Enrofloxacin ND-39.4

Difloxacin 6.2–32.6
Lomefloxacin ND-12.6

Jianghan Plain

Norfloxacin ND-142

[24,25,39,46,53,54]

Ofloxacin ND-42.66
Ciprofloxacin ND-28.2
Enrofloxacin ND-41.8

Enoxacin ND-24.10
Fleroxacin ND-10.94

Lomefloxacin ND-15.6
Gatifloxacin ND-21.61
Sparfloxacin ND-39.49

Kaiyang

Norfloxacin 442.0 (Maximum)

[2,43]

Ofloxacin 1200.0 (Maximum)
Ciprofloxacin 86.4 (Maximum)
Enrofloxacin 4.4 (Maximum)

Oxolinic Acid 9.43 (Maximum)
Difloxacin 2.6 (Maximum)

Flumequine 22.6 (Maximum)
Pipemidic Acid 7.4 (Maximum)

Enoxacin 34.0 (Maximum)
Fleroxacin 8.00 (Maximum)

Lomefloxacin 23.23 (Maximum)
Moxifloxacin 26.9 (Maximum)
Nalidixic acid 20.5 (Maximum)
Danofloxacin 8.9 (Maximum)

Cinoxacin 508.6 (Maximum)
Sparfloxacin 8.4 (Maximum)
Sarafloxacin 9.10 (Maximum)

Jinjiang and Yuanhe
River Basins

Ofloxacin ND-5.89

[4,55]
Enrofloxacin ND-47.47

Enoxacin ND-3.02
Fleroxacin ND-6.41

Sparfloxacin ND-0.23
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Table 1. Cont.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

Anshun

Norfloxacin 230 (Maximum)

[9]

Ofloxacin 46.7 (Maximum)
Ciprofloxacin 17.9 (Maximum)
Oxolinic Acid 60.6 (Maximum)

Enoxacin 12 (Maximum)
Nalidixic acid 12.6 (Maximum)

Bijie Norfloxacin 2.37–5.29
[56]Ofloxacin 5.32–14.63

The Pearl River Delta Ofloxacin 9.1–44.2 [57]

North China and South China

Typical Cities in
China that Use

Reclaimed Water for
Groundwater

Recharge

Norfloxacin ND-503

[40]

Ofloxacin ND-80
Ciprofloxacin ND-155
Enrofloxacin ND-49

Difloxacin ND-35
Lomefloxacin ND-159

the Northern and
Southwestern

Regions of China

Norfloxacin 442.0 (Maximum)

[44]

Ofloxacin 1199.7 (Maximum)
Ciprofloxacin 100.6 (Maximum)
Enrofloxacin 48.5 (Maximum)

Difloxacin 5.8 (Maximum)
Oxolinic Acid 24.6 (Maximum)
Flumequine 22.6 (Maximum)

Pipemidic Acid 126.4 (Maximum)
Enoxacin 59.5 (Maximum)

Fleroxacin 10.8 (Maximum)
Lomefloxacin 9.1 (Maximum)
Moxifloxacin 26.9 (Maximum)
Nalidixic acid 20.5 (Maximum)
Danofloxacin 16.9 (Maximum)

Cinoxacin 15.4 (Maximum)
Sparfloxacin 13.4 (Maximum)

Beijing and
Changzhou

Norfloxacin 10.4–96.8
[37]Ofloxacin 1.00–36.2

Enrofloxacin 3.03–70.9

Table 2. Comparison of SAs antibiotics in different regions.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North China

North China

Sulfamonomethoxine 3.43–12.92

[49]

Sulfisoxazole 1.51–255.07
Sulfamethoxazole 7.45–54.19

Trimethoprim 0.23–4.89
Sulfamethazine 0.49–56.47

Sulfathiazole 2.24–54.40
Sulfachloropyridazine 2.48–12.40

Sulfamerazine 0.66–2.89
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Table 2. Cont.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North of the North
China Plain

Sulfachloropyridazine ND-0.44

[50]
Sulfadiazine ND-45.4

Sulfamethazine ND-1.61
Trimethoprim ND-3.18

Sulfamethoxazole ND-11.13

Harbin

Sulfamerazine 0.08–15.3

[5,58]

Sulfathiazole 1.55–612.0
Sulfapyridine 0.34–0.43
Sulfadiazine 0.09–68.6

Sulfamethizole 0.05–12.4
Sulfaphenazole 0.19–2.61

Sulfameter 0.29–4.35
Sulfamethoxazole ND-6.95

Sulfamonomethoxine 0.13–1.94
Sulfamethoxypyridazine 7.20–29.29

Sulfamethazine ND-0.55

Xinjiang

Sulphaguanidine 1.00–1.70

[38]

Sulfadimethoxine ND-2.30
Sulfamerazine 0.41–0.50
Sulfathiazole 0.10–4.20
Sulfapyridine 0.50–30.00

Sulfaquinoxaline ND-12.82
Trimethoprim ND-55.19
Sulfadoxine ND-27.86

Sulfamonomethoxine ND-44.27

Beijing

Sulfadiazine ND-96.8

[26,51]
Sulfamethazine ND-236
Trimethoprim ND-8.7

Sulfamethoxazole ND-9.41

Tianjin Sulfadoxine ND-78.3
[41]Sulfamethoxazole 7.2–9.5

Xiong’an New Area

Sulfadimethoxine ND-1.67

[27]

Sulfamerazine ND-0.17
Sulfamethoxypyridazine ND-0.97

Sulfathiazole ND-1.72
Sulfapyridine ND-3.60
Sulfadiazine ND-0.83

Sulfaquinoxaline ND-1.53
Sulfamethazine ND-1.74
Trimethoprim ND-0.59
Sulfadoxine ND-2.21

Sulfamethizole ND-0.08
Sulfamethoxazole ND-3.69

Shijiazhuang

Sulphaguanidine 3.87 (Maximum)

[19,42]

Sulfamonomethoxine 8.20 (Maximum)
Sulfachloropyridazine 1.33 (Maximum)

Sulfapyridine 9.95 (Maximum)
Sulfacetamide 1.95 (Maximum)
Sulfadiazine 46.3 (Maximum)

Trimethoprim 9.2 (Maximum)
Sulfamethoxazole 105.7 (Maximum)
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Table 2. Cont.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

Qingdao

Sulfadimethoxine 19.6 (Maximum)

[2]

Sulfachloropyridazine 26.5 (Maximum)
Sulfapyridine 21.9 (Maximum)

Sulfamethazine 13.4 (Maximum)
Sulfadoxine 38.6 (Maximum)

Sulfamethizole 46.5 (Maximum)
Sulfameter 35.1 (Maximum)

Sulfisoxazole 21.2 (Maximum)
Sulfacetamide 20.3 (Maximum)

Jinan
Sulfadiazine ND-56.3

[59]Sulfamethazine ND-54.1
Sulfamethoxazole ND-2.7

South China

Jianghan Plain

Sulfamerazine ND-7.0

[24,25,39,46,53,54]

Sulfamethoxypyridazine ND-2.06
Sulfathiazole ND-1.50
Sulfapyridine ND-4.6
Sulfadiazine ND-14.89

Sulfaquinoxaline ND-26.2
Sulfamethazine ND-15.9

Sulfameter ND-2.29
Trimethoprim ND-5.2

Sulfamethoxazole ND-39.54

Shanghai

Sulfadimethoxine 23.8

[60]
Sulfamerazine 38.5

Sulfameter 123.3
Sulfamethoxazole 241.5

Kaiyang

Sulphaguanidine 6.33 (Maximum)

[2,43]

Sulfamethoxypyridazine 7.50 (Maximum)
Sulfachloropyridazine 1.7 (Maximum)

Sulfapyridine 45.33 (Maximum)
Sulfamethazine 3.9 (Maximum)
Trimethoprim 433.40 (Maximum)
Sulfadoxine 1.0 (Maximum)

Sulfamethizole 19.3 (Maximum)
Sulfameter 1.0 (Maximum)

Sulfamethoxazole 1090.40 (Maximum)
Sulfamonomethoxine 123.20 (Maximum)

Sulfacetamide 1.5 (Maximum)

Jinjiang and Yuanhe
River Basins

Sulfathiazole ND-1.15

[4,55]
Sulfaquinoxaline ND-0.14
Sulfamethazine ND-0.31

Sulfamethoxazole 18.1–29.72

Bijie Sulfadiazine 0.24–3.47
[56]Sulfamethazine 1.03–10.37

Guilin

Sulfadimethoxine ND-1.81

[61]

Sulfamerazine ND-8.20
Sulfamethoxypyridazine ND-45.06
Sulfachloropyridazine 0.34–13.25

Sulfamethazine 0.49–56.64
Trimethoprim ND-4.32

Sulfamethoxazole ND-11.58

The Pearl River Delta
Trimethoprim 3.3–10.5

[57]Sulfamethoxazole 28.7–124.5
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Table 2. Cont.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North China and South China

Typical Cities in
China that Use

Reclaimed Water for
Groundwater

Recharge

Sulfamerazine ND-15

[40]

Sulfachloropyridazine ND-117
Sulfathiazole ND-32

Sulfamethazine ND-49
Trimethoprim ND-40

Sulfamethoxazole ND-250
Sulfisoxazole ND-8.4

Sulfamonomethoxine ND-29

the Northern and
Southwestern

Regions of China

Sulfadimethoxine 65.5 (Maximum)

[44]

Sulfachloropyridazine 153.4 (Maximum)
Sulfapyridine 56.4 (Maximum)

Sulfamethazine 3.9 (Maximum)
Sulfadoxine 4.2 (Maximum)

Sulfamethizole 28.7 (Maximum)
Sulfameter 15.6 (Maximum)

Sulfisoxazole 9.2 (Maximum)
Sulfacetamide 3.7 (Maximum)

Table 3. Comparison of TCs antibiotics in different regions.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North China

Harbin Doxycycline 0.35–3.91 [5]

Xinjiang Doxycycline 0.10–0.30 [38]

Beijing Oxytetracycline ND-3.2 [51]

Tianjin Tetracycline ND-5.2 [41]

Shijiazhuang
Oxytetracycline 1364.7 (Maximum)

[42]Tetracycline 1082.5 (Maximum)
Chlorotetracycline 47,444.5 (Maximum)

Qingdao

Oxytetracycline 22.7 (Maximum)

[2]
Tetracycline 15.5 (Maximum)

Chlorotetracycline 11.7 (Maximum)
Doxycycline 3.2 (Maximum)

South China

Jianghan Plain

Oxytetracycline ND-28.7

[24,25,39,46,53,54]
Tetracycline ND-170.6

Chlorotetracycline ND-86.6
Doxycycline ND-64.2

Kaiyang
Oxytetracycline 237.0 (Maximum)

[2,43]Tetracycline 184.0 (Maximum)
Chlorotetracycline 7.1 (Maximum)

Jinjiang and Yuanhe
River Basins

Oxytetracycline ND-2.65

[4,55]
Tetracycline 0.21 (Maximum)

Chlorotetracycline ND-4.18 (Maximum)
Doxycycline ND-1.56 (Maximum)
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Table 3. Cont.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North China and South China

Typical Cities in China
that Use Reclaimed

Water for Groundwater
Recharge

Oxytetracycline ND-39

[40]
Tetracycline ND-48

Chlorotetracycline ND-76
Doxycycline ND-39

The Northern and
Southwestern Regions

of China

Oxytetracycline 237.3 (Maximum)
[44]Tetracycline 184.2 (Maximum)

Chlorotetracycline 8.0 (Maximum)

Table 4. Comparison of MCs antibiotics in different regions.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North China

North China Erythromycin ND-1.71 [49]

Harbin
Roxithromycin 0.16–1.58

[5]Erythromycin 0.24–23.3

Xinjiang
Roxithromycin ND-19.87

[38]Erythromycin 0.31–1.50
Clarithromycin ND-0.43

Beijing Erythromycin ND-1.21 [26]

Shijiazhuang Roxithromycin 146.2 (Maximum)
[19,42]Erythromycin 3.90 (Maximum)

Qingdao

Roxithromycin 26.5 (Maximum)

[2]
Erythromycin 11.1 (Maximum)

Spiramycin 6.8 (Maximum)
Josamycin 24.1 (Maximum)

Jinan Azithromycin ND-28.0 [59]

South China

Jianghan Plain

Roxithromycin ND-97.13

[24,25,39,46,53,54]
Erythromycin ND-377.8

Spiramycin ND-18.2
Clarithromycin ND-115.28
Azithromycin ND-13.10

Kaiyang

Tilmicosin 7.70 (Maximum)

[2,43]

Roxithromycin 84.0 (Maximum)
Erythromycin 117.7 (Maximum)

Clarithromycin 48.80 (Maximum)
Spiramycin 167.07 (Maximum)
Josamycin 1.5 (Maximum)

Azithromycin 146.97 (Maximum)

Jinjiang and Yuanhe River Basins Roxithromycin ND-0.07
[4,55]Clarithromycin ND-5.10

Anshun
Roxithromycin 1.63 (Maximum)

[9]Erythromycin 22.5 (Maximum)

The Pearl River Delta Erythromycin 5.6–12.4 [57]
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Table 4. Cont.

Study Area Kinds of Detectable
Compounds

Corresponding
Concentration (ng/L) Reference

North China and South China

Typical Cities in China that Use Reclaimed
Water for Groundwater Recharge

Erythromycin ND-143
[40]Azithromycin ND-73

The Northern and Southwestern Regions of
China

Roxithromycin 54.5 (Maximum)

[44]
Erythromycin 345.7 (Maximum)

Spiramycin 11.8 (Maximum)
Josamycin 16.5 (Maximum)

Accordingly, some scholars have not only detected antibiotic concentrations but have
also assessed the ecological risk of antibiotics in groundwater by risk quotient (RQ). The
results show that the current concentration of antibiotics in groundwater is ng levels
with a controllable ecological risk, mainly between medium and low values. The highest
concentrations found in most of the literature were in the range of 10–1000 ng/L, but the
maximum concentration can reach 47,444.5 ng/L, which is chlorotetracycline (belongs
to TCs) from the Wangyang River area. It is assumed that groundwater in this area is
largely influenced by infiltration of treated or untreated sewage or river water containing
sewage [42]. The highest concentrations of QNs, SAs, and Lins were detected in the karst
area of Guizhou. The corresponding maximum concentration values and compounds are
1200 ng/L for ofloxacin, 1090.4 ng/L for sulfamethoxazole, and 861 ng/L for lincomycin,
which may be influenced by their specific hydrogeological conditions [2]. For MCs, the
highest concentration was detected in the Jianghan Plain, and the corresponding maximum
concentration values and compounds is 377.8 ng/L for erythromycin, presumably related
to surface water pollution [54].

Notably, we cannot ignore the potential ecological risks in groundwater. Because most
antibiotics in groundwater decay slowly, their concentrations can accumulate over time, and
there are also potential human health risks associated with long-term antibiotic exposure.
What is worse, there are no reliable methods to estimate the risk of mixing synergistic
or antagonistic effects in mixtures [61]. Ecological evaluation methods do not take the
characteristics of the groundwater aquifer into account, the interactions between the whole
system consisting of lake, groundwater, and sediments, and the risk of developing bacterial
resistance [25]. Therefore, the ecological evaluation methods of antibiotics need to be
improved, and the risk of using antibiotics in groundwater remains a concern.

3.2. Seasonal Variation of Typical Antibiotics in Groundwater

Several surveys have shown that the concentration and type of antibiotics in ground-
water in the same area vary from season to season. The reasons for seasonal variations are
complex. Combined with existing studies, we found the following three possible reasons
for the seasonal variation of antibiotics.

The first is physical or chemical change caused by a change in temperature. For
groundwater, temperature was the main factor affecting antibiotic distribution compared
to ORP, pH, DO, and DOC. Temperature can affect antibiotic-related environmental be-
havior in surface water and soil, such as adsorption, hydrolysis, photodegradation, and
biodegradation, making the concentration of antibiotics in groundwater changes [53]. For
example, Yao, L. et al. found that the sorption coefficient Kd of NOR was lower at higher
temperatures, indicating stronger mobility in spring than in winter [39].

The second is the variation of water volume caused by hydrological factors. This
situation usually occurs in areas with strong interaction between surface water and ground-
water. During the dry season, surface water levels drop and antibiotic concentrations
increase, resulting in changes in groundwater concentrations. For example, Qin, L. T. et al.
detected the groundwater in the Huixian wetland located in a karst region and found that



Sustainability 2023, 15, 6985 13 of 26

the groundwater level decreases during the dry period under the influence of the level of
surface water whose concentration increase because the water level drops [61]. During the
rainy season, rain can dilute the concentration of antibiotics and induce antibiotics into the
groundwater. Due to this duality, the concentration of antibiotics in groundwater may in-
crease or decrease. For example, in an investigation of Jianghan Plain, Tong, L. et al. found
that compounds such as SAs are heavily diluted due to continuous rain [54]. Liu, X. et al.
found that the continuous rainfall in rainy summer may take responsibility for the transport
of antibiotics, leading to higher antibiotic concentrations in summer than in winter [53].

The third is the seasonal use of antibiotics. In some areas, the concentration of an-
tibiotics in groundwater is significantly influenced by human activities and the use of
antibiotics varies from season to season. For example, Qin, L. T. et al. found that SAs were
used during the wet period for the fast growth of fishes, whereas medicines are unused
during the dry period [61]. Hu, X. et al. found that because winter was the most important
season of antibiotics manured to organic vegetable bases, the residues of antibiotics in
winter were higher than those in summer [41]. Wang believes that one of the reasons why
the concentration of antibiotics in the Dingqi Underground River is higher in the spring
and winter than in the summer is that there is a higher incidence in the spring and winter,
which leads to more antibiotic use, resulting in changes to the concentration of antibiotics
in groundwater [9].

Therefore, it can be seen that the concentration of antibiotics in groundwater varies
from season to season due to different reasons. In the same area, the detection of antibiotics
in groundwater in different seasons of the same year is very important for obtaining
representative sample data. Therefore, seasonal factors should also be considered when
formulating preventive and control measures for antibiotic pollution in groundwater.

3.3. Distribution of Typical Antibiotics by Influence of Hydrological Settings

The migration and transformation process of contaminants in groundwater is also
influenced by the characteristics of aquifers, especially karst aquifer. Karst aquifer is a
highly permeable soil or rock system with special hydrogeological conditions and complex
groundwater environment. It has large voids, high transport velocities, low residence time,
high heterogeneity, and high anisotropy, high hydraulic conductivity, and more frequent
exchange between surface water and groundwater, so precipitation can quickly penetrate
the ground [9,43,62–64].

In the underground rivers in the karst area of Guizhou, antibiotics are degraded in
the environment while new sources of pollution are available to replenish them, and the
presence of underground rivers can accelerate the migration of substances [2]. Lang found
that the detection rate and concentration of antibiotics in karst groundwater samples in
Guizhou were higher than those in pore groundwater samples in Dagu River when the
same antibiotics were discharged in Guizhou area and Dagu River area [2]. Moreover,
ofloxacin, sulfamethoxazole, and lincomycin in karst groundwater samples in Guizhou
had the highest concentration for QNs, SAs, and Lins in the retrieved literature [2]. Chen
L also detected oxyfloxacin at concentrations up to 1199.7 ng/L in groundwater samples
from karst-landform, and such high concentrations have posed ecological risks to algae
and fish [44]. In addition, TC, ERY, and CIP had high RQ values for algae, and OFL had
high RQ values for plants in these samples [44].

Therefore, the sensitivity of groundwater to contamination by antibiotics is different
due to hydrogeological differences. Before delineating the functional areas, the hydrogeo-
logical characteristics of the area need to be investigated and protective measures should
be taken during construction and operation.

4. Source of Typical Antibiotics in Groundwater

The source of antibiotics is often discussed in studies of antibiotic detection, and we
have found that there is a pattern to their migration pathways. Antibiotics are produced
in pharmaceutical factories and then sent to research institutions, agriculture, livestock
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production, aquaculture, hospitals, households, etc. Wastewater from these areas is sent
to sewage treatment plants (STPs) for disposal and solid waste is sent to landfills for
disposal. The STP effluent may be discharged to surface water, reused as reclaimed water,
or recharged directly to groundwater. Due to incomplete treatment in STPs, antibiotics
can enter groundwater indirectly or directly, and leaks in the pipeline network during
transportation, interaction between surface water and groundwater, and infiltration from
agriculture, livestock production, and aquaculture can also contaminate groundwater,
resulting in the occurrence of antibiotics in groundwater. Figure 1 illustrates the pathway of
antibiotics migration in the environment. This chapter describes the sources of antibiotics
in groundwater, including hospital and pharmaceutical factories, agriculture, livestock
production, aquaculture, landfills, reclaimed water from STPs, and surface water.
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4.1. Hospital and Pharmaceutical Factories

Hospitals wastewater and wastewater of pharmaceutical factories are the main sources
in the aqueous environment, and their migration pathways are generally of three types.
First, antibiotics are not completely absorbed by organisms. H. Stass et al. studied the
pharmacokinetics of mofloxacin and its metabolites in healthy male volunteers and found
that after giving a single 400 mg dosage of moxifloxacin, more than 96% of the dose was
recovered from urine and feces after oral dosing, and >98% was recovered following iv
administration of the drug [65]. Granneman, GR et al. also collected urine for assay of
temafloxacin and its metabolites in healthy adult male volunteers and found the recovery
of unchanged temafloxacin at 0 to 60 h was 56.5 ± 10.5% of the dose, less than 1% of the
dose remained to be excreted at the end of the 60-h interval [66]. E. Cribb et al. collected
urine from healthy volunteers who have ingested 1000 mg sulfamethoxazole and found
that sulfamethoxazole hydroxylamine constituted 3.1 ± 0.7% of the drug excreted in
the urine in 24 h, fifty-four percent of the ingested dose was excreted during this same
time [67]. Feces and urine containing antibiotics and antibiotic metabolites can be released
into the environment. Secondly, unreasonably-disposed-of medical waste and medical
equipment containing antibiotics can cause antibiotics to enter the environment [55,68]. In
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addition, wastewater from hospitals, scientific research institutions, and pharmaceutical
companies contains a significant amount of antibiotics and their metabolites. They can
enter the wastewater treatment plants, which cannot degrade them completely, and can be
discharged into the environment [55,69–71].

In the current reports on the investigation of antibiotics in groundwater in China, many
scholars point out that the high concentrations of antibiotics in their sampling sites are
associated with pharmaceutical enterprise wastewater and hospital wastewater. Ma et al.
analyzed the antibiotics in groundwater in Harbin and found that the sources of SAs and
TCs were mainly influenced by biopharmaceutical enterprise and medical emissions [5].
Ju et al. analyzed the antibiotics in groundwater in Shijiazhuang City and found that the
high concentration of QNs in groundwater in the central region may also be related to
many hospitals and pharmaceutical enterprises in this region [52]. Shi et al. found that in
high-density urban areas, hospital wastewater is one of the main sources of antibiotics [50].
Zuo et al. found that the highest sulfonamide concentrations in the Limin area in northern
Harbin was observed in the site located near the pharmacy factories [58].

In summary, the treatment of antibiotics in wastewater from pharmaceutical enter-
prises and hospitals is particularly important. When designing relevant sewage treatment
facilities, the degradation efficiency of antibiotics should be considered as much as possible.

4.2. Agriculture, Livestock Production, and Aquaculture

Antibiotics have been not only used for the treatment of human diseases, but have also
been used in agriculture, livestock production, and aquaculture. According to the survey,
48% of antibiotics are used annually in China for agriculture and livestock production every
year [72]. Antibiotics contamination in groundwater near agriculture, livestock production,
and aquaculture has become a hot topic in the detection of antibiotics in groundwater.

In agriculture, antibiotics are heavily used in China and can be detected in nearby
groundwater. The most used antibiotics in agriculture today are oxytetracycline and
streptomycin, which are used to treat citrus “Huanglongbing” and plant pathogens in
edible vegetables, such as bacterial wilt of tomatoes [73]. Unfortunately, antibiotics can
contaminate groundwater, whether absorbed by crops and entering the food chain, or
through sewage irrigation and fertilization. Among these pathways, sewage irrigation
has received a great deal of attention. At present, 15 antibiotics have been detected in the
sewage irrigation area of Taiyuan, with a maximum concentration of 114.38 ng/L [74].
Studies have shown that sewage irrigation has input more types and quantities of antibiotics
into groundwater than groundwater irrigation [75]. Wu et al. found that TMP and SMX
concentrations were 42% and 61% higher, respectively, in reclaimed water irrigated soils
than in groundwater irrigated soils [76]. Chen et al. detected groundwater in Beijing and
found that the antibiotic concentration in the sewage irrigation area was much higher than
the groundwater, which was recharged by the water of South-to-North Water Diversion
Project [51].

Feed antibiotics were mainly used as feed additives to promote the growth of ani-
mals and improve the productivity of livestock production and aquaculture for more than
70 years before the policy issued by the Ministry of Agriculture and Rural Affairs of the
People’s Republic of China that stopped the production of growth-promoting drug used
for feed additives (except traditional Chinese medicine) was implemented [7,77]. The use
of antibiotics not only directly enters the food chain and indirectly affects the environment,
but also contains antibiotics in the manure of livestock production, contaminating the soil
and water of farmland and causing antibiotics to infiltrate the groundwater. Moreover,
some rural areas in China do not have centralized wastewater treatment facilities, and some
wastewater-containing antibiotics are directly discharged into the environment after simple
treatment, posing a threat to the environment. Hong et al. detected the groundwater of
Chongming Island and concluded that the high concentration of SAs in groundwater may
be due to the large number of livestock and poultry farms in urban areas [60]. Ma et al.
detected the groundwater in Harbin and found that the concentration of SAs in groundwa-
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ter sampling points around chicken farms and pig farms operated by villagers was higher
than 1 ng/L [5]. Gao et al. detected the groundwater in BoBai located in Jiangxi Province
and found that pig farming can cause groundwater contamination of antibiotics and even
pollute the nearby domestic well water [78]. Li et al. also found that antibiotic residues
could spread from swine feedlots and feed into groundwater environments in surrounding
villages through principal component analysis and hierarchical clustering [79]. Notably,
the concentration of antibiotics in groundwater may vary significantly from farm to farm
in the vicinity. Gu et al. found that the maximum total concentration of SAs (27.24 ng/L)
was detected in groundwater from duck farms, the highest total concentration of FQs
(29.83 ng/L) was detected in the groundwater from chicken farms, and the maximum total
concentration of MCs (23.02 ng/L) was detected in the groundwater from cattle farms [47].

Long-term aquaculture activities have an impact on the spread of antibiotics in the
groundwater environment. Fish ponds can act as reservoirs for antibiotics and can eventu-
ally allow them to enter groundwater [24]. Tong et al. detected the groundwater in Jianghan
Plain and found that the concentration of TCs in samples collected around fishponds has
increased [54]. Jiang et al. detected the groundwater in Wangyang River and its adjacent
area and found that high-intensity aquaculture activities could contribute to the increasing
levels of antibiotic in the area [42].

Even though the production of growth-promoting drug feed additives (except Chinese
medicine) has been banned since 2020, the large amount of antibiotics from agriculture,
livestock production, and aquaculture that can be detected in groundwater is a cause for
concern. We should take certain protective measures against the migration of antibiotics
because antibiotics need to be used as medicine for treatment and prevention. Additional
measures need to be developed to prevent antibiotics from entering the groundwater. For
example, the addition of fresh organic matter to the soil has been reported as a promising
measure [80]. Notably, many researchers have started to research developing degradable
antibiotics. For example, Huang et al. developed antimicrobial peptides and their mimics
as alternative disinfectants in agriculture and aquaculture, which have excellent potency
and low drug resistance generation rates [81]. The development of these high-toxicity and
degradable antibiotics should receive attention.

4.3. Landfills

The conclusion that the main source of antibiotics in groundwater in China is that
landfills are less well-reported but also deserve our attention. It is important to men-
tion that China has only recently implemented solid waste sorting in some major cities,
which means that municipal solid waste-containing antibiotics may be put into landfills
without pretreatment, where they release landfill leachate [57]. Untreated leachate can be
discharged directly, and the composite liner pipe of the leachate collection system may
break and leak during long-term operation, polluting the groundwater environment [59].
Dai et al. analyzed the sources of antibiotics in civilian wells around the Bijie Ganjiawan
landfill and concluded that it was human excrement, antibiotic-containing food, and other
items that were washed by surface runoff or infiltrated into surrounding civilian wells
through rainwater on a short-term basis [56]. Wang K et al. detected the emerging organic
contaminants (including antibiotics) in groundwater adjacent to the landfill in Jinan City
and found that they had a similar composition pattern to raw leachates [59]. Therefore, it
is important to reduce leachate infiltration into groundwater. The leakage of antibiotics
from solid waste should be considered when developing impermeability measures for
landfills. In addition, the separation and recycling of medical waste needs to be further
implemented.

4.4. The Effluent from Sewage Treatment Plants

Because conventional sewage treatment plants are not designed to remove antibiotics,
influenced by compound-specific properties, treatment process, hydraulic retention time,
and solid retention time, the effluent still contains significant amounts of antibiotics in
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different degrees, and these antibiotics end up in the groundwater [82]. Meanwhile, leaks
can also occur during sewage transport through the pipe network due to pipe cracks and
defective joints, causing antibiotics to seep into groundwater [83]. Several studies have
shown that the discharge of sewage treatment plant is one of the major sources of antibiotics
in groundwater. Ma found that the pollution of karst groundwater in Kaiyang County was
mainly comes from domestic waste with the impact of the STP and wastewater treatment
plant on the river [84]. Chen L et al. found that one of the main sources in the northern and
southwestern regions of China was the discharge of sewage treatment plants [44]. Shi et al.
found that the occurrence of high concentrations at individual sites in the northern part
of the North China Plain may be caused by local sources from leakage in the sewage pipe
network [50].

The effluent of some STPs containing advanced treatment processes will not only
be discharged into surface water, but can also be reused as reclaimed water. Some areas
recharged groundwater with reclaimed water by using wells, surface spreading, and
riverbank filtration (RBF), which can reduce, stop, or even reverse declines of groundwater
levels, protect underground freshwater in coastal aquifers against saltwater intrusion and
store surface water [85,86]. However, many scholars believe that groundwater mixes
more antibiotics when reclaimed water is recharged. Ma Y et al. detected 15 typical cities
using reclaimed water to recharge groundwater and found that the detection frequency
in groundwater samples was almost the same as that in reclaimed water samples [40].
Ding et al. found that the concentrations of ENR, NOR, and CIP increased significantly by
56.4% to 143.9% after the injection of reclaimed water in half a month from Gaobeidian
Wastewater Treatment Plant in Beijing. Moreover, compared with the surface spreading into
groundwater in Changzhou, the reclaimed water had a greater impact on the concentration
of FQs in groundwater [36].

Therefore, the risk of groundwater contamination from effluent should not be ignored
due to incomplete removal of contaminants from STPs. Antibiotic removal should also be
taken into account when designing the standards and treatment processes for STPs.

4.5. Surface Water

There are strong interactions between groundwater and surface water due to factors
such as climate, hydrogeological conditions, and hydraulic gradients [46]. For example,
when the concentration of antibiotics in surface water is significantly higher than that in
groundwater, the former can be considered as a source of contamination for the latter [27].
Many scholars have pointed out that the interaction between groundwater and surface
water is an important source of pollution. Liu, X. et al., Yao, L. et al., and Ma, N. et al. found
that surface water is an important source of pollution in the Jianghan Plain, and there is a
risk of migration of antibiotics from surface water or its sediments to groundwater [25,39,53].
Wang, J. et al. investigated the alluvial-diluvial fan of the Hutuo River in north China and
found the antibiotic pollution in the lightly polluted area primarily originated from the
river recharge input [19]. Jiang, Y. et al. investigated Wangyang River area and suggested
that the riverine runoff and river water percolation were possible antibiotics sources to
groundwater [42].

Many studies have compared the antibiotic concentrations in surface water and
groundwater. Numerous studies have found that the concentration of antibiotics in surface
water is usually higher than that in groundwater, sometimes by 1–2 orders of magnitude,
by reason of physicochemical reactions such as soil adsorption, filtration, and degrada-
tion [26,40]. However, due to the characteristics of groundwater such as slow changes in
water quality parameters and difficulties in recovery from pollution, sometimes the concen-
tration of antibiotics in groundwater, the type of antibiotics detected, and the detection rate
is higher than that in surface water. Tong L et al. found the concentration of CAP in the
samples of lake water and groundwater was around 2.0 ng/L but was not detected in any
wastewater samples, perhaps because CAP has been banned in livestock production since
2002, but its early use and slow degradation led to the detection [23].
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Therefore, the relationship between groundwater and surface water in certain areas
is very close. It is necessary to understand in detail the interaction between surface water
and groundwater in each area, and to treat and detect surface water and groundwater as a
whole system in these areas. When the concentration of antibiotics contained in surface
water is high, measures should be taken as soon as possible to reduce the concentration in
surface water and prevent antibiotics in surface water from entering groundwater.

It is noteworthy that in many cases the source of contamination may not be single. We
found that in most cases there is a compound contamination at the same sampling site and
the contribution of antibiotic concentrations at the same point was different. For example,
Ma et al. found that the contribution of SAs in Harbin from small to large is village farms,
residents health care, and biopharmaceutical companies [5].

5. Fate of Typical Antibiotics in Groundwater

The migration of antibiotics in the underground environment not only depends on
the environmental characteristics such as microbial community, lithology, soil texture,
residence time of groundwater, redox state, and hydraulic characteristics, but also de-
pends on the physico-chemical properties and concentration of antibiotics [87,88]. Due
to the physicochemical properties of antibiotics, reactions such as adsorption, hydrolysis,
and biodegradation can occur in the process of entering the underground environment
(Figure 2).
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5.1. Adsorption

The unique environment in groundwater and the physicochemical properties of antibi-
otics determine that adsorption is one of the important factors affecting the migration and
transformation of antibiotics in groundwater [87]. In general, the stronger the adsorption
capacity, the more stable in the environment, and the easier the deposition, the weaker the
adsorption capacity, the easier the migration with water [55].

Adsorption can be divided into physical and chemical adsorption. Antibiotics can be
physically adsorbed in the aqueous environment, and they can also react with other sub-
stances to form complexes. The soil in the aquifer mainly was sand with low organic matter
content and cation exchange capacity. Therefore, its sorption capacity was low, causing less
antibiotics to be retained in the soil [36,37]. Furthermore, one or more hydrophilic polar
functional groups exist in antibiotics, which easily combine with water to form hydrates,
causing antibiotics to enter the groundwater faster [44]. These two aspects allow antibiotics
to leak and leach from the soil and sediment of the vadose zone.

The adsorption capacity of soil for antibiotics is influenced by many factors, such as
soil and environmental conditions and the physicochemical properties of antibiotics. The
adsorption behavior environmental conditions such as soil, organic matter content, ionic
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strength, temperature, and pH are important influencing factors [89,90]. In the reviewed
literature, many studies on groundwater antibiotic sorption have focused on the effect of
soil, antibiotics properties, and coexisting ions on antibiotics.

For soil, generally speaking, the finer of the medium particles are, the more adsorp-
tion sites can provide, and the higher the antibiotic adsorption capacity [58,91]. For the
adsorption of antibiotics varies with different soil textures, and in related experiments,
more research has been done on SAs. For example, Thiele-Bruhn, S. et al. and Zuo et al.
found that adsorption of SAs increased in the sequence: sand < clay < fine silt [58,92].
Correspondingly, Doretto et al. also suggested that sulfonamides tend to be leached from
soils with high sand and low organic carbon contents [93].

Since different antibiotics have different physicochemical properties, they may behave
differently even if different antibiotics are under the same environmental conditions or the
same antibiotics under different environmental conditions. In general, due to the ionic struc-
tures and their pKa values, FQs and TCs showed higher adsorption to sediments in water
studies with Kd (sorption coefficient) values of 54,600 and 7600 L/kg compared to SAs and
MCs with Kd values of 130 and 1.37 L/kg [89]. For FQs, they can interact differently in the
environment because they are zwitterionic species and have pH-dependent speciation [94].
For MCs, because of the ionizable dimethylamino and hydroxyl group in the molecular
structure, the pH of the environmental media determines the cationic, zwitterionic, or
anionic form, which further determines the adsorption mechanisms. When pH < pKa, the
dominant form of MCs tends to be cationic and the main adsorption mechanisms are cation
exchange and hydrogen bonding. When pH > pKa, the dominant forms of MCs tend to be
zwitterions and anions, and the main adsorption mechanisms are surface complexation
and cation bridging [95]. For SAs, because of their low Kd values, SAs are very mobile,
which enables them to enter the groundwater easily [40,96].

Several studies have shown that coexisting metal ions can influence antibiotic adsorp-
tion. For example, M. Ötker Uslu et al. found that the competition of fluoroquinolones and
Ca2+ ions for negatively charged clay minerals could also be a reason for lower sorption
coefficients of ENR and CIP in the case of sandy loam soil [97]. Zuo et al. found that
coexisting ions, such as iron, manganese, and ammonia nitrogen, promote the adsorption
of SAs [58]. Zhao et al. found that the presence of metal cations promoted TC adsorption
through an ion bridging effect in the order Cu (II) > Pb (II) > Cd (II) [98]. Li et al. found
that the sorption of MCs can also be affected by ionic environments, such as Na, K, Ca2+,
Mg2+, Al3+, and other common metal ions in the soil and sediment [95]. In China, metals,
especially heavy metals, have been used as detection targets in some of today’s detection
literatures on the occurrence of antibiotics, and the relationship between antibiotics and
heavy metals has been studied. For example, Gao et al. found antibiotic concentrations in
the urban soil were positively correlated with heavy metal contents [99]. Guo et al. and
Chen et al. studied surface water and found that positive correlations existed between
the antibiotics and tested heavy metals [100,101]. Chen et al. suggested that it was likely
driven by their common source of contamination and the complexation [101]. Therefore,
for the detection of groundwater, we can take into account the metals in the water at the
same time, which will enable us to get more research findings.

5.2. Hydrolysis

Hydrolysis, an act that alters the concentration of antibiotics in groundwater by react-
ing with water, also has many influencing factors. During the hydrolysis process, the parent
structure of antibiotics is broken, and one or more degradation products are generated [102].
The process is affected by water environment factors such as temperature, pH, and contact
with soil organic matter and the physicochemical properties of antibiotics, such as the
solubility of antibiotics [55,102,103]. Among them, temperature and pH value are the main
factors that contributed to the hydrolysis of antibiotics [104]. Notably, hydrolysis reactions
have different degrees of effect on different types of antibiotics. Studies showed that β-
lactams, MCs, TCs, and SAs are susceptible to hydrolysis, but the hydrolysis reactions
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of MCs and SAs at a neutral pH range are very slow [105,106], and QNs are difficult to
hydrolyze [107,108].

5.3. Biodegradation

Generally, when antibiotics enter the biosphere, the interaction between antibiotics
and bacteria can be divided into various types, some cells cannot tolerate the toxicity of
antibiotics and die, some cells use some mechanisms to resist the toxicity of antibiotics, and
some cells use the xenobiotic compound as a source of energy, nutrients (C, N, S, etc.), or
as a final electron acceptor, and even mineralize antibiotics to convert them into CO2 and
other products, which have the effect of biodegrading antibiotics [109–111]. Biodegradation,
which is the use of microorganisms, microbes, and enzymes to break down antibiotics in
the environment, has received high attention in the studies of antibiotics in groundwater
and has been influenced by many factors [109].

Environmental conditions such as temperature, pH, oxygen, and antibiotics them-
selves affect the activity and availability of microorganisms in the environment to varying
degrees, which in turn affects the rate of antibiotic degradation [112–114]. In the literature
retrieved concerning groundwater in China, more attention has been paid to the effect of
oxygen on biodegradation. In higher DO environments, microorganisms can metabolize
organic matter more efficiently. Liu X et al. and Wu S et al. found that most antibiotic
concentration showed a negative correlation with DO [38,53]. Yao L. also found that the
SM-2 and SMZ these two compounds are sensitive to the redox conditions [39]. However,
the sensitivity of ORP, which indicates the redox state of groundwater, is higher than DO in
groundwater environment [25]. Wu S et al. found that ORP had a strong negative effect on
the concentrations of FQs and TCs but had no relationship with CPs and MLs [38].

Compared to the microorganisms present in the soil, the groundwater environment
has fewer microorganisms, lower temperatures, less oxygen, and less light, which is not
conducive to the rapid degradation of antibiotics, so antibiotics in groundwater may not
be completely degraded [115]. The result is that antibiotics in groundwater may be con-
verted to harmful metabolites or remain in the groundwater for a long time. For example,
N4-acetylsulfamerazine were detected more frequently than its parent compound sulfam-
erazine, which could be explained by having higher solubilities and higher persistence
than the parent, and some metabolites of QNs in the environment are more toxic than the
parent [116]. However, some antibiotics degrade more readily in anoxic environments. For
example, erythromycin (ERY) would be degraded to anhydroerythromycin (ERY-H2O) im-
mediately in the environment, while the ERY-H2O was reported to undergo more effective
degradation under anoxic conditions, so ERY have low concentration in groundwater in
many cases [39,105,117–119].

Therefore, antibiotics may be adsorbed, hydrolyzed, and biodegraded when they
enter groundwater and migrate in groundwater, and the effects to different antibiotics are
different. We need to further study the behavior of different types of antibiotics, paying
extra attention to antibiotics with high water solubility, poor adsorption, poor degradability,
and high toxicity, and formulate policies accordingly.

6. Conclusions

In this paper, we systematically reviewed the occurrence of antibiotics in groundwater
in China and the relevant findings obtained from the literature, including the detection
methods, concentrations, ecological risks, sources, distribution characteristics and fate of
antibiotics, and found the following patterns:

(1) In terms of monitoring tools, most studies used SPE as the pretreatment technique
and HPLC/MS/MS and UPLC-MS/MS as the analytical techniques. The researchers
performed some specific technical optimizations, such as adding chemicals and ad-
justing the flow rate, for the instrument operation scheme and the target compounds
to ensure reliable results.
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(2) In terms of monitoring concentrations and ecological risks, 64 antibiotics were detected
until the detection time of 2020, most of the concentrations were 10–1000 ng/L, and
risks were between low and medium, but the highest value could reach 47,444.5 ng/L.
There were more relevant studies in Jianghan Plain and Beijing, and QNs and SAs
received more attention. In terms of influencing factors, antibiotic concentrations can
be affected by seasonal changes for various reasons, and hydrogeological conditions,
especially karst aquifers, have a greater impact on antibiotics in groundwater.

(3) In terms of source, scholars believe that the detected antibiotics originate from phar-
maceutical companies, research institutions, hospitals, domestic sewage, livestock
production, fish ponds, agriculture, landfills, sewage treatment plant effluent, and
surface water. Among them, those receiving more attention are surface water, sewage
treatment plant effluent, livestock production, and agricultural wastewater.

(4) In terms of their fate in groundwater, antibiotics can undergo processes of adsorption,
hydrolysis, and biodegradation in groundwater, and they are affected both by them-
selves and by the environment, with different antibiotics having different sensitivities
to different reactions.

In summary, we believe that there are relatively few studies on antibiotics in ground-
water in China, and the scope and frequency of antibiotic detection need to be increased.
Due to the influencing factors of the distribution of antibiotics in groundwater, the basic
water quality of groundwater, such as pH, water temperature, and the presence of ions,
especially the presence of heavy metal ions, need to be tested at the same time. The season
at the time of monitoring, the geological conditions of the groundwater, and potential
nearby point sources also need to be recorded.

At the same time, we should optimize the detection scheme according to the actual
situation, some new and efficient detection means deserve to be developed comparatively,
and the ecological risk evaluation methods need to be improved to identify more precisely.
Additionally, when developing policies, special attention needs to be paid to antibiotics in
groundwater that are high in toxicity, hard to degrade, and have high mobility in order to
develop reasonable control measures for the occurrence of antibiotics in groundwater.
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