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Abstract: Urban innovation has been highly regarded as a modern urban model that drives sus-
tainable urban development by synthesizing knowledge innovation and technological innovation
in industrial processes. As such, numerous studies have emerged to investigate the impact of the
innovative city pilot policy (ICP), yet the impact of the ICP on industrial structure upgrading has
not been explicitly studied. To address the research gap, this study utilizes the ICP in China as a
quasi-natural experiment and investigates the impact of the ICP on industrial structure upgrading in
Chinese cities. We apply a DID model estimation on a panel dataset of 284 Chinese prefecture-level
cities from 2007 to 2019. The results indicate that the innovative city pilot policy greatly helps to
upgrade the industrial structure in pilot cities, with the upgrading outcome particularly evident in
large and non-natural resource-based cities. Mechanism analyses further reveal three channels via
which the ICP promotes industrial structure upgrading, specifically by improving innovation capacity,
boosting labor clustering, and lowering pollutant emissions. The results of this study carry significant
policy implications for China in building a sustainable and modernized economic system and for
other emerging nations in seeking economic transformation and industrial structure upgrading.

Keywords: innovative city pilot policy; industrial structure upgrading; innovation; knowledge;
urban development

1. Introduction

Urban innovation is an integral part of industrial structure upgrading in a country as
cities are generally rich and diverse in innovation resources, such as technology, knowledge,
labor, and culture, which can be turned into the primary drivers of economic and social
growth [1]. However, investing in the necessary innovation resources often comes with high
upfront costs, risk, complexity, and a long cost-recovery period. It is, therefore, unsurprising
that governments across the globe have implemented “innovation city” initiatives since the
1990s to catalyze the private sector’s involvement in urban innovation and development [2].
For example, the United Kingdom’s central and London governments jointly launched the
“Tech City” project in London in 2010 [3]. Through financial and policy support, London
has successfully established a pioneer innovation ecosystem in Europe, with numerous high
net-worth innovative technology companies. Similar initiatives have been implemented in
other cities, including Boston [4] and Sydney [5].

Likewise, the central government of China has implemented an innovative city pilot
policy (ICP) via phase arrangement since 2008, with Shenzhen being the first innovative
pilot city. Since then, six batches of national innovative city pilot initiatives have been
introduced in 2010, 2011, 2012, 2013, 2018, and 2022, as shown in Figure 1. By early
2023, 103 innovative pilot cities had been approved by the National Development and
Reform Commission and the Ministry of Science and Technology (see Table 1). The ICP
aims to conduct urban innovation activities and improve urban innovation capacity in
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alignment with the country’s innovation-driven development vision. According to the
ICP’s supervision and monitoring frameworks, each city should invest more in innovation,
focus on developing innovation resources, and foster an innovation-friendly environment.
Unlike other urban plans, such as the National Healthy City Construction Pilot Policy;
the Pilot Policy for Creating New Energy Model Cities; and the Low-Carbon City Pilot
Policy, the ICP is more innovation-oriented and envisages exerting a more fundamental and
long-term impact on the industrial structure upgrading of cities. However, the extent of the
ICP and of how it impacts the industrial-structure upgrading of cities is under-explored.
It is expected that the ICP plays a significant role in changing the industrial structure of
a city because the associated government support, typically in the form of tax incentives
for private research and development (R&D), as well as of incentives for high-skilled labor
and public grants, could alter the resource allocation and composition of economic activity
in the city to achieve innovation-driven development of the country ultimately. This paper
aims to delve into the impact and mechanism path between the ICP and the industrial
structure upgrading of cities in China.
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Table 1. Innovative pilot cities in China.

Year Eastern China Central China Western China

2008 Shenzhen

2010

Dalian, Qingdao,
Xiamen, Shenyang, Guangzhou, Nanjing,

Hangzhou,
Jinan, Suzhou, Wuxi, Yantai, Beijing, Tianjin,

Tangshan, Shanghai, Ningbo, Jiaxing,
Shijiazhuang, Changzhou, Fuzhou, Haikou

Hefei, Changsha, Harbin,
Luoyang, Wuhan, Taiyuan,
Jingdezhen, and Nanchang

Xi’an, Chengdu, Baotou,
Chongqing, Lanzhou, Nanning,

Guiyang, Kunming, Baoji,
Yinchuan, Changji, and Shihezi

2011 Lianyungang,
Qinhuangdao, and Zhenjiang Changchun Xining, Hohhot

2012 Nantong Zhengzhou Urumqi

2013 Yangzhou, Taizhou,
Yancheng, Huzhou, Jining

Yichang, Pingxiang,
Nanyang, and Xiangyang Zunyi

2018
Xuzhou, Shaoxing, Jinhua,

Quanzhou, Longyan, Weifang, Dongying,
Foshan, Dongguan

Jilin, Maanshan, Anhui
,Zhuzhou, and Hengyang Yuxi, Lhasa, and Hanzhong

2022
Baoding, Handan, Suqian, Huai’an, Wenzhou,
Taizhou, Zibo, Weihai, Rizhao, Linyi, Dezhou,

Shantou, and Yingkou

Changzhi, Chuzhou, Bengbu,
Tongling, Xinyu, Xinxiang,

Jingmen, Huangshi,
and Xiangtan

Liuzhou, Mianyang, and Deyang

This paper relates to two literature strands. The first literature strand pertains to the
economic and social effects of the ICP. Generally, the related literature has documented
the positive effects of innovation city policy on sustainable economic and social develop-
ment [6], technological knowledge diffusion [7], green technology progress [8,9], green
innovation [10], and green production and ecology efficiency in cities [11–13]. These posi-
tive effects can further serve as mechanisms via which the ICP promotes carbon emission
reduction [14] and green total factor energy efficiency improvement in China [15]. However,
the prior studies have not directly investigated the effect of the ICP on industrial structure
upgrading, which emphasizes the evolution of industry structures from the primary and
secondary industries to the tertiary industry in Chinese cities.

The second literature strand pertains to the factors of industrial structure upgrading.
Among the wide-ranging policies investigated, the low-carbon city pilot policy has been
found to promote industrial structure supererogation in China via technological innovation
and reduce the share of high-carbon industries [16]. The carbon emissions trading pilot
policy similarly affects the upgrading of industrial structures in China, mainly through
green innovation [17,18]. Further, the positive effect of environmental regulation on green
technology innovation and industrial structure in Chinese cities is more substantial when
the economic development level of cities is higher [19]. The healthy cities pilot policy in
China has also been found to facilitate the industrial structure upgrading of cities through
technological innovation and green total factor productivity [20].

When reviewing the aforementioned literature, it is evident that the extant literature
needs to be expanded in several dimensions. First, there is still a lack of study that directly
links the effect of the ICP to industrial structure upgrading in cities. Arguably, various
government-supportive initiatives under the ICP, such as tax incentives for private R&D,
high-skilled labor, and public grants, could alter economic activity’s resource allocation and
composition towards high-skill and high-tech orientation, thereby upgrading the industrial
structures in pilot cities. This argument is yet to be testified. Second, the mechanisms
driving the effect of the ICP on industrial structure upgrading have not been explored. As
prior studies have reported that implementing the ICP can affect technological innovation,
labor clustering, and pollutant emissions in pilot cities, the present study extends the
prior studies by investigating whether these effects are the mechanisms via which the ICP
promotes industrial structure upgrading.
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This paper carries three significant study contributions. First, our study results con-
tribute to the literature by indicating that the ICP stimulates the industrial structure up-
grading in cities. The stimulating effect is more salient in cities of a larger scale and those
that are non-natural-resource-reliant. Second, we enrich the literature by documenting
evidence that the ICP expands the innovation capacity and labor concentration in cities,
thereby providing a conductive innovation environment for the industrial structure up-
grading in cities. On the other hand, pollutant emission is a mechanism that hampers the
efficacy of the ICP in promoting industrial structure upgrading in cities. Third, our study
constructs a more robust industrial structure advancement index (ISAI) for 284 Chinese
prefecture-level cities from 2007 to 2019, following the approach introduced by Costa [21].
The ISAI accounts for the level of a city’s industry structure advancement from the primary
and secondary-industry orientation to the tertiary-industry orientation. This approach
deviates from most prior studies that employ the ratio of tertiary industry output value to
secondary industry output value to measure industrial structure upgrading and lack due
to the consideration of the primary industry and the changing industrial structure over
time [22].

The remainder of the paper is organized as follows. Section 2 reviews the related
literature and develops the hypotheses of this study. Section 3 explains the research
methodology, while Section 4 reports the baseline model results and additional analyses.
Section 5 concludes the paper with policy implications.

2. Literature Review
2.1. ICP and Industrial Structure Upgrading

Hall was among the first to define “innovative cities” as cities with innovative quality
that exhibit a new urban model driving sustainable economic development [23]. Innovative
cities utilize scientific knowledge as the foundation of innovation while taking the synergy
between knowledge and technological innovation as an essential component of the urban
innovation drive [24,25]. Thus, innovative cities can serve as an integrated innovation
network system that clusters and diffuses technological knowledge through the interaction
between innovation subjects [7,26].

In China, the ICP has gradually been phased into cities since 2008 under the mandate
of the national government to raise investment in innovation, expand the capacity of
innovative factors, and create a conductive innovation environment for the private sector.
Following the vertical “coercion” mechanism of policy diffusion theory, the ICP creates
top-down pressure on local governments to reallocate scarce resources across industries
towards achieving urban innovation-driven development. As a result, the institutional
reform and resource management model exploration promoted by the ICP effectively
stimulates the vitality of the industrial structure in pilot cities, thereby driving the flow
of production factors from primary and secondary industries to the tertiary industry and
promoting the development of the skilled, service-oriented tertiary industry. Hinging on
the rationale, this study develops the first hypothesis as follows:

H1. ICP promotes the upgrading of the industrial structure of pilot cities.

2.2. Mechanisms for the Impact of ICP on Industrial Structure Upgrading

This paper also explores three mechanisms via which the ICP influences the industrial
structure upgrading in pilot cities: innovation capacity, labor clustering, and pollutant
emissions in the cities. The theoretical rationale behind these mechanisms is summarized
in Figure 2.
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2.2.1. Innovation Capacity

The primary mandate of the ICP is to enhance the innovation capacity of enterprises
in pilot cities by effectively promoting enterprise R&D activities and the associated outputs
such as patents. To this end, the local governments of pilot cities are directed to inject capital
into the R&D of high-tech enterprises by providing subsidies, tax incentives, post-facto
awards, and special funds. Subsidies and tax incentives reduce the cost of new products for
high-tech enterprises from the tax base and amount, and they motivate the enterprises to
innovate their technologies and products, as part of the driving forces for the transformation
and upgrading of regional industrial structure [27]. Specifically, technological innovation
can promote the flow of quality-production resources from the high-efficiency production
sector to the low-efficiency production sector, thereby improving the total labor productivity
of the region and upgrading the region’s production system towards high-efficiency and
low-cost as a whole [28]. Sun et al. also reported that technological innovation could
rationalize the production resource’s supply and demand structure, optimize the balance
between supply and demand, and facilitate technology integration into industries [29].
Chen et al. used data from 30 Chinese provinces from 2005 to 2015. They found that
the innovation drive in these provinces promotes the industrial structure upgrading in
the region and exerts a positive spillover effect on the industrial structure upgrading
in the neighboring regions [30]. This spatial spillover effect decays with the increase in
geographical distance.
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Collectively, the literature suggests that innovation plays a significant role in changing
the industrial structure of a region and even a country by improving resource allocation
and production efficiency in industries. In accord with the mandate of the ICP, this study
develops the following hypothesis.

H2a. ICP promotes the upgrading of the industrial structure by increasing innovation capacity.

2.2.2. Labor Clustering

To support the national ICP, pilot cities have successively introduced “New Talent
Policies”, including settlements, subsidized housing, and scientific research funding, to
support the living and career of high-quality talents in various aspects, attract high-quality
talent resources, and lay the foundation of a labor force for industrial structure upgrading.
The agglomeration of the labor force strengthens the specialized division of labor in the
industry and forms a closer coupling between the regional talent and industrial structures.
This coupling effect will significantly reduce labor search costs, help enterprises obtain
external resources more efficiently, break through the incumbent resource constraints,
improve resource-use efficiency, and promote enterprises’ new product development and
industrial technology innovation [22].

In addition, the technology dispersion brought about by highly specialized labor can
be manifested by the technological spillover from high-tech enterprises to enterprises in
other high-end sectors. In the process, the labor force, as a technology carrier, improves the
existing technology pool through knowledge spillover, labor flow, imitation learning, and
other channels to realize the development and absorption of more advanced technology [31].
Consequently, the new technology penetration into service industries, such as Fintech,
could help promote industrial structure upgrading. Similarly, Iftikhar et al. and Hu find
that human capital has a significant “knowledge spillover” effect through interaction
with innovative skills as high-skilled talents will improve technological R&D in their
sectors [32,33].

Tsaurai and Ndou, and Lin and Zhao, argued that as human capital from different
knowledge and technical backgrounds clusters, the integration and optimization of various
other production factors are enhanced, which further promotes the upgrading of the
industrial structure [34,35]. Lim et al. propounded that “knowledge” is the core element of
productivity formation, and the benefits produced by knowledge are positively correlated
with the pool of knowledge dissemination [36]. The more people there are with professional
knowledge, the more likely an industrial development environment will be established.
Thus, this study formulates the following hypothesis:

H2b. ICP promotes the upgrading of the industrial structure by increasing labor clustering.

2.2.3. Pollutant Emissions

Technological innovation has arguably exerted both a negative cost effect and a positive
rebound effect on pollutant emissions [37]. On the one hand, innovation can reduce the
factor input per unit of output and improve the cost efficiency of production, which then
leads to a decrease in pollutant emissions. On the other hand, while innovation stimulates
economic growth, it may increase the demand for energy-related products and services,
increasing pollutant emissions. Thus, the net effect of innovation on pollutant emissions
depends on the relative magnitude of the two opposing effects.

However, most extant empirical evidence suggests an adverse effect of innovation on
pollutant emissions, especially at the macro level. For example, Pan et al., Saud et al., and Yi
et al. found that innovation helps to improve energy-use efficiency and reduce greenhouse
gas emissions, thus decreasing haze pollution and improving environmental quality [38–40].
At the enterprise level, by transforming and upgrading technology, enterprises eliminate
obsolete production capacity, remove the cost of pollutant emissions from their internal
production costs, and increase net income, ultimately bringing about the modernization of
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industrial structures [41]. Since the ICP is implemented at the industrial level, enterprises
have adjusted their production actions to transform high energy consumption and low
value added, to low energy consumption and high value added. Supported by wide-
ranging innovation-related initiatives, industries generally observe a transformation from
a labor-intensive model towards a capital- and technology-intensive model [42]. Gao and
Yuan also found that constructing innovative cities positively reduces pollution emission
intensity, mainly achieved through improving the urban innovation level and industrial
R&D personnel concentration [8]. Therefore, based on the prior evidence, the following
hypothesis is developed.

H2c. ICP promotes the upgrading of the industrial structure by reducing pollutant emissions.

3. Research Methods
3.1. Data

This study started with a balanced panel dataset of 293 prefecture-level cities in China
from 2007 to 2019. After removing prefecture-level cities with unavailable and severely
missing data, the final number of prefecture-level cities available for analysis was 284.
Although the sixth batch of 25 pilot cities was released in 2022, the data of these cities have
not been published at the time of this research. Thus, the sample consisted of 78 innovative
pilot cities constructed in batches in 2008, 2010, 2011, 2012, 2013, and 2018, which were set
as the treatment group in this quasi-natural experiment. The remaining 206 cities were
set as the control group. Missing data in some years were replaced using the average
interpolation approach, yielding a total of 3692 observations. All of the required data were
obtained from the China Statistical Yearbook, the China Environmental Statistical Yearbook,
and the China City Statistical Yearbook.

The statistical caliber of the data in this paper was urban areas (municipal districts).
This is because, firstly, the core functions of cities are mainly concentrated in urban areas,
so when the functions or characteristics of a city are studied, the statistical caliber of
“municipal districts” can exclude the interference of non-urban factors well. Secondly,
the number of counties (districts) under the jurisdiction of prefecture-level cities changes
over time, or some counties are separated from the higher-level prefecture-level cities and
elevated to prefecture-level cities. Thus, the classification of “urban area” is relatively stable,
which facilitates the comparison of historical data across cities.

3.2. Variable Measurement
3.2.1. Dependent Variable: Industrial Structure Upgrading

Industrial structure upgrading refers to continuous changes in industrial structure
according to evolving economic development, reducing the share of primary and secondary
industry outputs and increasing the share of tertiary industry outputs in total outputs [43].
Following da Costa’s approach, this study measured the industrial structure upgrading of
a city in a specified year as follows [21]. Firstly, the GDP of a city was divided into three
industries, specifically primary, secondary, and tertiary industries. The proportion of value
added by each industry to the city’s total GDP was regarded as a component of the spatial
vector, thus forming a set of three-dimensional vectors.

x0 = (x1,0, x2,0, x3,0) (1)

Then, this study calculated the angle θ1, θ2, θ3 between x0 and the vector x1 = (1,0,0),
x2 = (0,1,0), x3 = (0,0,1) of primary, secondary, and tertiary industries, respectively.

θj = arccos

 ∑3
i=1
(

xi,j · xi,0
)(

∑3
i=1

(
x2

i,j

)1/2
· ∑3

i=1

(
x2

i,0

)1/2
)
, j = 1, 2, 3 (2)
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where θj is the angle between x0 and the vector xj. xi,0 is the share of value added of ith
industry in GDP. Finally, the following formula was applied to compute the industrial
structure upgrading index (ISAI). A higher ISAI value indicated a more advanced industrial
structure in the city.

ISAI =
3

∑
k=1

k

∑
j=1

θj (3)

3.2.2. Explanatory Variables

The core explanatory variable Treat_time indicated whether a city is a pilot city for
the ICP. It was an interaction term between Treat and time, where Treat was a dummy
variable taking the value of 1 if the city was a pilot city for ICP and 0 if the city was not.
time was a temporal dummy variable taking the value of 0 in the years before the policy
implementation and 1 after the year of implementation. This variable measurement was
consistent with that of Wang and Zhou and Yang et al. [14,15].

Following prior studies, control variables were also included to estimate the net
effect of the ICP on industrial structure upgrading [14,15,18,20]. Upon reviewing related
literature, this study identified the following control variables. The financial development
level of a city (FL) was measured as the ratio of deposit and loan balances to GDP in the city.
The sewage discharge level (DL) was measured by the amount of sewage discharged in ten
thousand tons. Human resource (HE) was measured by the population density in people
per square kilometer. Infrastructure (IF) was measured by the urban road area in square
meters per capita. The economic openness level (OL) was measured by the amount of
foreign direct investment in the city. The education level (EL) was measured as the number
of college students per 10,000 people. These control variables were log-transformed to
eliminate heteroskedasticity.

Additionally, we added a control variable to capture the aggregate innovation condi-
tion, investment, performance, and environment in pilot cities. Specifically, we employed
the index of regional innovation and entrepreneurship (IRIE) published by the Center for
Enterprise Research of Peking University to reflect the vitality and performance of innova-
tion and entrepreneurship in various regions of China. The index is constructed based on
the three core elements, which are the number of new enterprises, capital investment, and
intellectual property registration, by relying on the full set of enterprise information in the
national industrial and commercial enterprise registration.

3.2.3. Mediating Variables

To test hypotheses H2a to H2c concerning the mechanisms driving the impact of the
ICP on industrial structure upgrading, three mediating variables were included: inno-
vation capacity, labor clustering, and pollutant emissions. Innovation capacity (IC) was
captured by the number of invention patents granted to enterprises in a city [20]. This
output-based measure has strong industrial relevance and can better capture the driving
effect of innovation on industrial structure upgrading in pilot cities. Labor clustering (LC)
was proxied by the number of labors employed in the city. Generally, the rural and urban
labor force populations differ in various aspects, including skills and work ethics. The
latter tends to contribute more to the promotion effect of labor clustering on the industrial
structure upgrading in cities. Pollutant emissions (PE) were measured by sulfur dioxide
emissions (in tons) as sulfur dioxide is a common by-product in the production process
of enterprises and is a commonly used indicator of air pollutants [8,14]. The descriptive
statistics of all variables used in this study are provided in Table 2.



Sustainability 2023, 15, 7377 9 of 22

Table 2. Descriptive statistics.

Variable Obs. Mean Std. Dev. Min Max

ISAI 3692 1.07811 0.66195 0.09432 6.53261
FL 3692 1.00340 0.44342 −1.54620 4.14145
DL 3692 8.23521 1.13026 1.94591 11.47731
HE 3692 8.00152 0.73381 5.51343 9.90813
IF 3692 6.92723 0.60840 3.48647 9.30945
OL 3692 11.62686 2.03897 3.00842 16.83473
EL 3692 5.77605 1.02098 −1.49133 8.02656

IRIE 3639 51.91835 28.08909 1.36519 100
IC 3692 0.61154 2.43109 0.00100 52.91700
LC 3692 3.44705 7.03619 0.11000 81.93019
PE 3692 10.20317 1.19125 4.31749 13.43414

3.3. Model Construction
3.3.1. Baseline Model

A quasi-natural experiment is typically used to estimate policy effects with an approx-
imately random selection of treatment and control groups, thereby alleviating endogeneity
and selection bias in estimating policy effects. This study considered the ICP a quasi-
natural experiment and investigated its effect on industrial structure upgrading by using
a multi-period DID model that incorporated the variation of the ICP across pilot cities
and years. The conventional DID model was premised on satisfying the common trend
assumption that all cities did not differ systematically before policy implementation. The
heterogeneity of urban development made it impossible to meet this assumption. Therefore,
this paper used a multi-period DID model, which accounted for urban-related differences
and addressed the self-selection bias to assess the effects of the ICP on industrial structure
upgrading more effectively and accurately [44]. The multi-period DID baseline model is
specified as follows:

ISAIit = α1 + β1Treat_timeit +
K

∑
k=1

c1kXkit + δi + σt + εit (4)

where ISAIit is the industrial structure upgrading level of the city i in year t. Treat_timeit is
the interaction term between Treat and time, where Treat is the city dummy variable and time
is the temporal dummy variable. Xkit is the kth control variable affecting the ISAI of the
city i in year t, which includes financial development, sewage discharge, human resources,
infrastructure, economic openness, and education levels. δi refers to the fixed effect of the
city i. σt indicates the fixed effect of year t. εit is the regression error term.

3.3.2. Mechanism Analysis Model

To test the hypotheses H2a-H2c, this study followed Cheng et al. and developed me-
diating effect models for mechanism testing [45]. Equations (5) to (10) specify the models.

ICit = α2 + β2Treat_timeit +
K

∑
k=1

c2kXkit + ζi + ψt + ξit (5)

LCit = α3 + β3Treat_timeit +
K

∑
k=1

c3kXkit + ωi + υt + τit (6)

PEit = α4 + β4Treat_timeit +
K

∑
k=1

c4kXkit + ςi + σt + ρit (7)

ISAIit = α5 + β5Treat_timeit + d1 ICit +
K

∑
k=1

c5kXkit + ϑi + θt + vit (8)
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ISAIit = α6 + β6Treat_timeit + d2LCit +
K

∑
k=1

c6kXkit + πi + ot + νit (9)

ISAIit = α7 + β7Treat_timeit + d3PEit +
K

∑
k=1

c7kXkit + µi + λt + κit (10)

where IC, LC, and PE are mediating variables representing innovation capacity, labor
clustering, and pollutant emissions, respectively. ζ, ω, ς, ϑ, π and µ are a set of individual
city-fixed-effects. ψ, υ, σ, θ, o and λ are a set of year-fixed effects. ξ, τ, ρ, v, ν and κ are a set
of error terms. The definitions of other variables are the same as in Equation (4).

The estimation procedures can be summarized as follows. First, Equation (4) was
estimated. The estimation result should show a significant impact of Treat_time on ISAI to
establish preliminary evidence that the ICP impacts the industrial structure upgrading in
pilot cities. Second, Equations (5) to (7) were estimated to explore the impacts of Treat_time
on the mediating variables IC, LC, and PE. Next, in Equations (8)–(10), the main explanatory
variable Treat_time and the mediating variables IC, LC, and PE were included and estimated.
If Treat_time remained statistically significant, it was concluded that the ICP significantly
impacts ISAI through innovation capacity, labor clustering, and pollutant emissions.

4. Results
4.1. Baseline Regression Analysis

Using a stepwise regression approach, the baseline model Equation (4) estimation
results are reported in Table 3. The rationale of applying a stepwise regression approach
is to gradually add new variables while evaluating whether to keep the chosen variables
after each addition until no further variables are added. This ensures that the best-specified
model keeps only variables with significant effects and excludes insignificant variables.

Table 3 column (1) shows that the estimated coefficient of Treat_time is 0.0420 without
adding any control variables and is significantly positive at the 10% level. The result
suggests that the ICP plays a significant role in upgrading the industrial structure of pilot
cities. When control variables, such as the financial development level of pilot cities, were
gradually added, the magnitude and significance of the estimated coefficient of Treat_time
increased, affirming that the launch of innovative city policy promotes industrial structure
upgrading. In terms of economic significance, the estimation results in column (7) show
that the ISAI of innovative pilot cities increased by 7.28% compared to non-pilot cities,
ceteris paribus. Considering that China’s sub-provincial cities have provincial economic
management authority and are unsuitable for parallel studies with ordinary prefecture-level
cities, this paper excludes sub-provincial cities from the sample. Regression estimation was
performed based on the new sample with the results in column (8). After the removal of
sub-provincial cities, the ICP still significantly impacted the industrial structure upgrading
of the pilot cities. The overall results for Treat_time show that the ICP promotes industrial
structure upgrading in pilot cities, with or without considering the control variables. Thus,
H1 is supported.
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Table 3. Baseline regression results.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treat_time 0.0420 * 0.0714 *** 0.0760 *** 0.0769 *** 0.0785 *** 0.0754 *** 0.0728 *** 0.0552 ** 0.0579 **
(1.75) (3.04) (3.25) (3.29) (3.35) (3.23) (3.11) (2.12) (2.43)

FL 0.3552 *** 0.3558 *** 0.3556 *** 0.3504 *** 0.3425 *** 0.3494 *** 0.3577 *** 0.3462 ***
(14.10) (14.16) (14.16) (13.85) (13.51) (13.58) (13.52) (13.42)

DL −0.0488 *** −0.0488 *** −0.0492 *** −0.0482 *** −0.0483 *** −0.0489 *** −0.0509 ***
(−4.44) (−4.45) (−4.49) (−4.40) (−4.41) (−4.25) (−4.65)

HE 0.0309 ** 0.0298 ** 0.0313 ** 0.0327 ** 0.0319 ** 0.0324 **
(2.35) (2.27) (2.38) (2.48) (2.34) (2.47)

IF 0.0346 0.0386 * 0.0482 ** 0.0443 * 0.0537 **
(1.63) (1.82) (2.18) (1.95) (2.43)

OL −0.0230 *** −0.0225 *** −0.0240 *** −0.0214 ***
(−3.86) (−3.77) (−3.91) (−3.57)

EL −0.0271 −0.0277 −0.0222
(−1.53) (−1.53) (−1.25)

IRIE 0.0369 **
(2.51)

Constant 0.9343 *** 0.6528 *** 1.0649 *** 0.8192 *** 0.6074 *** 0.8231 *** 0.8886 *** 0.9331 *** 0.9713 ***
(54.55) (25.11) (11.06) (5.77) (3.15) (4.11) (4.34) (4.43) (4.69)

City FE Y Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y Y

Obs. 3692 3692 3692 3692 3692 3692 3692 3497 3639
R-squared 0.3607 0.3960 0.3995 0.4005 0.4010 0.4036 0.4040 0.3971 0.4016

Notes: This table presents the estimation results of Equation (4) by using a stepwise regression approach. ***,
**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. Estimated t-values are
in parentheses.

Pertaining to the results for control variables in column (9), it was noted that the
estimated coefficient of FL is significantly positive across the columns, suggesting that the
increased depth of the financial system contributes to the advancement of the industrial
structure, typically by making the capital allocation and circulation in private sectors more
cost and time efficient. The estimated coefficient of DL is negative and statistically signifi-
cant, implying that sewage discharge is lower in cities that rely more on the tertiary industry
than primary and secondary industries for development. Further, the HE coefficient is sig-
nificantly positive, suggesting that human capital is vital to industrial structure upgrading
in cities. Similarly, well-developed infrastructure, transportation, and public facilities are
essential to industrial structure upgrading, as evidenced by the positive coefficient of IF.
The estimated coefficient of OL is significantly negative. This result can be explained by
the inflows of foreign direct investments by labor-intensive and low-tech enterprises that
take advantage of China’s relatively lower labor and production costs, which subsequently
hamper industrial structure upgrading. In addition, the education level (EL) of people is
insignificant in terms of affecting the industrial structure of cities generally. The IRIE is
significantly positive, indicating that implementing the ICP in the pilot cities can effectively
optimize innovation conditions, inputs, performance, and environment.

4.2. Mechanism Analysis

This study further investigates whether the ICP influences the industrial structure
in pilot cities via three mechanism paths following the preceding hypotheses H2a to H2c,
specifically by improving innovation capacity, rising labor aggregation, and reducing pol-
lutant emissions of the cities. Table 4 reports the estimation results of Equations (5) to (10).
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Table 4. Mechanism-analysis results.

(1) (2) (3) (4) (5) (6)

IC ISAI LC ISAI PE ISAI

Treat_time 1.5255 *** 0.0403 * 2.3609 *** 0.0562 ** −0.0812 ** 0.0713 ***
(14.30) (1.68) (16.69) (2.30) (−2.07) (3.04)

IC 0.0213 ***
(5.66)

LC 0.0007 **
(2.48)

PE −0.0189 *
(−1.85)

Constant 2.4378 *** 0.8367 *** 10.1156 *** 0.8173 *** 6.4606 *** 1.0110 ***
(2.62) (4.10) (8.19) (3.96) (18.86) (4.70)

City FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Control Y Y Y Y Y Y

Obs. 3692 3692 3692 3692 3692 3692
R-squared 0.1617 0.4096 0.2214 0.4051 0.6677 0.4046

Notes: This table presents the estimation results of Equations (5)–(10) pertaining to the “innovation capability”,
“labor clustering”, and “pollutant emissions” mechanisms. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% levels, respectively. Estimated t-values are in parentheses.

Regarding the “innovation capacity” mechanism, the results in column (1) indicate
that the coefficient of Treat_time is significant at the 1% level with a coefficient value of
1.5255, suggesting that the ICP’s implementation can significantly increase the innovation
capacity of pilot cities. Next, the column (2) results indicate that Treat_time is significantly
positive at the 10% level and that the coefficient of IC is significantly positive at the 1% level.
Comparing this result with that in Table 3, the coefficient of Treat_time becomes weaker in
magnitude and statistical significance, which points to the mediating effect of IC on the
nexus between Treat_time and ISAI. Thus, the combined results in columns (1) and (2) in
Table 4 reveal that the ICP promotes industrial structure upgrading by expanding pilot
cities’ innovation capacity. These results support H2a.

Columns (3) and (4) show the mechanism-analysis results for labor clustering. It is
observed in column (3) that the core explanatory variable Treat_time is significantly positive
at the 1% level with a coefficient value of 2.3609, suggesting that implementing the ICP
fostered labor clustering. Further, the coefficient of Treat_time in column (4) is significantly
positive at the 5% level, while its magnitude has dropped compared to that in Table 3. The
overall results affirm that labor clustering is one of the mechanisms via which the ICP
influenced industrial structure upgrading in pilot cities. These results thus support H2b.

Regarding the “pollution emissions” mechanism, the results in column (5) show
a negative and statistically significant coefficient of Treat_time, which suggests that the
launch of the ICP significantly cuts the pollutant emissions in pilot cities. Additionally,
the coefficient of Treat_time in column (6) is significantly positive at the 1% level, and the
coefficient of PE is significantly negative at the 10% level. These results, therefore, support
H2c by showing that the ICP affected the industrial structure upgrading in pilot cities by
reducing pollutant emissions.

4.3. Heterogeneity Analysis
4.3.1. Heterogeneity of City Scale

Agglomeration effects in large cities can improve the production factor structure and
lower the marginal cost of public investment in the private sector, allowing for the produc-
tion factors to be better used for the economic development vision of the cities [46]. How-
ever, when a city becomes overpopulated, it may create a problem called “urban illness”,
characterized by resource scarcity, excessive energy use, and environmental degradation.
It is plausible that the pace of economic development and the extent of production-factor
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utilization differ across cities of different scales, thereby altering the promotion effect of the
ICP on industrial structure upgrading. This heterogeneity effect requires further investiga-
tion. To this end, this study divided the sample into four sub-samples of small cities (below
0.5 million people), medium-sized cities (0.5–1 million people), large cities (1–3 million
people), and mega cities (more than 3 million people) by following the State Council’s 2014
Notice on Adjustment of City Size Classification Standard. The newly estimated regression
results based on Equation (4) for each city sub-sample are presented in Table 5.

Table 5. Results of the city-scale heterogeneity test.

(1) (2) (3) (4)

Small Cities Medium Cities Large Cities Mega Cities

Treat_time −0.0204 0.0270 0.1058 *** −0.0938
(−0.09) (0.36) (4.48) (−1.24)

Constant 1.5536 ** 1.8161 *** 1.2625 *** −0.7952
(2.47) (4.39) (4.15) (−0.83)

City FE Y Y Y Y
Year FE Y Y Y Y
Control Y Y Y Y

Obs. 608 1299 1473 312
R-squared 0.3991 0.4014 0.4988 0.6011

Notes: This table presents the estimation results of Equation (4) for subsamples of small cities (below 0.5 million
people), medium cities (0.5–1 million people), large cities (1–3 million people), and mega cities (more than
3 million people). ***, and ** indicate statistical significance at the 1%, and 5% levels, respectively. Estimated
t-values are in parentheses.

This study observed that the coefficient of Treat_time is positive and statistically signif-
icant only in column (3), which implies that the ICP significantly improved the industrial
structure in large cities. In contrast, smaller cities and mega cities do not show evident
changes in their industrial structure. This result appears to support the “agglomeration
effect” theory that large cities possess more significant comparative advantages in attract-
ing, retaining, and utilizing production factors towards the achievement of the economic
development vision of the cities and thus can better attain innovation-driven development
and industrial structure upgrading in alignment with the ICP [47].

4.3.2. Heterogeneity of City Resources

Resource-based cities are cities where the primary industries involve natural resource
extraction and processing. They do not have the same industrial structure as cities without
natural resource endowments. Thus, there may be differences in the impact of the ICP
on industrial structure upgrading across cities with different resource endowments. A
heterogeneity analysis of city resource endowments is necessary. Using the National
Sustainable Development Plan for Resource-Based Cities (2013–2020) as a guide, the sample
was divided into resource-based and non-resource-based cities to explore the heterogeneity
of resource endowments.

Table 6 reports the effects of the ICP on upgrading the industrial structure in non-
resource-based cities versus resource-based cities. The coefficient of Treat_time is insignifi-
cant for resource-based cities, while the coefficient of Treat_time is positive and significant
at the 1% level for non-resource-based cities. The result suggests that the promoting role
of the ICP in the industrial structure is more salient in non-resource-based cities. This is
reasonable because the cities have been poised towards the needs of tertiary industries that
rely more on skills and technologies and less on natural resources.
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Table 6. Results of city-resource-heterogeneity test.

(1) (2)

Non-Resource-Based Cities Resource-Based Cities

Treat_time 0.1071 *** −0.0022
(3.78) (−0.05)

Constant 0.6901 ** 1.4355 ***
(2.41) (4.91)

City FE Y Y
Year FE Y Y
Control Y Y

Obs. 2197 1495
R-squared 0.3738 0.4743

Notes: This table presents the estimation results of Equation (4) for subsamples of non-resource-based cities and
resource-based cities. ***, and ** indicate statistical significance at the 1%, and 5% levels, respectively. Estimated
t-values are in parentheses.

4.4. Robustness Tests
4.4.1. Parallel Trend Test

A prerequisite for applying the asymptotic DID estimation is that the parallel trend
assumption must be satisfied, i.e., the difference between the treatment group and control
group is constant over time before the policy implementation. In this paper, we drew on
the study of Roth and used an event-study approach to test whether the study sample
demonstrated a parallel trend [48]. The specified model is as follows:

ISAIit = β0 + β1Treat_time−4
it + β2Treat_time−3

it

+ . . . + β6Treat_time1
it +

K
∑

k=1
βkXkit + li + ηt + γit

(11)

The timeline was divided into four time periods before the ICP policy implementation
and one period following the policy implementation. Then, this study assessed whether
the treatment effects complied with parallel trends by averaging the treatment effects over
the pre- and post-policy implementation periods, using the policy implementation period,
t = 0, as the threshold. The test results are reported in Figure 3, which show that the
regression coefficients of “before1” to “before4” oscillate near zero in the pre-policy imple-
mentation period and are insignificant for the ISAI of pilot cities. The “after1” coefficient
exhibits an upward trend after the policy is in effect and has a confidence interval above
0, which is significantly positive. Here, this study asserts that the study’s DID estimation
successfully passed the parallel trend test.

4.4.2. Placebo Test

To examine whether any other arbitrary elements contribute to the positive impact of
the ICP on industrial structure upgrading, we followed the work of Zhang et al. to construct
a placebo test [49]. Specifically, to examine whether the kernel density plot of the random-
ized Treat_time coefficients is centered around 0 and whether it significantly deviated from
the observed values, sample cities in the treatment group were randomly sampled and
regressed 1000 times. Based on 1000 randomized samples, Figure 4 demonstrates that the
Treat_time coefficient had a normal distribution centered around 0, indicating that the data
passed the placebo test, and the results are valid.
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4.4.3. Excluding the Possible Interference of Other Policies

As the study sample period 2007 to 2019 also covered the launch of “Healthy City”,
“New-Energy City”, and “Low-Carbon City” programs in China, we controlled the influ-
ence of these policies independently by adding a dummy variable for the specified policy
in Equation (4) and then regressing the model to rule out any possible interference from
these programs with the results of this study. Table 7’s columns (1), (2), and (3) show the
results after controlling for the “Healthy City,” “New-Energy City,” and “Low-Carbon
City” programs, respectively. Even after these policies were incorporated into the model
estimations, the coefficient of Treat_time did not significantly change and stayed positive at
the 1% level, affirming the robustness of the study results.
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Table 7. Robustness test results.

(1) (2) (3) (4) (5)

Healthy City New-Energy
City

Low-Carbon
City Winsorization PSM-DID

Treat_time 0.0765 *** 0.0691 *** 0.0728 *** 0.0760 *** 0.0686 ***
(3.23) (2.93) (3.08) (3.24) (2.81)

Healthy −0.0359
(−1.11)

New_Energy 0.0326
(1.45)

Low_Carbon 0.0002
(0.01)

Constant 0.8808 *** 0.8970 *** 0.8885 *** 0.9263 *** 0.7322 ***
(4.30) (4.38) (4.33) (4.23) (3.37)

City FE Y Y Y Y Y
Year FE Y Y Y Y Y
Control Y Y Y Y Y

Obs. 3692 3692 3692 3692 3300
R-squared 0.4042 0.4044 0.4040 0.4033 0.4031

Notes: This table presents the robustness test results after accounting for the influences of “Healthy City” program;
“New-Energy City” program; and “Low-Carbon City” program, data outliers, and sample-selection bias. The
respective results are presented in columns (1) to (5). *** indicates statistical significance at the 1% level. Estimated
t-values are in parentheses.

4.4.4. Excluding the Possible Interference of Outliers

To alleviate the possible influence of outliers, this study Winsorized the dataset at
the top and bottom 2 percent and re-estimate Equation (4). The newly estimated results
reported in column (4) of Table 7 show that the Treat_time coefficient remains significantly
positive at the 1% level with a coefficient value of 0.0760. This shows that the study’s
findings are robust and that the impact of the innovation city pilot policy on industrial
structure upgrading was significant.

4.4.5. PSM-DID Method

While DID can isolate the overall impact of the ICP on industrial structure upgrading,
sample-selection bias is inevitable and may trigger an endogeneity concern. In this robust-
ness test, we applied a propensity-score matching (PSM) technique to alleviate the effect of
randomness on model estimations. We adopted a logit regression for Equation (12), where
the control variables in Equation (4) were used as co-variates (X) explaining the binary
variable of whether the city is an ICP city. The kernel density matches the weight produced
by the kernel-density function. The city with the best propensity-score matching is selected
as the control group to match with the treatment group. An equilibrium test affirmed no
noticeable systematic difference of covariates between the control and treatment groups
after matching. Then, the DID model specified by Equation (4) was re-estimated following
the propensity-score matching. The estimation results are presented in Column (5) of
Table 7. It was observed that the Treat_time coefficient is significant and close to that of the
multi-period DID model, suggesting that the study results are robust.

P(Whether it is ICP city) = f (Xit) (12)

4.4.6. Endogeneity Issue

Endogeneity arises from two sources: specifically omitted variables and reverse causal-
ity. Although the models included city fixed-effects, year fixed-effects, and a series of
city-specific variables, there may still have been some unobserved and omitted factors.
Additionally, while the result of the parallel trend test indicated that the trends of ISAI
exhibited by the treatment and control groups before the ICP implementation were gen-
erally consistent, the study sample may still suffer from the self-selection bias. This is
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because cities with higher ISAI usually have more advanced industrial structures and
innovation levels and may be more likely to be selected as pilot cities. To alleviate these
possible endogeneity concerns, this study adopted an instrumental variable approach as an
alternative for estimating our model.

GDP per capita (pgdp) was identified as the instrumental variable for the assumedly
endogenous Treat_time for two reasons. First, the economic development of cities is closely
related to the level of innovation in cities as it pushes the demand and supply of innovation.
Fan et al. empirically found that the higher the GDP per capita of a region, the higher
the regional innovation level; thus, the GDP per capita of a city can determine whether
a city is selected as an innovative pilot city, which satisfies the relevance assumption of
instrumental variables [50]. Second, unlike other economic development indicators, GDP
per capita does not directly affect a city’s industrial structure, which meets the exogeneity
requirement of instrumental variables.

The estimation results of the instrumental variable approach are reported in Table 8.
The first-stage estimation results show that GDP per capita (pgdp) highly correlates with
whether a city is selected as an ICP city. The second-stage estimation results show that when
the possible endogeneity associated with Treat_time is considered, the estimated coefficient
of the instrumented Treat_time is significantly positive, affirming that the positive effect of
the ICP on industrial structure upgrading remains intact.

Table 8. Instrumental variable estimation.

(1) First-Stage (2) Second-Stage

Treat_Time ISAI

pgdp 0.1412 ***
(11.04)

Treat_time 0.9542 ***
(5.42)

City FE Y Y
Year FE Y Y
Control Y Y

Obs. 3692 3692
R-squared 0.5856 0.2797

Notes: This table presents the two-stage estimation results of Equation (4) by using an instrument variable
approach. In the first-stage estimation, GDP per capita (pgdp) is used as an instrument for Treat_time. In the
second-stage estimation, the instrumented Treat_time from the first-stage estimation is used as an exogeneous
explanatory variable in Equation (4). *** indicates statistical significance at the 1% level. Estimated t-values are
in parentheses.

5. Discussion

The results in Table 3 show that the ICP has helped to upgrade the industrial structure
of pilot cities in China, supporting the study’s hypothesis H1. Under the mandate of
the ICP, public and private organizations have worked collaboratively and proactively
to transform their operation from a low-skill and low-tech base towards a high-skill and
high-tech base. By focusing on the development needs of leading industries in the city,
organizations have implemented industrial innovation projects, increased investment in
innovation-capacity development, developed high-tech industries and modern service
industries, and accelerated the process of high-tech transformation of traditional industries.
During the development process, technological knowledge diffusion through the clustering
and interaction of innovation factors, such as labor, is also facilitated [7,26]. All of these
processes effectively stimulate industrial structure upgrading consequently.

More specifically, the mechanism-analysis results in Table 4 suggest that the positive
effect of the ICP on industrial structure upgrading in pilot cities can be attributed to three
main reasons: enhanced innovation capacity, higher labor clustering, and lowered pollutant
emissions. Supporting Li et al.’s study results, the ICP enhances enterprises’ innovation
capacity in pilot cities through subsidized incentives for R&D innovation, patent renewal,
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and upgrading, effectively promoting enterprises’ innovative outputs [10]. As a result, the
scope of technology application and the efficiency of resource allocation within enterprises
are enhanced, which makes enterprises the direct catalysts for the transformation and
upgrading of regional industrial structures.

From the perspective of labor clustering, the ICP has attracted high-level talent re-
sources into the pilot city through various incentive packages and facilities for highly
qualified talents, strengthening the foundation of labor capacity for industrial structure
upgrading. The agglomeration of the labor force will improve labor specialization in in-
dustries and form a closer coupling between regional talent and industrial structures. This
coupling effect will significantly reduce labor search costs, help enterprises obtain external
resources more efficiently, break through the incumbent resource constraints, improve
resource-use efficiency, and promote enterprises’ new product development and industrial
technology innovation [22]. Furthermore, the labor force acts a carrier of knowledge that
disseminates technological knowhow through knowledge spillover, labor force flow, and
imitation learning, enabling the diffusion of technological innovation in industries and
promoting industrial structure upgrading [31,34,35].

Further, the ICP has improved energy utilization efficiency and reduced pollutant
emissions in cities, consistent with those of Gao and Yuan, Wang and Zhou, and Yang
et al. [8,14,15]. However, this study demonstrated that the pollutant emission reduction is
one of the most significant mechanisms driving the effect of the ICP on industrial structure
upgrading. The results can be explained at two levels. At the firm level, by removing
obsolete production capacity through technological transformation and advancement,
firms eliminate the cost of pollutant emissions from their production costs. As a result, the
improved production cost and profit efficiency encourage operational system upgrading in
firms towards a high-tech and high-skill base. At the industry level, the shift towards a
greener production method by firms facilitates the transformation of the industrial structure
from industries with high energy consumption and low value added, to industries with
low energy consumption and high value added, and from labor-intensive industries to
more efficient ones.

The heterogeneity analysis results in Table 5 show that the positive effect of the ICP
on industry-structure upgrading is salient only in large cities but not in smaller cities and
mega cities. This result appears to complement the argument made by Wang and Zhou
that larger cities with larger population bases make implementing the ICP more effective
in attaining specific economic, social, and environmental targets [8,10,14]. Larger cities
generally have more complete industrial conditions, a more conducive environment for
innovation and entrepreneurship, and smoother policy-support channels. These make im-
plementing the ICP more effective, magnifying the industrial agglomeration effect in large
cities and subsequently upgrading the industrial structure in large cities. In contrast, the
lower technology level, insufficient infrastructure, and lack of agglomeration effect in small
and medium-sized cities have caused the investment in industrial structure upgrading to
be less cost-efficient in such cities. Moreover, the positive effect of the ICP is not evident in
megacities with a resident population of more than 3 million, possibly because environ-
mental pollution and other “urban illnesses” brought on by population agglomeration can
make the governance of urban government less effective [18]. Meanwhile, the systems for
cross-regional governance and cooperation between megacities and their adjacent cities are
still developing. This restricts interregional technology diffusion and resource exchange
across regions and precludes the ICP from promoting industrial structure upgrading.

The results in Table 6 suggest that the positive effect of the ICP on industry-structure
upgrading is significant only in non-resource-based cities. A plausible explanation is that
the “resource curse” phenomenon is more prevalent in resource-based cities than in non-
resource-based cities. The resource-dependent economic development model makes it
more challenging for resource-based cities to upgrade their leading industries to tertiary
industries. A transition in industrial structure could face strong objections from laborers and
residents as it could cause employment loss, jeopardize social welfare, and halt economic
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development. Like Zhao et al., who show the poor efficacy of the carbon emission trading
pilot policy in upgrading the industrial structure in resource-based cities [18], this study
asserts that the ICP lacks effectiveness in meeting the expected goal of promoting industrial
structure upgrading in resource-based cities.

6. Conclusions

Since 2008, China has rolled out a series of the ICP under a phase-in arrangement in
various cities to improve urban innovation activities and innovation capacity in alignment
with the country’s innovation-driven development vision. Under the mandate of the
ICP, each city should invest more in innovation; focus on the development of innovative
resources; and foster an innovation-friendly environment, which is believed to have a more
fundamental and long-term impact on the industrial structure upgrading of cities. Against
this background, the present paper empirically examined the effect of the ICP on industrial
structure upgrading by employing a panel dataset of 284 Chinese prefecture-level cities
from 2007 to 2019.

The findings are summarized as follows: (1) the ICP greatly helps upgrade the in-
dustrial structure in pilot cities from primary industries towards secondary and tertiary
industries that rely more heavily on advanced skills and technologies; (2) the positive effect
of the ICP on industrial structure upgrading is more salient in large cities and non-natural
resource-based cities. Large cities provide a more conducive industrial environment for
implementing the ICP. In contrast, non-natural resource-based cities offer greater flexibility
in resource reallocation towards labor skills and technology innovations to support the
ICP’s vision; (3) three mechanisms exist via which the ICP promotes industrial structure
upgrading, specifically, innovation-capacity improvement, labor clustering, and pollutant
emission reduction. Since the extant literature has not explicitly linked the effect of the
ICP to industrial structure upgrading, the present findings contribute by shedding light
on the causal influence of innovation on industrial structure upgrading and the possible
heterogeneities and mechanisms of the influence.

The study results offer policy implications to regulators. As it was found that the posi-
tive effect of innovative city construction on industrial structure upgrading is insignificant
in small and medium-sized cities, megacities, and resource-based cities, it is suggested that
the government pays attention to the experience summarization, sharing, and promotion of
pilot work and introduces the successful experience of large non-resource-based towns and
cities to cities where the policy effect has not been fully realized, to enhance the industrial
structure upgrading effect of innovative city construction. Learning from successful pilot
cities is vital for an innovative city’s continuous and in-depth development. Since the
impact of innovative city policy on industrial structure upgrading is heterogeneous across
cities, it is necessary to adhere to the principles of localization, city-by-city, and site-by-site;
give full play to the leadership and administrative roles of local governments; strengthen
the inclusiveness of policy implementation; and not adopt a one-size-fits-all approach in
the process of innovative city construction.

Through mechanism analyses, the present paper finds that the ICP promotes industrial
structure upgrading in Chinese cities by improving innovation capacity, boosting labor
clustering, and lowering pollutant emissions. This highlights the importance of exploring
multi-dimensional ways for innovative city construction to promote upgrading regional
industrial structure. Specifically, the government should vigorously promote the develop-
ment of urban innovation capacity and human capital, accelerate the agglomeration degree
of urban innovation and economic factors, and improve the innovative city construction-
assessment system. Moreover, strengthening environmental supervision can effectively
stimulate the industrial structure upgrading effect of the ICP. At the national level, full
coverage of environmental regulations should be implemented, enforced, and effectively
supervised. At the social level, all firms, institutions, and social groups should closely
manage their conduct in compliance with environmental laws and regulations.
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