Design and Test for a New Type of Permanent Magnet Synchronous Generator Applied in Tidal Current Energy System
Abstract
:1. Introduction
2. Underwater Generator Design
2.1. Generator Specifications
2.2. Generator Primary Dimensions
2.3. Size of Permanent Magnets
2.4. Number of Stator Slot
2.5. Winding Design
2.6. Generator Design Parameters
3. Finite Element Simulation Analysis
3.1. Simulation Modeling
3.2. No-Load Simulation Analysis
3.3. Load Simulation Analysis
4. Genetic Algorithm Optimization of Generator Parameters
4.1. Analysis of the Voltage Regulation
4.1.1. Effect of Air Gap Length
4.1.2. Effect of Core Length
4.1.3. Effect of Permanent Magnet Magnetization Direction Length
4.1.4. Effect of Stator Slot Size
4.2. Voltage Regulation Genetic Algorithm Optimization
5. Actual Test of Underwater Generator
5.1. Generator Dragging Experiment
5.2. Generator Sealing Experiment
5.3. Water Tank Dragging Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef] [PubMed]
- Jouffray, J.B.; Blasiak, R.; Norström, A.V.; Österblom, H.; Nyström, M. The blue acceleration: The trajectory of human expansion into the ocean. One Earth 2020, 2, 43–54. [Google Scholar] [CrossRef]
- Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604. [Google Scholar] [CrossRef]
- Eng, B.A.M.B. Combined Experimental Testing and Numerical Modelling of a Novel Vertical Axis Tidal Turbine; National University of Ireland: Galway, Ireland, 2018. [Google Scholar]
- Zhang, Y.-L.; Lin, Z.; Liu, Q.-L. Marine renewable energy in China: Current status and perspectives. Water Sci. Eng. 2014, 7, 288–305. [Google Scholar]
- Li, B.; Li, L.; Yang, L.; Yang, X.; Xiao, Y. Utilization and research status of tidal current energy. Solar Energy 2010, 9, 39–42. [Google Scholar]
- Gu, Y. Study on the Key Technologies of the Grid-connected Marine Current Turbine’s Control System. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Moury, S. Design of Low Speed Axial Flux Permanent Magnet Generators for Marine Current Application; Memorial University of Newfoundland: St. John’s, NL, Canada, 2010. [Google Scholar]
- Lindh, P.M.; Jussila, H.K.; Niemela, M.; Parviainen, A.; Pyrhonen, J. Comparison of concentrated winding permanent magnet motors with embedded and surface-mounted rotor magnets. IEEE Trans. Magn. 2009, 45, 2085–2089. [Google Scholar] [CrossRef]
- Fizari, A.J.; Wijaya, F.D.; Cahyadi, A.I.; Adiyasa, I.W. Design and Simulation Permanent Magnet Synchronous Generator 1.5 kW for Ocean Current Turbine. In Proceedings of the 2019 IEEE Conference on Energy Conversion (CENCON), Yogyakarta, Indonesia, 16–17 October 2019; pp. 121–125. [Google Scholar]
- Nikbakhsh, A.; Izadfar, H.; Beromi, Y. Design and optimization of permanent magnet synchronous generator for use in hydrodynamic renewable energy by applying ACO and FEA. IIUM Eng. J. 2017, 18, 158–176. [Google Scholar] [CrossRef]
- Quintal-Palomo, R.; Dybkowski, M.; Gwoździewicz, M. Parametric analysis for the design of a 4 pole radial permanent magnet generator for small wind turbines. Power Electron. Drives 2016, 1, 175–186. [Google Scholar]
- Faiz, J.; Valipour, Z.; Shokri-Kojouri, M.; Khan, M.A. Design of a Radial Flux Permanent Magnet Wind Generator with Low Coercive Force Magnets. In Proceedings of the 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS), Kyiv, Ukraine, 7–11 June 2016; pp. 1–7. [Google Scholar]
- Hebala, A.; Ghoneim, W.A.; Ashour, H.A. Detailed Design Procedures for Low-Speed, Small-Scale, PMSG Direct-Driven by Wind Turbines. In Proceedings of the 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 3–6 September 2018; pp. 697–703. [Google Scholar]
- Liwei, C.; Wenpeng, C.; Yinchao, L.; Shanguo, P.; Junsheng, W. Filling and sealing technology of ocean underwater generator. Polyurethane Ind. 2018, 33, 34–36. [Google Scholar]
- Madani, N.; Cosic, A.; Sadarangani, C. A permanent magnet synchronous generator for a small scale vertical axis wind turbine. In Proceedings of the 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d’Alene, ID, USA, 10–13 May 2015; pp. 48–52. [Google Scholar]
- Madani, N. Design of a Permanent Magnet Synchronous Generator for a Vertical Axis Wind Turbine. Master’s Thesis, Royal Institute of Technolgy, Stockholm, Sweden, December 2011. [Google Scholar]
- Htet, T.Z.; Zhao, Z.; Gu, Q. Design Analysis of Direct-Driven PMSG in Wind Turbine Application. In Proceedings of the 2016 International Conference on System Reliability and Science (ICSRS), Paris, France, 15–18 November 2016; pp. 7–11. [Google Scholar]
- Jeong, C.L.; Kim, Y.K.; Hur, J. Optimized design of PMSM with hybrid-type permanent magnet for improving performance and reliability. IEEE Trans. Ind. Appl. 2019, 55, 4692–4701. [Google Scholar] [CrossRef]
- Li, W.; Cheng, M. Systems. Investigation of influence of winding structure on reliability of permanent magnet machines. Trans. Electr. Mach. Syst. 2020, 4, 87–95. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Zheng, Y.; Zhang, J.; Fernandez-Rodriguez, E.; Zang, W.; Ji, R. Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction. Energy 2023, 264, 126185. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, W.; Zheng, J.; Cappietti, L.; Zhang, J.; Zheng, Y.; Fernandez-Rodriguez, E. The influence of waves propagating with the current on the wake of a tidal stream turbine. Appl. Energy 2021, 290, 116729. [Google Scholar] [CrossRef]
Rated Power | Rated Voltage | Rated Current | Rated Rotation Speed |
---|---|---|---|
120 W | 36 V | 1.93 A | 28 r/min |
Pole Number | Slot Number | Rotor External Diameter | Stator External Diameter | Stator Bore | Air Gap Length | Core Length | Permanent Magnet Thickness | Pole Arc Coefficient |
---|---|---|---|---|---|---|---|---|
40 | 72 | 620 mm | 590 mm | 476 mm | 2.5 mm | 25 mm | 5 mm | 0.94 |
Population Size | Maximum Genetic Algebra | Individual Length | Generation Gap | Cross Probability | Probability of Variation |
---|---|---|---|---|---|
40 | 50 | 40 | 0.95 | 0.7 | 0.01 |
Variable | δ/mm | L1/mm | hMp/mm | b0/mm | d2/mm | h/mm |
---|---|---|---|---|---|---|
min | 2.0 | 20.0 | 4.0 | 4.0 | 8.0 | 30.0 |
max | 3.0 | 30.0 | 6.0 | 6.0 | 12.0 | 45.0 |
Variable | δ/mm | L1/mm | hMp/mm | b0/mm | d2/mm | h/mm |
---|---|---|---|---|---|---|
Before optimization | 2.5 | 25.0 | 5.0 | 5.0 | 10.0 | 35.0 |
After optimization | 2.8 | 24.3 | 4.5 | 5.3 | 11.2 | 33.5 |
Performance Index | Voltage Regulation Rate/% | Stator Tooth Magnetic Density/T | Stator Yoke Magnetic Density/T | Air Gap Magnetic Density/T |
---|---|---|---|---|
Before optimization | 7.93 | 1.62 | 0.96 | 0.73 |
After optimization | 6.85 | 1.82 | 0.98 | 0.84 |
Load/Ω | Start Flow Rate/m/s | Starting Power/W | Rated Flow Rate/m/s | Output Power/W | Output Voltage/V |
---|---|---|---|---|---|
30 | 0.25 | 3.65 | 0.88 | 123.85 | 38.74 |
35 | 0.25 | 3.56 | 0.90 | 123.18 | 37.21 |
40 | 0.26 | 3.49 | 0.91 | 122.31 | 36.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Mo, C.; Zhu, W.; Chen, J.; Wu, B.; Zhang, X.; Zhang, X.; Chen, L. Design and Test for a New Type of Permanent Magnet Synchronous Generator Applied in Tidal Current Energy System. Sustainability 2023, 15, 7378. https://doi.org/10.3390/su15097378
Zhao Y, Mo C, Zhu W, Chen J, Wu B, Zhang X, Zhang X, Chen L. Design and Test for a New Type of Permanent Magnet Synchronous Generator Applied in Tidal Current Energy System. Sustainability. 2023; 15(9):7378. https://doi.org/10.3390/su15097378
Chicago/Turabian StyleZhao, Yuxiang, Caixia Mo, Wanqiang Zhu, Jianmei Chen, Baigong Wu, Xiao Zhang, Xueming Zhang, and Liwei Chen. 2023. "Design and Test for a New Type of Permanent Magnet Synchronous Generator Applied in Tidal Current Energy System" Sustainability 15, no. 9: 7378. https://doi.org/10.3390/su15097378
APA StyleZhao, Y., Mo, C., Zhu, W., Chen, J., Wu, B., Zhang, X., Zhang, X., & Chen, L. (2023). Design and Test for a New Type of Permanent Magnet Synchronous Generator Applied in Tidal Current Energy System. Sustainability, 15(9), 7378. https://doi.org/10.3390/su15097378